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ABSTRACT 

This research investigates the gas lift optimization of an oil well using Artificial Neural 

Networks (ANN). Through statistical analyses of two wells spanning over a two-year period, 

the critical correlations among wellhead pressure, production rates, and gas compression 

parameters were reported. Notably, a positive correlation between wellhead pressure and 

production rate was identified, emphasizing the pivotal role of monitoring and optimizing these 

operational variables for enhanced efficiency. The research integrates machine learning 

techniques for gas lift with model recognition and parameter estimation. Leveraging the power 

of algorithms, like the Levenberg-Marquardt algorithm for the model, the best performance of 

0.000000584 was found after 1000 epochs (iterations). The study demonstrates the potential 

for real-time decision support in oil well operations, offering a pathway for improved 

responsiveness and adaptability to changing conditions. Practical recommendations derived 

from the study provide actionable insights for industry practices, facilitating advancements in 

oil and gas engineering. The validation of machine learning models underscores their reliability 

in enhancing efficiency and productivity in real-world oil and gas applications. As a 

culmination of these findings, the research not only advances our understanding of gas lift 

systems but also provides a roadmap for the implementation of cutting-edge technologies and 

methodologies in the oil and gas sector.  

 

Keywords: Machine Learning; Wellhead pressure; Levenberg-Marquardt algorithm; 

Confusion matrix; Oil well operations. 

 

1. Introduction 

There are a lot of unknowns and risks involved in getting oil and gas from a subsurface 

hydrocarbon reservoir to the surface production or processing facilities. This implies that the 

profiles of oil and gas production around the world vary greatly from one another. At some 

point in the life of a field, the production rate eventually declines to a point where it can no 

longer produce profitable amounts of hydrocarbon. In an ideal world, every operator would 

like to keep oil production at this peak or plateau state for as long as possible. Most fields have 

a flat top, and the length of the flat top depends on reservoir productivity, but in some fields 

the production build-up rate begins in the first few years. Furthermore, in some scenarios, some 

wells drilled and completed do not flow naturally or optimally as required and as such require 

some forms of artificial or assisted lift system to optimize the well’s production rate or revive 

or restore dead wells. Basically, there are two methods of artificial lift systems deployed in the 
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oil and gas industry globally to optimize oil well's production flow rate. These are: the gas lift 

system, which comprises the continuous and intermittent gas lift injection where the lift gas is 

injected via the lift valves or orifice, the pumping system comprising the sucker-rod pump, 

electrical submersible pump which is an efficient and reliable artificial-lift method for lifting 

moderate to high volumes of fluids from wellbores (these volumes range from a low of 150 

B/D to as much as 150,000 B/D), progressive cavity pump which is efficient for lifting heavy 

crude, hydraulic submersible pump, etc.  

There are different key factors that are considered prior to artificial lift installation in the field 

which include analysis of the individual well’s parameters and the operational characteristics 

of the available lift systems. For the different pumps and lift systems available to the oil and 

gas industry, there are unique operational/engineering criteria particular to each system, but 

they all require similar data to properly determine application feasibility. Such as the inflow 

performance relationship, liquid production rate, Gas liquid ratio, water cut, well depth, 

completion type, wellbore deviation, casing and tubing sizes, power sources etc. Each of the 

artificial lift systems has economic and operating limitations that rule out its consideration 

under certain operating conditions. An extensive overview of artificial lift design 

considerations was presented by Clegg et al. (2007). Clegg mentioned some economic factors 

such as: revenue, operational and investment costs as the basis for artificial lift selection. 

Ayatollahi et al., (2008): Selection of the proper artificial lift method is critical to the long-term 

profitability of the oil well; a poor choice will lead to low production and high operating costs. 

For the purpose of this thesis, Gas lift method will be considered with a view to optimizing 

production from an oil well and hence optimal production from the field. 

During the primary stage of production, existing natural reservoir pressure may not be 

sufficient to cause fluid flow from the reservoir into the wellbore region through the production 

tubing to surface facilities; this might probably be due to the viscous nature of the oil (i.e. high 

viscosity). This inadequacy of the reservoir energy to lift the produced reservoir fluid from the 

wellbore to the surface may be caused by the viscous nature of the fluid or due to the hydrostatic 

head. For these reasons, an artificial lift system installation is often considered during the 

development of a well or field.  

There are some drawbacks to operating a gas lift system above or below the gas injection rate. 

If the gas injection rate is low, the full gas lift potential is not utilized, resulting in inefficient 

operation of the gas lift valve. Furthermore, a pressure surge in the production facility will 

occur if the injection rate is too high, making production control difficult.  

Optimization of gas lift system using commercial software is usually complex and time 

consuming which requires much dataset or parameters but, in this study, machine learning shall 

be adopted which only requires key parameters that affect the gas lift system and the production 

rate. 

The cost of deploying a licensed commercial tool for the purpose of optimization of gas lift 

system for improving oil production is capital intensive, especially for the marginal field 

operators. Hence, this study seeks to develop machine learning model to solve same problem. 

 

2. Review of Literature 

Ahmed et al. (2021) adopted ANN in this work depends primarily on wells’ actual test data 

obtained from test separator and measuring devices installed on both mobile test package, flow 

lines and gas lift lines. In addition, as ANN can deal with limited or faulty data while acting 

with data with uncertainty which is considered a proven advantage of ANN over any analytical 

conventional methods, down-hole data obtained from static and flowing surveys using down-

hole memory gauges, production logging tools (PLT) using electrical line, reservoir rock and 

fluid properties obtained from PVT lab analysis and core lab analysis were used in this work 

to run different models to reach the optimum results with satisfactory  accuracy.  The input 



IJIPE Vol.3 No.3 (2025) 

 

3 | O n o m u a k p o s e  e t .  a l . , 2 0 2 5 / I J I P E  

 

dataset was randomly divided into 70% for training, 15% for validation, and 15% for the 

primary test. Training data are used to improve the network according to their error. Validation 

data are used to evaluate network generalization, and to stop training when generalization stops 

improving.  Test data do not affect training, so they provide an independent measure of network 

performance during and after training.  

Okorocha et al. (2022; 2020) looks into the impact of artificial neural networks on gas lift 

optimization to boost crude oil production. It reviews various production challenges involved 

in the production process and suggested that artificial intelligence or machine learning could 

be introduce to minimize challenges. 

According to the World Bank report (2008), National Oil Companies (NOCs) control 90% of 

the world’s oil reserves and 75% of the oil production. A majority of the fields belonging to 

this production comes from mature fields. With many of the oil fields having depleted with 

time, the operating wells do not have sufficient pressure at the bottom to drive the fluids to the 

surface. Under such cases, the wells need support through the means of artificial lift systems. 

Such a requirement only increases when the reservoir is depleted of gas, or under situations 

where the oil is very heavy and also in systems where the water cut is high. 

Imran et al. (2018) recommended that gas lift is simple and easy to manage after 

implementation; while the ESP method is very complex and difficult to plan and implement. 

Also, ESP has a very short lift in the well with a common lift expectancy within 2- 3 years. 

Besides, the gas lift method requires full workover on the well; therefore, few numbers of wells 

or individual well are not economical for gas lift method. 

Hisham and Vincent (2017) employed PROSPER software to design a continuous gas lift 

system to examine capability to overcome the well and reservoir conditions. A well was used 

to simulate the system in PROSPER. Their result indicates that the continuous gas lift 

application increases the liquid production rate up to 1,864.6 STB/d from a non-producing oil 

well. On the contrary, there is a limitation to the result obtained because before the design of 

the gas lift system, history matching would have been performed using a well test data, which 

is fully incorporated in this study. 

Wang et al. (2002) worked on the application of production optimization technique for oil field 

operations and in that process, a procedure was developed for allocation of optimal rate of 

production, the rate of the lift gas, and the simultaneous connection of the wells with surface 

pipeline systems. The optimization algorithm adopted the Newton iteration for the reservoir 

simulator level in commercial scale. While Beckner and Davidson (2003) presented a reservoir 

model with integrated facility to solve the problem of optimal rate allocation in the facility 

model with quadratic programming sequential technique and also embedded in the model was 

the procedure to tackle conditions that are not feasible. Kosmidis et al (2004) presented a 

nonlinear optimization algorithm with mixed-integer to handle the challenges of optimizing a 

gas lift system in oil wells via a common flowline. To achieve their objectives, they adopted a 

variation of sequential linear programming techniques. Also, a multi-objective approach for 

gas lift optimization was developed by Ray and Sarker (2006) to maintain the quality of the 

solutions thereby eliminating the daily gas lift optimization problems.  

Kosmidis et al (2004) consider a more general production system consisting of wells, manifold 

and separators, and modelling pressure in the flowline and facilities. The production 

optimization problem is model as a mixed integral nonlinear programming (MINLP) problem 

that look at pressure as a nonlinear function balancing the momentum of the flowlines. They 

propose a method for finding the local optimum of the MINLP program which solves a 

sequence of MINLP problem. 

Rashid (2010) solved a gas lift allocation problem with gas constraint. He addresses the effect 

of iterations between wells by developing an algorithm that iterate until convergence on 
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wellhead pressure. A simulator was used in the loop to validate results, test pressures and 

generate curves. 

Campos et al (2012) established the main requirement for integrated production optimization 

of large-scale oil fields. In the paper they stressed the importance of accurate well models to 

predict coning effects and integration with real-time optimization algorithms to reach optimal 

operating conditions. 

Djikpesse et al (2010) presented a study on the optimization of gas lift system under facilities 

constraints. It was noted that gas lift optimization is employed in the field to enhance 

production of mature fields with several reservoirs and multiple wells drilled on them with a 

shared surface production facility. They aimed at finding the point of optimal gas lift over the 

entire wells network and pipeline systems while identifying the constraints imposed by the 

conditions of the reservoir. The presented a novel and cost-effective techniques to handle the 

gas lift optimization problems and claimed that these problems are expensive and difficult to 

compute. 

Carlos et al (2013) stated that artificial lift technology is employed in oil field when the 

reservoirs have lost their natural means of producing its content to the surface production 

facilities. Thus, to choose any of the available artificial lift techniques, the optimal rate of 

production of the wells must be determined first before deployment, thereafter, other factors 

such as initial cost, the operating cost, deferment of production etc. associated with overall 

failure of the system which is mostly predominate in the electrical submersible pump (ESP) 

where changes in the reservoir conditions affect its performance. Therefore, the factors mention 

above are some of the reasons ESP are not selected for a lifecycle economic evaluation and as 

such, gas lift presents a better option but cannot match the high rate of production offered by 

ESP installations. It is imperative to not that in developing a field or maximizing the value of 

the asset, an adequate choice of artificial lift method is key to the success of the field. 

3. Methodology 

3.1.Research Design 

Data acquisition is the first step to every program and machine learning process. The acquired 

data from oil field in the Niger Delta were pre-processed and analyzed. Hence, the workflow 

for the machine learning design process for this study is presented in Figure 1. 

 
Figure 1 Basic step to using a machine learning.  



IJIPE Vol.3 No.3 (2025) 

 

5 | O n o m u a k p o s e  e t .  a l . , 2 0 2 5 / I J I P E  

 

For this study MATLAB was used to develop the machine learning algorithm to make 

predictions of the oil production rate with respect the gas lift gas injection rate and other key 

parameters as represented in Figure 2. Therefore, the MATLAB code to the algorithm is given 

in the appendix A of this thesis. 

 
Figure 2 MATLAB flowchart for this study 

In other to estimate the oil production rate, a two-layered feed-forward network with a tanh-

sigmoid activated hidden neuron and a linear activated output neuron were used. The network 

was trained with a Levenberg-Marquardt back propagation algorithm. The architecture 

contains an input neuron with seven features which are the gas lift gas gravity, flowing top 

node pressure (psig), operating injection pressure (psig), gas lift gas injection rate(MMscf/day), 

depth of gas lift injection (ft), casing pressure (psig) and the water cut (%). Figure 3 is the 

proposed neural network architecture; 

 
Figure. 3 Network Architecture 

 

3.1.1 Tanh-Sigmoid Activation (Transfer) Function 

The tanh-sigmoid activation function takes an input into a neuron which has value between 

plus and minus infinity and then squashes it to output a value between the range of negative 

one to positive one (-1 to 1). Mathematically, the tanh-sigmoid activation function is 

represented as; 

𝑙𝑒𝑡 𝑧 =  Θ𝑇𝑥        (1) 

LOAD INPUT AND OUTPUT DATA FILE
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MATLAB
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END
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𝑔(𝑧) =  
2

1+ 𝑒−2𝑍
− 1       (2) 

Where; 

 z = the vector product of the neuron weight transposed (Θ𝑇) and the input value (x). 

g(z) = the tanh-sigmoid function.  

This transfer function is commonly in back propagation networks, in part because its 

differentiable. Figure 4 illustrates the tanh-sigmoid function; 

 
Figure 4 Graphic representation of the tanh-sigmoid transfer function 

 

3.1.2 Linear Transfer Function 

This function takes input to the neuron (in this case output from the tanh-sigmoid hidden layer) 

and turns it into a continuous number. Linear activation function calculates the neuron’s output 

by simply returning the value passed to it. Mathematically, the softmax activation function is 

represented as  

 a = purelin(n) = purelin(Wp + b) = Wp + b            (3) 

Figure 5 illustrates the linear transfer function; 

3.1.3 Cost (Error) Function 

The cost (error) function is the function used to minimize the error between the output (result 

by the network) and the target (reservoir response). Because parameter estimation is a multiple 

regression analysis problem that output continuous values Mean Squared Error cost function 

was used to train the network. The Mean Squared Error cost function given below; 
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𝐽 =  
1

𝑚
∑ (𝑃(𝑖) − 𝑦(𝑖))2𝑚

𝑖=1          (4) 

Where 

P is the model output of the training example i. 

y = reservoir response of the training example i. 

Fortunately, the mean squared error performance index for the linear network is a quadratic 

function. Thus, the performance index will either have one global minimum, a week minimum 

or no minimum, depending on the characteristics of the input vectors. Specifically, the 

characteristics of the input vectors determine whether or not a unique solution exists. 

3.1.4 Levenberg-Marquardt (LM) Algorithm 

The Levenberg-Marquardt (LM) algorithm also known as the damped least-squares method, is 

used to solve non-linear least squares problem. It is a combination of two methods: the gradient 

descent and the Gauss-Newton. Both the Gradient Descent and Gauss-Newton methods are 

iterative algorithms, which implies that they use a series of calculations (based on guesses for 

x-values) to find a solution. The gradient descent differs in that at each iteration, the solution 

updates by choosing values that make the function value smaller. More specifically, the sum 

of the squared errors is reduced by moving toward the direction of the steepest descent. At each 

iteration, the LM algorithm chooses either the gradient descent or Gauss-Newton and updates 

the solution.  

The iterative update is dependent on the value an algorithmic parameter, λ, a non-negative 

damping factor which smooth’s out the graph. The update is Gauss-Newton if λ is small (i.e. 

close to the optimal value) and a gradient descent if λ is large. The Gauss-Newton is more 

accurate and faster than the gradient descent when close to the minimum error. Therefore, so 

the algorithm will migrate towards the Gauss-Newton algorithm as soon as possible. 
 

Parameter Estimation Training Procedure 

The procedures with which the network was trained can be summarized in the following steps; 

 

i. Import or read the training data (time and pressure data of the well test) from excel data 

sheet to MATLAB as variables. 

ii. Choose the training algorithm in this case the Levenberg-Marquardt backpropagation. 

iii. Choose the number of neurons in this chase one hundred (100). 

iv. Pre-process the input data to prevent outliers 

v. Divide the input data randomly into three parts for training, validating and testing of 

the algorithm (in this the case the division was made in the ratio of 70:15:15) to prevent 

over fitting. 

vi. Select the cost or error (in this case the Mean Square Error) function to be minimized. 

vii. Train the network to meet the goal (until the cost function is minimized and the 

variables converge). 

 

3.2 Method of Data Collection 

Table 1 serves as a comprehensive repository of data, encapsulating the dataset extracted from 

the initial five wells under consideration. The table functions as a structured and organized 

presentation of information, providing a systematic overview of key parameters, observations, 

or measurements associated with each well. This dataset is crucial for the ongoing research or 

analysis, offering a foundational understanding of the characteristics, behaviors, or conditions 

of the wells in focus. The arrangement of data in Table allows for easy reference, comparison, 

and analysis, enabling researchers, scientists, or stakeholders to draw insights, identify patterns, 
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or make informed decisions based on the specific data points provided for each well. In essence, 

Table 1 serves as a valuable tool for anyone engaging with the dataset, offering a clear and 

concise format to comprehend, interpret, and leverage the information gleaned from the initial 

five wells in the study. 

Table 1 Well and reservoir parameters for the first five wells 

Parameter Well 1 Well 2 Well 3 Well 4 Well 5 

Gas lift gas gravity 0.8 0.78 0.8 0.64 0.72 

flowing top node (psig) 250  250 200 217 500 

operating injection pressure (psig) 1900  1900 1287.49 1145.36 1800 

Gaslift gas injection rate (MMscf/day) 7.814  9.3 5.942 1.0 2.804 

Depth of gas lift injection (ft) 13000  13500 7500 4183.7 6500 

casing pressure (psig) 1180  1879.4 1369 1136 2254 

WOC (%) 20.3 50 80 12 70 

Oil production rate (stb/d) 4430.2 4300 1430.99 1748 868.4 

The machine learning (ML) used in this work is primarily based on actual test data from wells 

obtained from test separators and measuring devices installed on both mobile test packages, 

flow lines, and gas lift lines. Furthermore, because ML can deal with limited or faulty data 

while acting on data with uncertainty, which is considered a proven advantage of ML over any 

analytical conventional methods, downhole data obtained from static and flowing surveys 

using downhole memory gauges, production logging tools (PLT) using electrical line, reservoir 

rock and fluid properties obtained from PVT lab analysis, and core lab analysis were used in 

this work to run different models to recalculate reservoir rock and fluid properties. 

The input data set was divided into 70% for training, 15% for validation, and 15% for the 

primary test at random. The training data are used to improve the network based on their error. 

Validation data are used to assess network generalization and to halt training when 

generalization no longer improves. Because test data has no effect on training, it provides an 

independent measure of network performance during and after training. Data such as the gas 

injection rate and depth of gas injection would have been required to effectively model the 

unique behaviour in gas-lift wells. 

In a compilation of more than 180 wells, none of the gas-lift well records provided this 

information. A neural network to predict the temperature profile in gas-lift wells was not 

developed due to a lack of comprehensive gas-lift well records for training and testing. All gas 

and gas-lift well data were discarded. In addition, due to the presence of outliers and anomalies, 

the database was reduced to 50 wells from various fields. Table 3.2 shows the data ranges that 

include the minimum and maximum values of the input element parameters assigned in various 

generated ML models. 

Table 2: The data range for the parameters used in the ML model. 

Parameter Minimum Average  Maximum 

Gas lift gas gravity 0.64 0.744 0.80 

Flowing top node (psig) 200 14393.92 50000 

Operating injection pressure (psig) 1145.36 81566.49 190000 

Gaslift injection rate (MMscf/day) 1 272.44 930 

Depth of gas lift injection (ft) 4183.70 453389.08 1350000 

Casing pressure (psig) 1136 79314.78 225400 

Water cut (%) 12 2360.73 8000 

Oil Production rate (stb/d) 868.40 129554.86 443020 
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4. Results and Discussion 

The cleaned data is then organized and presented in a structured manner in Table 3. This table 

serves as a visual representation of the refined dataset, providing a comprehensive overview of 

the monthly data mean values. Each column likely represents a specific variable, and each row 

corresponds to a particular month, showcasing the calculated means. This presentation ensures 

clarity and accessibility for readers who seek to understand the aggregated monthly trends. 

This process involves determining the average value of each variable for every month over the 

specified period (January 2018 to December 2019). Monthly means are valuable for identifying 

trends, patterns, or variations in the data on a more manageable scale, facilitating a nuanced 

understanding of how variables evolve over time. 

Table 3 Mean Monthly well data 

4.2 Training Parameters 

 

The success of machine learning algorithms used in this study depends on a wide range of 

contextual parameters as shown in Table 3.2 of the previous chapter. This is the model's set of 

learned features, which were formulated from the training data. The parameters of the machine 

learning model determine the specifics of the data transformation. A good model is one that 

can generalize to new, unknown data while maintaining high accuracy on either production or 

 
 Well1 

THP 

(Psi) 

Well1 

Production 

Rate 

(BBL/D) 

Gas 

Compressor 

Injection 

Pressure (PSI) 

Gas 

Compressor 

Suction 

Pressure (Psi)   

 Well2 THP 

(Psi) 

Well2 

Production 

Rate 

(BBL/D) 

Gas 

Compressor 

Injection 

Pressure (PSI) 

Gas 

Compressor 

Suction 

Pressure (Psi)   

1 88.6 698.6 1352.1 34.1 119.9 864.7 1294.4 34.5 

2 84.6 648.0 1344.7 34.0 119.8 435.3 1289.7 34.3 

3 70.6 562.1 1361.8 33.9 120.5 862.9 1291.1 34.1 

4 70.6 664.8 1345.3 34.7 120.7 863.1 1290.7 34.7 

5 76.0 1009.4 1341.0 34.5 120.8 434.8 1291.2 34.4 

6 86.7 648.3 1365.1 33.5 100.9 834.5 1244.1 34.7 

7 99.2 990.3 1277.3 34.1 101.0 880.1 1241.3 34.7 

8 80.6 643.7 1295.9 34.0 102.0 884.8 1242.5 34.2 

9 84.5 869.5 1257.4 34.1 90.3 435.2 1243.1 34.3 

10 61.6 648.8 1278.9 34.7 86.0 430.0 1240.7 34.6 

11 71.6 562.8 1263.8 33.6 99.6 441.5 1248.3 35.2 

12 65.2 561.9 1261.1 34.4 101.7 668.2 1257.5 34.8 

13 40.8 464.0 1260.3 32.2 111.9 403.0 1250.3 33.3 

14 40.5 631.5 1275.5 33.8 113.7 439.1 1252.8 34.6 

15 41.1 702.2 1243.3 33.7 113.9 420.1 1254.6 35.0 

16 41.2 458.9 1262.4 33.6 113.0 452.7 1265.0 35.0 

17 49.3 780.3 1254.7 34.2 119.9 475.7 1269.7 35.1 

18 50.7 377.8 1253.0 34.7 121.1 454.3 1266.4 35.1 

19 50.8 379.9 1254.0 34.5 121.0 454.8 1246.6 35.1 

20 50.7 374.0 1242.8 34.6 121.3 454.7 1267.2 35.2 

21 58.6 832.9 1220.9 32.3 71.0 785.2 1255.4 34.1 

22 61.9 385.7 1283.5 34.6 66.7 348.0 1254.5 34.3 

23 61.7 386.1 1283.1 35.2 66.6 347.2 1254.5 34.8 

24 63.0 837.9 1290.6 34.6 66.5 754.4 1254.8 35.2 
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test data. Hence, after the gaslift model recognition training period, the following results were 

derived. 

 
Figure 6: Training parameters 

The training process using Levenberg-Marquardt algorithm for the model recognition took 14 

minutes, 34 seconds to complete the entire iterations. as shown in Figure 6 of the performance 

(error function) of the algorithm. This optimal performance point is also known as the 

convergence point or the global minimum.  

 

4.3 Model Validation 

Validation is the procedure of checking the accuracy of a model. Your model's success in 

training does not guarantee success in production. Always divide your data in half, one for 

training and one for testing, before attempting model validation. Thus, a maximum of 0.00468 

is shown in the error histogram (shown in Figure 7) depicting the discrepancy between the 

input and the output. 

 

 
Figure 7 Estimation error histogram 
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4.4 Gas lift model recognition confusion matrix 

The algorithm's confusion matrix is depicted in figure 8; the training confusion matrix shows 

that the algorithm properly identified 25.7% (721) of the training data as belonging to class 1, 

while misclassifying 0.1% (2) as belonging to class 3. On the other hand, 26.5% (694) of the 

training data was correctly classified as class 2 by the algorithm, while 0.2% (5) was incorrectly 

labelled as class 3. More than a quarter (24.6%; 690 instances) of class 3 data in the training 

set was accurately labelled as such. In addition, 24.6% (689) of class 4 training data was 

accurately labelled as such, whereas 0.1% (2) was incorrectly labelled as class 3. As a result, 

the algorithm had a 99.7 percent success rate throughout training. Algorithms are validated and 

tested to ensure they are not over-fitted and can be used effectively over a wide range of data. 

To test an algorithm, one merely presents it with data it has not previously seen. The final 

validation accuracy was 99.3%, whereas the test accuracy was 99.1%. This resulted in a 

classification (gaslift model recognition) accuracy for the algorithm of 100%. 

 
Figure 8: Algorithm's confusion matrix 

 

4.5 Reservoir Model Parameter Estimation Training Results 

The model parameter estimation algorithm was trained separately for the four different gaslift 

models that were covered in this study. The Figures 7 and 8 illustrates the results for class 1 

only. After the training process, error and index of fitness for the different wells are shown in 

Table 3. Figures 7 display error histograms that are very close to the actual data for the three 

targets of well fluid rate, bottom hole flowing pressure, and optimal gas injection rate, 

respectively, resulting in a very good estimation in the real-time data. The training, validation, 

and testing regression values all look extremely near to one, with the highest value reaching 

1.00, which can have an effect on how well the neural network is taught to perform. 

 
Figure 9 Mean square error change as number of iteration changes 
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Figure 10 Regression plot 

The available data was split into training, validation and test data in a ratio of 70:15:15. The 

algorithm took fourteen minutes and thirty-four seconds to parameter estimator. After the 

training process, me error and index of fitness is show in Table 4.  

 

Table 4. Mean square error and index of fitness 

TRAINING VALIDATION TESTING 

 MSE (10−7)  R  MSE (10−7) R MSE (10−8) R 

5.84448 1 7.44698 1 8.24107 1 

 

Table illustrates that the error from the training, validation and testing of the algorithms are 

minimal and also that they have an index of fitness of 1 which indicates a perfect fit. 
 

5. Conclusion 

The integration of machine learning into the analysis proves to be a powerful tool for real-time 

decision support and parameter estimation. The algorithm's high accuracy rates, as evidenced 

by the confusion matrices and parameter estimation results, showcase its effectiveness in 

recognizing gas lift models and accurately estimating parameters. This success in model 

training, validation, and testing phases underscores the model's ability to generalize to new, 

unseen data, providing a reliable framework for on-going decision-making in oil well 

operations. As the gas lift system plays a pivotal role in oil production, the findings from this 

comprehensive analysis contribute not only to a deeper understanding of the system's dynamics 

but also offer practical implications for optimizing operational strategies and improving overall 

efficiency in the oil and gas industry. 
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