Agriculture, Food and Natural Resources Journal

ISSN: 3043-5420

The Official Journal of the Faculty of Agriculture, Nnamdi Azikkiwe University, Nigeria

Original Article

Journal homepage: https://journals.unizik.edu.ng/afnrj

Survey of tree species processed by sawmills in south-south zone of Nigeria

OPEN ACCESS

ACULTY OF AGRICULTURE

AENRI

Oghenekevwe Abigail OHWO*

Department of Forestry and Wildlife, Delta State University, Abraka, Delta State, Nigeria

DOI: <u>https://www.doi.org/10.5281/zenodo.14017337</u>

Editor: Dr Onyekachi Chukwu, Nnamdi Azikiwe University, NIGERIA

Received: January 22, 2024 Accepted: March 24, 2024 Available online: March 31, 2024

Peer-review: Externally peerreviewed

Copyright: © 2024 Author(s) This is an open access article under the licensed under Creative Commons Attribution 4.0 International License (<u>https://</u> <u>creativecommons.org/licenses/by/</u> <u>4.0/</u>) which permits unrestricted use distribution, and reproduction in any medium, provided the origina author and source are credited.

Conflict of Interest: The authors have no conflicts of interest to declare

Financial Disclosure: The authors declared that this study has received no financial support

The south-south zone of Nigeria, enriched with rain forest with choice timber species, has numerous sawmills. Tree species processed in sawmills depend on their uses within the locality. Hence the study surveyed tree species processed in sawmills and their uses in the south-south zone of Nigeria. Twenty sawmills each were randomly selected from Akwa Ibom, Bayelsa, and Delta States in the South-South zone of Nigeria. Data on the socio-economic profile of sawmillers, timber species processed, dimensions, and uses were obtained using a structured questionnaire. Data was analyzed using descriptive statistics such as frequencies, means, and percentages. Most of the sawmillers were male (93.3%), with a mean age of 43.0±0.98, married (96.7%), with mean years of experience of 15.3±0.89 and a capital base of 9190000±505471.2. Daniella olivera was the most sawn and Ricinodendron heudolotii (35.0%), Chrysophyllum albidum (50.0%), and Lophira alata (45.0%) were the least sawn in Akwa Ibom, Bayelsa and Delta State, respectively. In the south-south zone of Nigeria, Daniella olivera (96.7%) and Ricinodendron heudolotii (11.7%) were the most and least sawn, respectively. These species were processed and used for construction and furniture work. Numerous species are exploited and processed by sawmills in the South-South zone of Nigeria. Investment in private plantation establishments, afforestation, and sophisticated processing machines is paramount for the sustenance of forests and sawmills in the South-South zone of Nigeria.

ABSTRACT

KEYWORDS: Forest, Timber processing, Trees, Utilization

INTRODUCTION

Nigeria's vegetation is broadly grouped into two, forests and savanna located in Southern and Northern region respectively. Southern Nigeria forests are categorized into mangrove, freshwater swamps and tropical rainforest which serve as habitat for various hardwood species (Olorunnisola, 2023). With population expansion and development comes increased demands for forest products. Thus, the forest is being looted encouraging deforestation (Adediran *et al.*, 2016). Deforestation is precarious to lives and properties as forest protective service is destroyed in the process. It is of major interest in developing countries (Chakravarty *et al.*, 2011) due to rapid depletion of biodiversity and reduction in their forest areas (Ohwo *et al.*, 2020).

South-South zone of Nigeria was massively enclosed by rainforest in year 1500 which significantly reduced rapidly over the years (Olowokudejo and Oyebanji, 2016). The reduction in rainforest stems from exploration, processing, spillage and utilization of fossil fuel (Nigeria

*Corresponding author: oghenekevweabigail@gmail.com; ohwoao@delsu.edu.ng +2348029890728

part to sustainable development through green economy, country report to the Rio+ 20, 2012). Olowokudejo and Oyebanji (2016) reiterated that above half of 9.6 million ha of rain forests in Nigeria was used to carter for fuel wood needs in city and village neighborhoods. Furthermore, the establishment of African Timber and Plywood, (AT& P) in Sapele, Delta State and the lucrative nature of sawmilling milling business led to installation of numerous small-scale mills in the south which intensified extensive exploitation of forest trees. In 2010, the rain forest zones harbored 945 out of the 1325 sawmills that existed in Nigeria especially in Edo, Delta, Ondo, Ogun, Oyo, Osun, Cross River States (Ogunwusi, 2012).

Sawmills is most dominant and highly commercial in the south creating job, income (Ohwo and Adeyemi, 2015), energy (Okunomo, 2010) and sustaining livelihood (Ohwo and Ogoha, 2017). The forest thus is burdened with log supply to sawmill for both domestic and external consumption (Larinde and Erakhrumen, 2021). Sawmills processed timber into lumber with circular saw, mighty mite, kernali brand, head rigs and French manufactured CD4, CD5, CD6 horizontal band saws, brenta vertical, antiglo machine, jevo machine, primultini vertical and forestor, with few using the Numeric Controlled (NC) devices (Ogunwusi, 2012). They are mostly focus in cities, usually regarded as the heart of activity with manufacturing capacity of 500m³ annual outputs per mill (Olufemi et al. 2012). Sawmills are the basic suppliers of lumber to the furniture and construction industries known for huge utilization of lumber (Larinde and Erakhrumen, 2021). This is credited to population expansion and mobility, access to credit facilities, increased literacy, number of families and wages stimulating the purchase of different furniture items (Sakagami and Sakaguchi, 2022).

Logs, the basic raw material for lumber production is obtained mainly from natural forest in Nigeria (Raw Materials Research and Development Council (RMRDC), 2009). During legal logging operation where merchantable trees are marked by the State Forestry Department for felling, non-merchantable adjoining trees are destroyed in the process of felling and creation of paths for transporting the logs (Danilovic et al., 2015). The low lumber recovery of logs in sawmills where the waste generated is more than half of the log volume (Ohwo et al., 2020) also contributes to deforestation as more logs are extracted from the forest to meet demands for sawn-wood (Ohwo and Ogoha, 2017). Chainsaw milling activities is another form of converting wood in Nigeria where logs are converted into boards after felling at the stump site before evacuation from the forest using the chainsaw machine, also contribute significantly to deforestation. This process is often practiced in Nigeria rainforest zone during illegal logging activities (Adeleye, 2018).

Hence, this study surveyed various tree species processed in sawmills within South-South zone of Nigeria for effective management plan.

METHODOLOGY

Study area

This study was done in South-South zone of Nigeria. The area lies approximately between Latitude 4°25'N and 7°40'N, and Longitudes 5°41'E and 9°70'E. The zone occupies 10.3% (94,924 km²) of Nigeria land mass. The region is made up of six constituent states (Akwa Ibom, Bayelsa, Cross River, Delta, Edo and Rivers States).

Sampling procedure

Three states were randomly selected from the six constituent states of South-South zone of Nigeria. The selected states were Akwa Ibom, Bayelsa and Delta States. Forty two, thirty three and forty eight sawmills exist in Akwa Ibom, Bayelsa, and Delta States respectively. Sampling intensity of 47.6%, 60.6% and 41.7% was used in randomly selecting 20 sawmills each from Akwa Ibom, Bayelsa and Delta States respectively.

Data collection and analysis

Primary data on sawmills socio-economic profile, timber species processed and their uses were obtained through structured questionnaire. Data were analysed using descriptive statistics. Wood density, an important factor for wood utilization was obtained using model (1)

```
Wood density = Mass (kg)/Volume (m^3) (1)
```

RESULTS AND DISCUSSION

Demographic Characteristics of Sawmill Owners/managers

The demographic profile of sawmills owners/managers (Table 1) shows that the mean age of sawmill operators was 43 ± 0.98 years. Respondents' gender characteristic shows that 93.3% of the work-force were male; 96.7% were married and possessed the ability to read and write with 60.0% possessing secondary. The high involvement of male between the ages of 31-50 years implies that timber processing activities are energy demanding. These activities of loading, off-loading, movement of logs to sawing machines and arranging of lumber in sheds requires young, active, well-built male with good physical

AFNRJ | <u>https://www.doi.org/10.5281/zenodo.14017337</u> Published by Faculty of Agriculture, Nnamdi Azikiwe University, Nigeria. fitness. Mong'are *et al.* (2017) and Ohwo and Ogoha (2017) stated that sawmilling and other energy demanding and tough jobs are dominated by male. The dominance of middle age male in timber processing shows that they have the energy and strength to handle stress. This is in line with the findings of Mong'are *et al.*, (2017) and Ohwo *et al.* (2020) that the middle age people tend to dominate sawmill business. The large engagement of married and educated people in timber processing is a reflection that sawmilling provides income and employment as reported by Ohwo (2016). Education altitude may also help the saw millers in proper management and records of production and business activities.

Respondents' number of years of sawmilling reveals that 30.0%, 23.3%, and 21.7% have been in sawmilling for 11-

15, 6-10 and 16-20 years respectively. Respondents who have spent over 21-30 years in sawmilling were about 21.7% while starters were negligible with just 3.3%. The low level of starters in sawmilling corroborates Larinde and Erakhrumen (2021) that there exist prolific decline of Nigeria local sawmills. These sawmills were managed by owners who constitute 66.7% of the respondents'. The result for sawmill capital base shows that 70.0% of the respondents' capital bases were between \$5,000,000 -\$9,999,999 while 26.0% had capital bases of \$10,000,000 - \$14,999,999 investment. Olorunnisola (2023) affirm the dominance of sole sawmill owners. He further emphasized need for collaborative engagement because of the capital intensive nature of sawmilling especially in equipment purchase

Variables	Group	Frequency	Percentage	Mean
Age of operator	31-40	23	38.3	
	41-50	29	48.3	
	51-60	08	13.4	43±0.98
	Total	60	100	
Gender	Male	56	93.3	
	Female	4	6.7	
	Total	60	100	
Marital status	Single	02	3.3	
	Married	58	96.7	
	Widowed	00	0.0	
	Total	60	100	
Level of education	No formal education	00	0.0	
	Primary	10	16.7	
	Secondary	36	60.0	
	Tertiary	14	23.3	
	Total	60	100	
Years of experience	1-5	02	3.3	
	6-10	14	23.3	
	11-15	18	30.0	
	16-20	13	21.7	
	21-25	06	10.0	
	26-30	07	11.7	15.3±0.89
	Total	60	100	
Sawmill management type	Owner managed	40	66.7	
	Leased	20	33.3	
	Total	60	100	
Capital base	₦1000000 - 1 4999999	03	2.0	
(Value as at 2022)	₦5000000 - 1 9999999	38	70.0	
	N10000000 - N149999999	16	26.0	
	N15000000 - N19999999	03	2.0	9,190,000±50 5471.2
	Total	60	100	

 Table 1: Demographic characteristics of sawmill owners/managers in South-South zone of Nigeria

Source: Field survey 2022

AFNRJ | https://www.doi.org/10.5281/zenodo.14017337

Published by Faculty of Agriculture, Nnamdi Azikiwe University, Nigeria.

Tree Species Processed in Sawmills in South-South zone of Nigeria

The tree species sawn in sawmills in Akwa Ibom, Bayelsa and Delta State is presented in Tables 2, 3 and 4 respectively. In Akwa Ibom State, 33 species were available for sawing (Tables 2) with Daniella olivera (100.0%) and Pterocarpus osun (95.0%) the most sawn while Ricinodendron heudolotii the least sawn (35.0%). In Bayelsa State, 37 species were sawn in sawmills (Tables 3). The most sawn timber species were Daniella olivera (100.0%) and Pterocarpus osun (100.0%) with Chrysophyllum albidum (50.0%) the least sawn. In Delta State, 25 species were processed in sawmills with Ceiba pentandra (100.0%), Khaya species (90.0%) and Daniella olivera (90.0%) the most sawn, while Lophira alata (45.0%) was the least sawn (Table 4). A total of 49 tree species belonging to 25 families were sawn in the zone with Daniella olivera the most (96.7%) and Ricinodendron heudolotii the least (11.7%) processed (Tables 5). The most commonly sawn tree species belong to the family, Caesalpiniaceae and Papilionaceae followed by Combretaceae, Miniosacaea and Rubiaceae.

The identified tree species sawn in sawmills in Southern Nigeria were mostly rainforest species and indigenous to the zone except for species of Gmelina arborea which was the only exotic tree species sawn. These species are dominant in the freshwater swamp forests area of Nigeria as reported by Ofoegbu et al. (2014) and Ohwo and Agbogidi (2015). These authors identified species of Afzelia africana, Pterocarpus soyauxii, Khaya ivorensis, Lophira alata, Cylicodiscus gabunensis, Brachystegia Daniella Entandrophragma eurycoma, ogea, cyclindricum, Alstonia boonei, Cistanthera papaverifera, Amphimax pterocarpoides, Halea ciliata, Terminalia ivorensis, Triplochiton scleroxylon and Sterculia oblonga as tree species present in rainforest and sawn in South-South zone of Nigeria.

Forty eight (48) out of the 49 species identified constitute 8.0% of the total known Nigerian forest trees species while the 49 species identified makes up 81.7% of the marketable wood species in Nigeria. This result

corroborates the findings of Ohwo and Agbogidi (2015) who identified 43 traded wood species in Delta State, constituting 72.0% marketable wood species and 7.0% of the total known Nigerian forest trees species in Nigeria. The most processed timber species are faced with overexploitation because of high wood quality.

The high dependence on logs by sawmills from natural forest within South-South zone of Nigeria accounts for the high deforestation rate observed in the natural forest and reserves. This agrees with the reports of Ohwo et al., (2020). Furthermore, the poor involvement of saw millers in plantation forestry implies that revenue generated from the sawmilling business is diverted to other sectors, thus negatively affecting development of forestry sector. This is a greatest challenge confronting the sector as reported by Bhandari et al., (2019). Thus, effective management via afforestation and reforestation is imminent to ensure their continuity. Olorunnisola (2023) proposed establishment of large timber plantations and usage of substitutes or lesser known wood species for continous timber supply to users.

These species were processed for various uses. The suitability of timber species for any use depends not only on their density (Table 5), but on grains, texture, workability, shrinkage properties, strength and finishing properties. Their uses ranged from construction to furniture work, canoe building, decking, bed, doors, billets, railway slippers amongst others as in Awka Ibom (Tables 2), Bayelsa (Tables 3) and Delta States (Tables 4). The diverse use of these wood species corroborates reports of Adeniyi et al. (2013), Arowosoge (2015) and Olorunnisola (2023). These authors stated that sawnwood is utilized for building, construction, making roofs and furnitures. Arowosoge (2015) identified Khaya ivorensis, Milicia excelsa, Nesogordonia papaverifera and Nauclea diderrichii as some preferred roofing wood species in South-west Nigeria. Adeniyi et al. (2013) identified Ceiba pentandra, Bombax bounopozense and Diospyros mespiliformis, Mansonia altissima, Lophira alata species as suitable for furniture and heavy construction work, respectively.

AFNRJ | https://www.doi.org/10.5281/zenodo.14017337 Published by Faculty of Agriculture, Nnamdi Azikiwe University, Nigeria.

163

S/N	Species	Trade name	Frequenc	Percent	Ran	Uses
			y (N=20)	age	k	
1	Amphimas pterocarpoides	Awang	18	90	3	Roofing
2	Baillonella toxisperma	Minnisop	14	70	6	Furniture
3	Baphia nitida	Baphia	13	65	7	Roofing
4	Brachystegia eurycoma	Achi	10	50	10	Doors/door frame
5	Bombax buonopozense	Cotton	14	70	6	Decking and covet
6	Ceiba pentandra	Araba	19	95	2	Furniture
7	Diospyros spp	Ebony	16	80	5	Cubic used as billet for export
8	Khava species	Mahogany	17	85	4	Furniture
9	Lophira alata	Ekki/iron wood	10	50	10	Cubic for rail line
10	Lovoa trichiliodes	Ceda	11	55	9	Doors, beds
11	Melicia excels	Iroko	18	90	3	Doors, beds
12	Mitragyna stipulosa	Owen	10	50	10	Furniture
13	Piptadeniastrum Africana	Small leaves	16	80	5	Roofing
14	Poga oleosa	Poga	13	65	7	Doors, interior
						decoration
15	Pterocarpus osun	Red camwood	19	95	2	Roofing, canoe building
16	Pterocarpus soyauxii	White camwood	9	45	11	Roofing
17	Pycnanthus angolensis	Akuanuiri	17	85	4	Decking bridges
18	Standtia stipitata	Achara	16	80	5	Door and bed
19	Terminalia ivorensis	White afara	17	85	4	Furniture
20	Terminalia superba	Black afara	19	95	2	Furniture
21	Cordia millenii	Omon	13	65	7	Roofing
22	Gmelina arborea	Gmelina	14	70	6	Furniture and construction
23	Nuclea diderrichii	Opepe	16	80	5	Roofing and furniture
24	Triplochiton scleroxylon	Obeche	17	85	4	Facing board
25	Alstonia boonei	Egbu wood	9	45	11	Tie rod, casket and
		C				furniture
26	Anogeissus leiocarpus	Ataraban	16	80	5	Roofing
27	Daniella olivera	Agba	20	100.0	1	Roofing, furniture
28	Fagara macrophylla	Uko	12	60	8	Roofing
29	Mansonia altissima	Mansonia	9	45	11	Ceiling, interior
						decoration
30	Micimerlinia brazzavililesis	Zebra wood	17	85	4	Furniture, bed, roofing
31	Pericopsis elata	Ebelebe	10	50	10	Furniture
32	Afzelia Africana	Kerosene wood	9	45	11	Roofing
33	Ricinodendron heudolotii	Ukin	7	35	12	Fishing boat

Table 2: Processed timber species and uses in Akwa Ibom State

Source: Field survey, 2022

S /	Species	Trade name	Frequenc	Percen	Rank	Uses
Ν			y (N=20)	tage		
1	Afzelia Africana	Apa	12	60	8	Furniture
2	Albizia ferruginea	Ayinre	15	75	5	Furniture
3	Brachystegia eurycoma	Okwen/Eku	13	65	7	Doors, frames
4	Daniella olivera	Owaje	20	100	1	Roofing
5	Khaya species	Mahogany	17	85	3	Roofing, bed and furniture
6	Lophira alata	Ekki	12	60	8	Cubic for rail line
7	Milicia excels	Iroko	13	65	7	Door, furniture
8	Nauclea diderrichii	Opepe	15	75	5	Roofing, bed
9	Terminalia ivorensis	Black afara	17	85	3	Roofing, furniture
10	Treculia Africana	Okwa/ize	17	85	3	Furniture
11	Vitellaria paradoxa	Shear butter	16	80	4	Furniture
12	Alstonia boonei	Alstonia	14	70	6	Casket, noggin
13	Albizia lebbeck	Albizia	11	55	9	Furniture
14	Antiaris africana (toxicaria)	Ijebu iroko	18	90	2	Door, bed
15	Baphia nitida	Baphia	11	55	9	Roofing
16	Bombax buonopozense	Bombax	17	85	3	Decking and covet
17	Ceiba pentandra	Araba	18	90	2	Furniture
18	Chrysophyllum albidum	Otieme	10	50	10	Roofing
19	Cordia millenii	Omo	18	90	2	Roofing
20	Diospyros species	Ebony	18	90	2	Roofing, furniture
21	Gmelina arborea	Gmelina	14	70	6	Furniture, construction
22	Nauclea dedirrichii	Opepe	15	75	5	Roofing, bed
23	Nesogordonia papaverifera	Danta	13	65	7	Roofing, bed
24	Ostryoderris species	Oriri	14	70	6	Roofing, bed
25	Pycnanthus angolensis	Akomu	16	80	4	Roofing, bed
26	Sterculia oblonga	Aye danta	15	75	5	Roofing, bed
27	Terminalia superba	White afara	18	90	2	Roofing, furniture
28	Anopyxis klaineana	Eto	13	65	7	Roofing
29	Blighia sapida	Ukpe	12	60	8	Door, bed, roofing
30	Corynanthe pachyceras	Nikiba	17	85	3	Roofing
31	Hylodendron gabunense	Akesi	13	65	7	Furniture
32	Lovoa trichiloids	Ceda	14	70	6	Furniture
33	Metrosideros polymorpha	Ohia	14	70	6	Roofing
34	Triplochyton schleroxylon	Obeche	15	75	5	Furniture
35	Piptadeniastrum Africana	Ekimi	10	50	10	Furniture
36	Pterocarpus osun	Red camwood	20	100	1	Canoe building
37	Poga oleosa	Poga	11	55	9	Roofing
38	Uapacca staudtii	Upaka	14	70	6	Furniture

Table 3: Processed timber species in Bayelsa State

Source: Field survey, 2022

AFNRJ | https://www.doi.org/10.5281/zenodo.14017337 Published by Faculty of Agriculture, Nnamdi Azikiwe University, Nigeria.

S/N	Species	Trade name	Frequency	Percentage	Rank	Uses	
			(IN=20)				
1	Anopyxis klaineana	Ake	13	65	1	Furniture, roofing	
2	Amphimas pterocarpoides	Awo	15	75	5	Roofing	
3	Brachystegia eurycoma	Okwen	14	70	6	Door, door frame	
4	Bombax buonopozense	Ido undu	14	70	6	Decking and covet	
5	Chrysophyllum albidum	Udala	11	55	8	Furniture	
6	Ceiba pentandra	Araba	20	100	1	Furniture	
7	Cordia millenii	Kieboeke	16	80	4	Roofing	
8	Gmelina arborea	Gmelina	14	70	6	Furniture	
9	Lovoa trichiloids	Walnut	11	55	8	Roofing/furniture	
10	Poga oleosa	Imono	11	55	8	Door, interior	
						decoration	
11	Pterocarpus osun	Isele	18	90	2	Roofing, canoe	
						building	
12	Blighia sapida	Ilipa	13	65	7	Furniture	
13	Lophira alata	Kumu	9	45	10	Rail line cubic	
14	Nauclea dedirrichii	Owoso	16	80	4	Roofing, furniture	
15	Nesogordonia papaverifera	Danta	15	75	5	Roofing, furniture	
16	Terminalia superba	Gbarada	18	90	2	Furniture	
17	Terminalia ivorensis	Ubiri	17	85	3	Furniture	
18	Afzelia Africana	Akpalata	14	70	6	Roofing	
19	Daniella olivera	Orubwa	18	90	2	Roofing/furniture	
20	Khaya species	Mahogany	18	90	2	Furniture	
21	Milicia excels	Iroko	15	75	5	Furniture	
22	Ostryoderris species	Oriri	16	80	4	Roofing	
23	Sterculia oblonga	Ebenebe	14	70	6	Door, bed	
24	Uapacca staudtii	Onye/Lagoswo	17	85	3	Roofing	
		od					
25	Vitellaria paradoxa	Shear butter	10	50	9	Roofing, furniture	

Table 4: Processed timber species in Delta State

Source: Field survey, 2022

S/N	Family	Species	Frequency	Percentage	Rank	Density
			(N=60)			(Kg/m^3)
1.	Anisophylleaceae	Poga oleosa	35	58.3	12	432.50
2.	Apocynaceae	Alstonia boonei	23	38.3	23	400.50
3.	Bombacaceae	Bombax buonopozense	45	75.0	8	480.56
4.	Boraginaceae	Cordia millenii	47	78.3	6	400.46
5.	Caesalpiniaceae	Brachystegia eurycoma	37	61.7	10	624.72
	•	Amphimas pterocarpoides	33	55.0	14	785.00
		Daniella olivera	58	96.7	1	496.57
		Afzelia Africana	35	58.3	12	816.94
6.	Combretaceae	Terminalia ivorensis	51	85.0	5	512.59
		Terminalia superba	55	91.6	3	544.63
		Anogeissus leiocarpus	16	26.7	27	880.00
7.	Ebenaceae	Diospyros species	34	56.7	13	848.98
8.	Euphorbiaceae	Uapacca staudtii	31	51.7	16	736.85
	1	Ricinodendron heudolotii	7	11.7	35	450.00
9.	Fabaceae	Hylodendron gabunense	13	21.7	30	900.00
		Pericopsis elata	10	16.7	33	688.80
10.	Leguminosae	Micimerlinia brazzavililesis	17	28.3	26	848.98
11.	Malvaceae	Nesogordonia papaverifera	28	46.7	19	800.93
		Ceiba pentandra	57	95.0	2	320.37
12.	Meliaceae	Khava species	52	86.7	4	736.85
		Lovoa trichiloides	36	60.0	11	544.63
13.	Mimosaceae	Piptadeniastrum africana	26	43.3	20	688.80
		Albizia lebbeck	11	18.3	32	640.74
		Albizia ferruginea	15	25.0	28	640.74
14.	Moraceae	Treculia Africana	17	28.3	26	615.00
		Antiaris Africana	18	30.0	25	432.50
		Milicia excelsa	46	76.7	7	688.80
15.	Myristicaceae	Pycnanthus angolensis	33	55.0	14	496.57
		Standtia stipitata	16	26.7	27	913.05
16.	Myrtaceae	Metrosideros polymorpha	14	23.3	29	915.00
17.	Ochnaceae	Lophira alata	31	51.7	16	1121.30
18.	Papilionaceae	Baphia nitida	24	40.0	22	1280.00
	1	Pterocarpus osun	57	95.0	2	656.76
		Pterocarpus soyauxii	9	15.0	34	752.87
		Ostryoderris species	30	50.0	17	750.62
19.	Rhizophoraceae	Anopyxis klaineana	26	43.3	20	448.52
20.	Rubiaceae	Mitragyna stipulosa	10	16.7	33	560.00
		Nuclea diderrichii	47	78.3	5	752.87
		Corynanthe pachyceras	17	28.3	26	710.35
21	Rutaceae	Fagara macrophylla	12	20.0	31	848.98
22.	Sapindaceae	Blighia sapida	25	41.7	21	910.16
23.	Sapotaceae	Baillonella taxisperma	14	23.3	29	881.02
	-	Chrysophyllum albidum	21	35.0	24	654.76
		Vitellaria paradoxa	26	43.3	20	720.00
24.	Sterculiaceae	Mansonia altissima	9	15.0	34	720.00
		Triplochiton scleroxylon	32	53.3	15	385.00
		Sterculia oblonga	29	48.3	18	768.89
25	Verbenaceae	Gmelina arborea	42	70.0	9	560.00

Table 5: List of tree families and species processed in Sawmills in South-South zone of Nigeria

Source: Field survey, 2022

AFNRJ | https://www.doi.org/10.5281/zenodo.14017337 Published by Faculty of Agriculture, Nnamdi Azikiwe University, Nigeria.

CONCLUSION AND RECOMMENDATION

Numerous timber species were harvested and processed in South-South zone of Nigeria. The frequency of availability of certain species in sawmills connotes their intense exploitation. For continuity of forest estate, timber processing ventures and constant supply of lumber to end users, it is imperative to carry out aggressive afforestation measures and encourage private plantation establishment of the most sawn timber species to prevent their extinction.

Acknowledgement

The author greatly appreciates saw-millers in the study area for their hospitality and response to questions needed for the realization of the work

Authors' Contribution

O.O.A. managed data collection, interpretation of data, writing of manuscript, material support, and review of manuscripts and wrote the first draft of the manuscript. O.O.A. managed the literature searches and developed methodology and data analysis. O.O.A have read and approved the final manuscript.

Ethics Committee Approval: N/A.

REFERENCES

- Adediran D. I., Rashidi A. O. and Adeshina F. A. (2016). Criminality: Illegal Logging of Woods in Nigeria's South-West Forest Belt. *African Journal of Criminology and Justice Studies*, 9(1): 141-153
- https://wiki.ubc.ca/Documentation:Open_Case_Studies/F RST522/Illegal_logging_in_Ondo_State
- Adeleye, I.G. (2018). Chainsaw milling and Terrain of Log Conversion in Southwestern Nigeria *IJBSAT*, 9(6):43-50

https://doi.org/10.5281/zenodo.1493047

- Adeniyi I. M., Adebagbo C. A., Oladapo F. M. and Ayetan G. (2013). Utilization of some selected Wood Species in Relation to their Anatomical Features. *Global Journal of Science Frontier Research in Agriculture and Veterinary*, 13 (9):21-27.
- Arowosoge O.G.E. (2015). Survey of Wood species Utilized for Roofing in South-Western Nigeria, International Journal of Applied Science and Technology, 5(4):94-101 <u>http://www.ijastnet.com/journals/Vol 5 No 4 Au</u> gust 2015/10.pdf
- Bhandari, P.K.C., Bhusal, P., Paudel, G., Upadhyaya, C.P. and Chhetri, B.B.K. (2019). Importance of Community Forestry Funds for Rural Development in Nepal, *Resources* 8, 85:1-14

- Chakravarty, S., Ghosh, S. K., Suresh, C. P., Dey, A. N. and Shukla, G. (2011). Deforestation: Causes, Effects and Control Strategies. *InTech*, Pp 1-28 https://doi.org/10.5772/33342
- Danilović, M., Kosovski, M., Gačić, D., Stojnić, D. and Antonić, S. (2015). Damage to Residual Trees and Regeneration during Felling and Timber Extraction in Mixed and Pure Beech Stand, *Šumarski list* (5-6):253-262
- Larinde, S. L. and Erakhrumen, A. A. (2021). Wood and Wood–Products Movements from and into Nigeria: The Need for Sustainability of Resource Base and Trade. Proceedings of the 7th Biennial Conference of the Forests & Forest Products Society, Held at University of Uyo, Uyo, Nigeria. 26th - 30th April, 2021 Pp. 147 -152 http://dx.doi.org/10.5772/intechopen.105794
- Mong'are, R.O., Mburu, C. and Kiiyukia, C. (2017). Assessment of Occupational Safety and Health Status of Sawmilling Industries in Nakuru County, Kenya, *International Journal of Health Sciences*, 5(4):75-102 <u>https://doi.org/10.15640/ijhs.v5n4a9</u>
- NPSDGE, (2012). Nigeria Part to Sustainable Development through Green Economy. Country Report to the Rio+ 20, Pp 48-57 <u>https://www.undp.org/nigeria/publications/nigerias</u> <u>-path-sustainable-develeopment-through-greeneconomy</u>
- Olorunnisola, A. O. (2023). The Past, Present and Future Outlook of the Wood Industry in Nigeria. In: Guanben Du and Xiaojian Zhou (Eds.) Wood Industry, Past, Present and Future Outlook, IntechOpen. https://doi.org/10.5772/intechopen.105794
- Ofoegbu, C., Ogbonnaya S. and Babalola F. D. (2014). Sawmill Conversion Efficiency and Wood Recovery of Timber Species in Cross River State, Nigeria. Agriculture & Forestry, Podgorica 60 (1):105-113 www.agricultforest.ac.me/paper.php?journal_id=1

<u>81&id=2242</u>

- Ogunwusi, A. A. (2012). The Forest Products Industry in Nigeria. An International Multidisciplinary Journal, Ethiopia 6(4): Serial No. 27:191-205. http://dx.doi.org/10.4314/afrrev.v6i4.13
- Ohwo, O. A. and Agbogidi, O. M. (2015). Identification and Prioritization of the most Traded Species of Sawn-wood in Delta State, Nigeria. *In*: proceedings of the 5th annual biodiversity conference of the Nigeria Tropical Biological Association held 19th – 20th in Theodore Idibiye Francis Auditorium, Federal University of Technology Akure, Ondo State. Pp. 26 – 31

AFNRJ | https://www.doi.org/10.5281/zenodo.14017337

Published by Faculty of Agriculture, Nnamdi Azikiwe University, Nigeria.

- Ohwo, O.A. (2016). Price Differences and Causal Factors in Marketing of Selected Sawn-Wood Species in Delta State, Nigeria. *Journal of Agriculture and Food Environment* 3 (1):83-92
- Ohwo, O.A. and Adeyemi, A. A. (2015). Price Transmission and Market Integration of Sawnwood of *Poga oleosa* (Pierre) in Delta State, Nigeria. *Nigerian Journal of Agriculture, Food and Environment* 11(3):114-122
- Ohwo, O.A. and Ogoha, E. (2017). Contributions of Sawn-wood Trade to Livelihood Sustenance in Sapele Local Government Area of Delta State, Nigeria. *Journal of Agriculture and Food Environment* 4 (1):37-46
- Ohwo, O.A., Onakpoma, I. and Okoromaraye E. (2020). Evaluation of Properties of Graded Density Fibreboard Produced from Wood Residues (sawdust and corrugated paper). *Baltic Forestry* 26 (2) article id 494 259-264 pp <u>https://doi.org/10.46490/BF494</u>

- Okunomo, K. (2010). Utilisation of Forest Products in Nigeria. *African Journal of General Agriculture*, 6 (3): 145-157
- Olowokudejo, J. D. and Oyebanji, O. O. (2016). Floral Diversity of the Littoral Vegetation of Southeastern Nigeria, *International Journal of Biodiversity and Conservation*, Vol., 8(12):320-333 <u>https://ir.unilag.edu.ng/handle/123456789/5608</u>
- Olufemi, B., Akindeni, J. O. and Olaniran, S. O. (2012). Lumber recovery efficiency among selected sawmills in Akure, Nigeria. *Drvna Industrija*, 63(1): 15-18 https://doi.org/10.5552/drind.2012.1111
- RMRDC, (2009). Multi-disciplinary Task Force Report of the Techno-economic Survey on Wood and Wood Products. Raw Materials Research and Development Council Publications.
- Sakagami, M. and Sakaguchi, D. (2022). Estimating Preferences for Wood Furniture in Terms of Sustainable Forest Management, *Forests*, 13, 687. <u>https://doi.org/10.3390/f13050687</u>

