

# **Comparative Analysis of Profits of Organic and Non-organic Fluted Pumpkin Production in Rivers State, Nigeria**

## Okonkwo-Emegha, K. and Obiekwe, N. J.

Department of Agricultural Economics and Extension, Nnamdi Azikiwe University Awka, Nigeria.

#### **KEYWORDS**

### ABSTRACT

Non- organic, Profit, Organic, Vegetable, Production

location and respondents. The data were collected from 240 organic and non-organic small holder fluted pumpkin farmers. The primary instrument used for data collected was structured questionnaire. Data obtained was analyzed with Enterprise budgeting method and Analysis of Variance (ANOVA). Results indicated that the average profit realized by organic fluted pumpkin farmers in Rivers State was N 280,570, while the average profit realized by non-organic was N101, 050. The result of Analysis of Variance reveals that there is a statistically significant difference in the mean profit of organic fluted pumpkin production and non- organic (conventional system) of fluted pumpkin production in the study area at 1% probability level. The result indicates that the difference between the mean profit in organic farming technology and non-organic farming technology was not statistically different at 1% probability level. The mean profit in subset two which comprises organic and non-organic technology was also not statistically significant at 1% probability level. The study suggested that extension agents should train farmers frequently for easy adoption of the technology.

This study examines the profits of organic and non-organic farming

among small holder fluted pumpkin farmers in Rivers State. A

multistage sampling technique was employed in the selection of

#### \* C O R R E S P O N D I N G

#### AUTHOR

k.okonkwoemegha@unizik.edu.ng 08035922432

#### INTRODUCTION

Fluted pumpkin (*Telfairia occidentalis*) is cultivated across the tropics of West Africa where production remains very vital in Nigeria (Ndubueze-Ogaraku, 2017). The fruit pod on full maturity weighs about 15kg with longitudinal lines on the surface. It is propagated by seeds which are sown directly on a plain land or mounds. Planting on mounds helps to control drainage and prevents the root from being water logged. Two to three seeds are planted directly in the soil in case of failure of germination and also ensures greater output (Echioda, 2018).

The first set of leaves and shoot can be harvested after a month of planting and may be collected every 2-4 weeks (Anyanwale and Abiola., 2008). The crop is a widely used vegetable consumed by millions of Nigerians (Okpashi *et al.*, 2013). It belongs to Cucurbitaceae Family and originated from West Africa. It is mainly cultivated in South-Eastern and South- South Nigeria (Ayoola, 2014).

Fluted pumpkin is one of the leading green leafy vegetables in Nigeria. There are about 700 species which are spread all over many parts of the world (Odiaka, *et al.*, 2008). It is a tropical vine leafy vegetable and develop fruits for food and finally generates income across Africa (Adebisi-Adelani, *et.al.* 2011; Ndubueze-Ogaraku, 2017). The plant tolerates drought and can sustain its life in the root system for many years. The crop is a creeping plant that grows well if staked with bamboo sticks. It grows well in tropical humid condition and requiring full sunlight of about 6 hours per day. The more the solar energy received, the greater the

harvest. The soil requires a pH of 6.5 to 7.5 that is slightly acidic and slightly alkaline. It further requires adequate, slightly mulched, shaded fertile soil that drains well to become perennial (Idowu *et al.*, 2007).

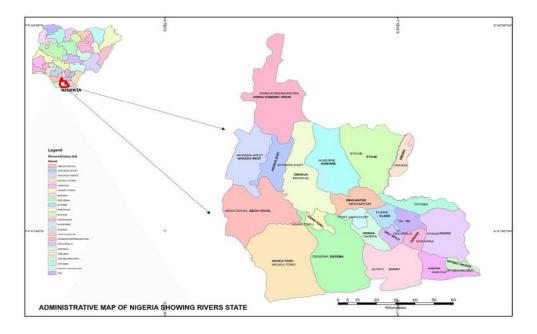
The seeds are subsequently harvested when matured and a good portion of them are consumed, while the left over are dried and stored for the next planting season. Care should be taken when preserving any portion of the plant. The leaves are highly perishable and lose nutrient and moisture content when stored improperly. The losses can be reduced when harvested leaves are stored in a cool dry place with sealed polyethylene bags (Echioda, *et.al.* 2018).

Fluted Pumpkin could be used in various ways; the seeds are used as propagative materials, eaten roasted, boiled or ground to paste as soup thickener. The leaves are rich in Mg, Fe and fibers and are used as food supplements (Ndubueze-Ogaraku, 2017). The seed has a good amount of amino acids 93.7% which contains higher levels of most essential amino acids. Potassium and Sodium are higher in fluted pumpkin seed than in soya bean seed, this indicates that fluted pumpkin seed cake is good for healthy foods and the seed oil serves as oil for making margarine. The oil content makes it a potential source of raw material for the vegetable oil industries in Nigeria. The fruit and pulp of fluted pumpkin which constitute 64% of whole fresh fruit weight can be used as feed stuff for livestock. Fluted pumpkin generates income to small scale farmers (Ndubueze-Ogaraku, 2017). It has a high medicinal value which can be compared with conventional drugs.

In Nigeria the level of use of organic technology among the small scale vegetable farmers are still very low and at early stage Ubokudom and Idiong (2016).

Okonkwo-Emegha and Isibor, (2021) reported in their work on constraints of Organic Farming Technology among Small Scale Vegetable Farmers in South-South Zone of Nigeria reported that the major challenges faced by the farmers was insufficient fund, prince instability, poor transportation system and lack of awareness on new technology.

Adeoye (2022) examined the profitability and efficiency of vegetable production in Ogun State, he stated that the factors affecting vegetable production were planting materials, education, storage facilities, access to market and instability of price.


Despite the nutritional value and economic benefits that fluted pumpkin provides to its consumers and producers, yet there are few research on the profits of organic and non-organic vegetable production in Rivers State. Hence, the focus of this study is to examine the profits analysis of organic and non-organic production in Rivers State.

The broad objective of this study was to analyze the profits of organic and non-organic vegetable production among small holder farmers in Rivers State. The specific objective was to compare the profits of organic and non-organic fluted pumpkin production in the study Area.

#### METHODOLOGY

#### The Study Area

Rivers State is a state in the Niger Delta region of southern Nigeria (Old Eastern Region). The territory had once been referred to as oil Rivers protectorate, a name derived from its central role in the oil trades of the last two centuries. First, the trade in palm oil and then crude oil. It is accountable for over 48% of crude oil produced on-shore in the world. The State is bounded on the South by the Atlantic Ocean, on the North by Anambra, Imo and Abia States, the East by Akwa Ibom State and the west by Bayelsa and Delta State. Rivers State, which is in the Niger Delta, has topography of flat plains with a network of rivers and tributaries. With a tropical climate, numerous rivers and vast areas of arable land, the people of Rivers State have lived up to their tradition of agriculture, especially fishing and farming, commerce and industry. The state has 23 local government Areas boasts of four degrees warding institutions, two refineries, a petro-chemical plant, fertilizer plant and a liquefied natural gas plant. The state has an estimated population of about 6.5 million people who have a rich cultural heritage. The state covers a total of 11,077 square kilometers land area and is bordered to the South by the Atlantic Ocean, to the North by Anambra, Imo and Abia State, to the east by Akwa- Ibom State to the West by Bayelsa and Delta States. The State features many mangrove swamps. The state rainfall is seasonal, variable and heavy. The total annual rainfall deceases from about 4,700mm on the coast to about 1,700mm in extreme north of the State. The mean annual temperature for the state is 260c. The hottest months are February to May. Relative humidity is high in the state throughout the year and decreases slightly in the dry season.



#### Figure 1: Polotical map of Rivers State, Researchgate.net, 2024

#### Sampling Technique and Sample Size

The list of registered organic and non-organic fluted pumpkin farmers in the state was obtained from Agricultural Development Project (ADP) of Rivers State which comprises of 5,783 (2,860 Organic and 2,923 non-organic).

A multistage random sampling technique was adopted in the selection of Agricultural zones, LGAs, communities and the respondents.

In **stage one**, two agricultural zones were randomly selected from the three (3) zones in the State. These were zone I and zone III.

In **stage two**, three LGAs were randomly selected from each of the two agricultural zones, giving a total of six LGAs that were randomly selected. For zone I (Ikwere, Port-Harcourt and Oyigbo) were selected, for zone II (Omuma, Ohoada East and Ohoada west) were selected.

In **stage three**, four communities were randomly selected from each of the six (6) LGAs. This gave a total of 24 communities.

**In stage four**, 10 farmers were randomly selected from each of the 24 communities giving a total of 240 respondents (Table 1) that were selected for the study. Furthermore, 120 respondents were used as sample for the control group (non-organic fluted pumpkin farmers) while 120 respondents were used for the experimental group (organic fluted pumpkin farmers).

#### **Data Collection**

Data for this study were derived from primary sources which include the use of structured questionnaire, personal interviews, structured questionnaire was used for literate farmers and interview schedules for the illiterate farmers. All the copies of the questionnaires were administered to fluted pumpkin farmers. The questionnaire was just one section:

Section A: Comparing the profit of organic and non-organic fluted pumpkin production.

#### Validity

The instrument was subjected to both validity and reliability test. Content and face validity was done by experts in the field of Agricultural Economics.

#### Reliability

The Cronbach's Alpha correlation technique was used to ascertain the reliability of the instrument.

#### Mathematical Expression/Model Specification

#### **MODEL 1**

#### **Cost Function**

Cost function is specified as:

 $Tc = \sum X_i P_i + Fc$ (1) Where Tc = Total cost X<sub>i</sub>. P<sub>i</sub>expenditure on ith

Input..., Fc=fixed costs.

#### MODEL 2

#### **Profit Function**

Profit function is specified as:

$$\pi = TR - TC$$

$$\pi = Q.P_a - (\sum X_i P_i - FC)....(2)$$

Where  $\pi$  = Net profit TR = Total Revenue TC = Total cost Q = Quantity of output P<sub>q</sub>= Unit Price of Output.

#### **MODEL 3**

#### **Enterprise Budget Analysis Model**

NP = (TR - TVC) - TFC....(3)

Where;

| NP                                               | = | Net Income or Net Returns in Naira $(\mathbb{H})$ |  |  |
|--------------------------------------------------|---|---------------------------------------------------|--|--|
| TR                                               | = | Total Revenue in Naira ( <del>N</del> )           |  |  |
| TVC                                              | = | Total Variable Cost in Naira (N)                  |  |  |
| TR – TVC                                         | = | Gross Margin in Naira ( <del>N</del> )            |  |  |
| TFC                                              | = | Total Fixed Cost in                               |  |  |
| Ho was tested using the test statistics in ANOVA |   |                                                   |  |  |

#### **RESULTS AND DISCUSSION**

Difference between the profit of organic farming technology and non-organic technology (conventional system) of fluted pumpkin production in the three states.

The results showed that the mean profit in Rivers state in organic fluted pumpkin production were \$ 280,570, while the mean profit of non-organic (conventional system) were \$ 101,050 with the mean difference of \$ 109,800. The result showed that organic technology in fluted pumpkin production is more profitable in Rivers State. Organic producers had profit above non- organic with \$ 179,520. The bar chart shows the picture of the profitability. This result is in line with the report of Gavino, (2015) who reported that organic vegetable production is more profitable than non-organic (conventional).

291

```
FAIC-UNIZIK 2025
```

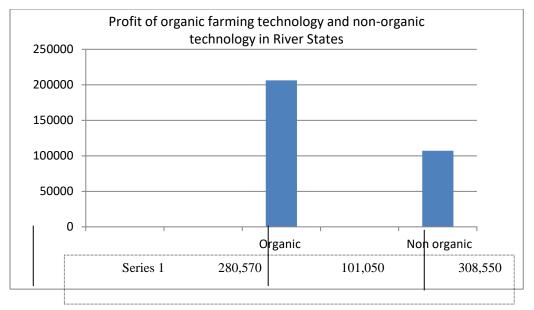

| S/N  | Items life s          | pan Quantity | Unit Price<br>( <del>N</del> ) | Total Cost |
|------|-----------------------|--------------|--------------------------------|------------|
|      | Fixed Cost            |              |                                |            |
| i.   | Machete/ cutlass -2   | 5            | 1,400                          | 7,467      |
| ii.  | Equipment for irr2    | 3            | 11,222                         | 33,667     |
| iii. | Land -                | 4 plots      | 10,889                         | 47,186     |
|      | Shovel -              | 4            | 1,378                          | 5,511      |
|      | Basket -              | 4            | 522                            | 1,915      |
|      | Hoe                   | 5            | 1,270                          | 5,111      |
|      | Watering can -        | 2            | 1,400                          | 5,800      |
|      | Wheel barrow-         | 1            | 9,911                          | 15,156     |
|      | Bicycle -             | 2            | 14,167                         | 26,802     |
|      | Total fixed cost      | -            |                                | 148,615    |
|      | Variable cost         |              |                                |            |
| Pla  | anting material/ seed | 115 pods     | 257                            | 29,931     |
| fer  | tilizer -             | 24bags       | 3,140                          | 74,763     |
|      | Hired Labour          | 5 Mandays    | -                              | 9,667      |
|      | Irrigation            | -            | -                              | 7,339      |
|      | Transportation        | -            | -                              | 8,333      |
|      | Communication         | -            | -                              | 3,167      |
| То   | tal Variable Cost     |              |                                | 133,200    |
|      | Total Cost            |              |                                | 281,815    |
|      | Revenue / Returns     |              |                                |            |
|      | Pods(Kg)              | 219          | 1,000                          | 219,000    |
|      | Leaves (bunches) kg   | 203          | 1,694                          | 343,385    |
|      | Total Revenue         |              |                                | 562,385    |
|      | Gross margin          |              |                                | 429,185    |
|      | Profit                |              |                                | 280,570    |

 Table 1. Organic farming technology of fluted pumpkin production (average profitability in Rivers States)

Source: Field Survey, 2024.

 Table 2. Difference between the profit of organic farming technology and non-organic technology (conventional system) of fluted pumpkin production in three states

| One-sample Stat | tistics |              |                 |                 |
|-----------------|---------|--------------|-----------------|-----------------|
| Technology      | Ν       | Mean         | Std. Deviation  | Std. Error Mean |
| Organic         | 120     | 2046894.4587 | 272387.7541     | 69874.6532      |
| Non-organic     | 120     | 107534.6589  | 655421.7512     | 69862.7584      |
| One-Sample Tes  | st      |              |                 |                 |
| Technology      | Т       | Df           | Sig. (2-tailed) | Mean difference |
| Organic         | 19.234  | 119          | 0.000           | 211894.4587     |
| Non-organic     | 22.127  | 119          | 0.000           | 104589.6589     |



# Figure 1 Result of test of Ho1: there is no significant difference between the mean profits of organic and non-organic (conventional system) fluted pumpkin producers

The result reveals that there is a statistically significant difference in the mean profit of organic fluted pumpkin production and non- organic (conventional system) of fluted pumpkin production in the study area at 1% probability level. The result indicates that the difference between the mean profit in organic farming technology and non-organic farming technology was not statistically different at 1% probability level. The mean profit in subset two which comprises organic and non-organic technology was also not statistically significant at 1% probability level

|                    | Mean                                                                    | N                                                                                                                                      | Std                                                                                                                                                                                                                                              | Deviation                                                                                                                                                                                                                                                                                                                                                                                                                    | Std Error Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|--------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                    |                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| Non-Organic        | 207248.0                                                                | 0 119                                                                                                                                  | 151                                                                                                                                                                                                                                              | 596.947                                                                                                                                                                                                                                                                                                                                                                                                                      | 9805.991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| Organic            | 326824.6                                                                | 53 119                                                                                                                                 | 262                                                                                                                                                                                                                                              | 173.846                                                                                                                                                                                                                                                                                                                                                                                                                      | 16958.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| mples Correlations | s                                                                       |                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|                    |                                                                         | Ν                                                                                                                                      | Correlat                                                                                                                                                                                                                                         | ion Sig.                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| Non-Organic and    | d Organic                                                               | 239                                                                                                                                    | .562                                                                                                                                                                                                                                             | .000                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| imples Test        |                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|                    |                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                  | 95% Confider                                                                                                                                                                                                                                                                                                                                                                                                                 | nce Interval of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|                    |                                                                         |                                                                                                                                        | Std. Er                                                                                                                                                                                                                                          | ror Difference                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| Mea                | an                                                                      | Std. Deviation                                                                                                                         | n Mean                                                                                                                                                                                                                                           | Lower                                                                                                                                                                                                                                                                                                                                                                                                                        | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| VonOrganic119      | 9576.628                                                                | 234451.703                                                                                                                             | 15165.420                                                                                                                                                                                                                                        | -149452.225                                                                                                                                                                                                                                                                                                                                                                                                                  | -89701.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7.885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .000                                                     |
| Organic            |                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|                    | Mon-Organic an<br>Mon-Organic an<br>Imples Test<br>Mea<br>NonOrganic119 | Organic     326824.6       mples Correlations       Non-Organic and Organic       mples Test       Mean       NonOrganic    119576.628 | Non-Organic     207248.00     119       Organic     326824.63     119       mples Correlations     N       Non-Organic and Organic     239       mples Test     Mean       Mean     Std. Deviation       KonOrganic    119576.628     234451.703 | Non-Organic         207248.00         119         151           Organic         326824.63         119         262           mples Correlations         N         Correlat           Non-Organic and Organic         239         .562           mples Test         Std. Deviation         Kean           Mean         Std. Deviation         Mean           NonOrganic        119576.628         234451.703         15165.420 | Non-Organic         207248.00         119         151596.947           Organic         326824.63         119         262173.846           mples Correlations         N         Correlation         Sig.           Non-Organic and Organic         239         .562         .000           mples Test         Std.         Error         P5% Confider           Mean         Std. Deviation         Mean         Lower           KonOrganic        119576.628         234451.703         15165.420         -149452.225 | Non-Organic         207248.00         119         151596.947         9805.991           Organic         326824.63         119         262173.846         16958.616           mples Correlations         N         Correlation         Sig.           Non-Organic and Organic         239         .562         .000           mples Test         Std.         Error         95% Confidence Interval of the Difference           Mean         Std. Deviation         Mean         Lower         Upper           NonOrganic        119576.628         234451.703         15165.420         -149452.225         -89701.030 | Non-Organic         207248.00         119         151596.947         9805.991           Organic         326824.63         119         262173.846         16958.616           mples Correlations         N         Correlation         Sig.           Non-Organic and Organic         239         .562         .000           mples Test         Std.         Error         Difference         Difference           Mean         Std. Deviation         Mean         Lower         Upper           KonOrganic        119576.628         234451.703         15165.420         -149452.225         -89701.030         -7.885 | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ |

Table 3. Paired Samples Statistics

Source: Field survey, 2021. \*\*\*Significant at 1% probability level.

#### CONCLUSION

The findings showed a mean profits of organic fluted pumpkin in Rivers State was  $\aleph$  280,570 while nonorganic (conventional system) was  $\aleph$ 101,050. A mean difference of  $\aleph$  109,800 was computed. The result of One Sample test indicated a significant difference between the means in of organic fluted pumpkin production, implying that organic fluted pumpkin production was more profitable than non-organic in Rivers State.

#### RECOMMENDATIONS

- **i.** Organic materials should be provided for the farmers for more awareness about the technologies and health benefits of organic fluted pumpkin to improve the farmers output, sales and profit.
- ii. Extension agents should train farmers frequently for easy adoption of the technology.

#### REFERENCES

- Adebisi-Adelani, O., Olajide-Taiwo, I. B., Adeoye, I.B. and Olajide- Taiwo, L.O. (2011). Analysis of production constraints facing fadama vegetable farmers in Oyo State Nigeria. World Journal of agricultural science, VOL.7 (2), 189-192.
- Ayanwala, A.B and Abiola, M.O. (2008). Efficiency of fluted pumpkin production under Tropical conditions. *International Journal of Vegetable Science*, Vol. 13 (3), pp. 35-49
- Ayoola, J.B. (2014). Impact of irrigation on economic viability of vegetable farming in selected Local Government Areas of Kogi and Benue States, Nigeria. Proceedings of the annual national conference of the Nigeria Association of Agricultural Economists. Held at the Federal University of Technology, Akure, Nigeria. 24<sup>th</sup> -27<sup>th</sup>, February.
- Bologi, M.U. (2012). Using Ugwu to lower diabetes and heart disease risk. Retrieved on 27/04/2013. Hppt://blueprinting.com/2012/07/using-ugwu-leaf-to-lower-diabetes-and heart disease-risks
- Echiode, S., Salisu, S., Danlandi, I.Y., Ogbonna, K.A., and Hadiza, S, (2018). Proximate Composition of fluted pumpkin Seed (*Telfairia Occidentalis*), Extraction and Characterization of the Oil from the seed. International journal of Chemistry and Chemical Processes Vol.4 (1). ISSN 2545-5265.
- Gavino, I. P.U. (2015). Organic Farming Technologies. National Soil and Water Resources Research Development Center for Hilly land Pedo-Ecological Zone. In: <u>the 12<sup>th</sup> National Organic Agriculture</u> <u>Congress</u>, held at SMX Convention Center, SM Bacolod City of Philippines from 25th November to 27<sup>th</sup>,2015.
- Idowu, E.O., Alimi, T., Tijani, A.A., and Okobi, C.N. (2007). Profitability and resource use efficiency in fluted pumpkin. International Journal of Vegetable Science, VOL. 13(1), PP.73-84.
- Ndubueze-Ogaraku, M. E: (2017): A comparative Study on Fluted Production in the Niger Delta,Nigeria. Journal of Biology, Agriculture and Healthcare, vol. 7, No 14. ISSN 2224-(Paper). www.iiste.org
- Odiaka, N.I., Akoroda, E.O., and Odiaka, E.O. (2008). Diversity and production methods of fluted pumpkin (Telfairia Occidentalism Hook F), Experience with vegetable farmers in Makurdi, Nigeria. Africa Journal Bio-technology. 7(8) pp. 944 954, ISSN 1684-5315.
- Okonkwo-Emegha K., Isibor, C.A., and Ahaneku, C.E. (2021). Socio economic determinants of Cucumber production amidst covid-19 pandemic in Ikwerre local government area of rivers state, Nigeria. Nigeria Journal of Science and Environment, (19)2. Vol.19 issues 2, December, 2021. https://delsunjse,com/index.
- Okpashi, V.E., Ogugua, V. N., Ugian, E.A. and Njoku, O.U (2013), Physico-chemical properties of fluted pumpkin (Telfiaria Occidentalis hook f) seeds. The International Journal of Engineering and Science (IJES). Vol.2 (9), pp.36-38 ISSN 2319-1805.
- Ubokudom, E. O. and Idiong C.I. (2016). Factors influencing Adoption of organic vegetable farming among farm households in south-south Region of Nigeria. American Eurasian Journal of Agriculturaland Environmental Science. 16 (5), ISSN 1818 6769.

294