Histo-Pathology Of Some Internal Organs Of Broiler Chickens Infected With *Salmonella enteritidis* And Treated With Methanol Extract Of *Phyllanthus amarus'* Leaves

Unigwe Robinson Cyprian¹*, Esan Oluwaseun Olanrewaju², Ukwueze Chigozie Stanley³ and Egwu Lawrence Uchenna¹

¹Department of Veterinary Biochemistry and Animal Production, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
²Department of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria
³Department of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria

https://doi.org/10.54117/jcbr.v2i2.13

Submitted: Jan 20, 2022; Accepted: March 1, 2022; Published online: April 30, 2022
*Correspondance email: robinsonunigwe@gmail.com, +2348037707965

Abstract

A 21 d study was carried out to determine the histo-architectural defects associated with spleen, kidney, liver, heart and intestine of *Salmonella enteritidis*-infected broiler chickens treated with methanol extract of *Phyllanthus amarus*' leaves. Sixty (60) 5-week old unsexed Arbor acre broiler chickens on deep litter system were used for the study. They were allotted into 4 groups of $T_1 =$ distilled water (control), $T_2 =$ *Salmonella enteritidis* (SE) (1×10^7 CFU/mL, *per os*), $T_3 =$ SE + *P. amarus* (150 mg/kg), and $T_4 =$ SE + enrofloxacin (10 mg/kg, *per os*) in a completely randomized design and replicated thrice with 5 birds/replicate. One hour prior to inoculation of SE, T_3 and T_4 received *P. amarus* and enrofloxacin respectively which continued till expiration of study, whereas T_1 and T_2 received distilled water and SE respectively via the oral route. At the end of study, a bird per replicate was randomly sampled of the spleen, kidney, liver, heart, and intestine for histopathological examination. There were no observable lesions on T_1 plates. Meanwhile, the liver showed multifocal hepatocellular coagulation necrosis, and inflammation (T_2), moderate atrophy of hepatic plates (T_3) and hepatocellular atrophy, coagulation necrosis and inflammation (T_4). Other pathological lesions were seen in T_2 of all organs due to effect of SE and T_4 of the intestine that showcased moderate villi atrophy and cryptal necrosis. This showed that *P. amarus* was able to alleviate toxic manifestations occasioned by SE inoculation except in the liver where the lesion was however moderate.

Keywords: Broiler chicken, pathology, *Phyllanthus amarus* leaf, visceral organs

Running title: Pathology of *Salmonella enteritidis*-infected broiler chickens treated with *Phyllanthus amarus* extract

Introduction

The latent destruction or impairment of internal organs by indiscriminate consumption of herbal supplements or drugs has necessitated the need to be circumspect in their use. There is also a need for thorough investigation into their effect on...
the visceral organs since detoxification of the body is a sole function of these indispensable organs. Herbal medicines are believed to be safer than synthetic medicine because phytochemicals in the plant extract target its biochemical pathways (Sandigawad, 2015).

Phyllanthus amarus is an ethnobotanical plant that is distributed in almost all tropical countries and regions including America, India and Nigeria (Adjene and Nwose, 2010). Gafar et al. (2012), Peters et al. (2015) and Sangeeta et al. (2017) have demonstrated the presence of some compounds that aid the actions of P. amarus to include alkaloids, flavonoids, hydrolysable tannins, major lignans, polyphenols, oxalate, phytate, hydrogen cyanide and nitrate. Some of these compounds have their usefulness when used moderately but elicit toxic effects when abused whereas some are anti-nutrients that impart negatively on the internal organs and general wellbeing of individual animals. Species of these animals could also be factored in since metabolic enzymes that aid biotransformation and subsequent elimination of these compounds are not equally given to all species. Due to these reasons, safety of herbal drugs is still issue of concern the world over (Calixto, 2000; Calapai, 2008).

This plant has been widely used by traditional medicine practitioners for the treatment of a wide variety of ailments (Calixto et al., 1998; Grieve, 2008) with various claims that it treats liver diseases (Kamble et al., 2008), gastroprotective activity, lowers blood pressure (Amonkan et al., 2013) and anti-inflammatory activities (Ilangkovan et al., 2015; Harikrishnan et al., 2018). Due to the many applications of P. amarus plant in ethnomedicine, there is the need to investigate the effect on the histo-architecture of some visceral organs before using it in poultry production.

Materials and Methods

Experimental site and ethical consideration

The experiment was carried out at the Poultry Unit of the student’s project site at the Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Oyo State, Nigeria. Ibadan is located approximately on longitude 3° 5’ to 4° 36’ E and latitude 7° 23’ to 7° 55’ N (Oladele and Oladimeji, 2011). Ibadan has a tropical wet and dry climate, with a lengthy wet season. It has mean total rainfall of 9,233.60 mm, mean maximum and minimum temperatures of 39.8 °C and 22.5 °C respectively (Egbinola and Amobichukwu, 2013) and relative humidity of 74.55%. Ethical conditions governing the conduct of experiments with life animals were strictly observed as stipulated by Ward and Elsea (1997). The experimental protocol was approved by the College’s ethical committee for the use of animals for experiment.

Collection and extraction of Phyllanthus amarus and sourcing of Salmonella enteritidis

The test plant used for this project is Phyllanthus amarus (Stone breaker). Code of ethics of the International Society of Ethnobiology (2008) was followed in identifying the plant. The leaves were collected from the school’s botanical garden. The harvested fresh leaves were washed, rinsed with distilled water and air dried under shade until they were crispy to touch, while still retained their green colour. The leaves were ground with domestic electric grinding machine (Sonik® Model SB-464) to produce P. amarus leaf meal. The P. amarus...
Leaf meal was subjected to 80% methanol extraction using technique described by Handa et al. (2008). *Salmonella enteritidis* was obtained and transported from Fish and Wild Life laboratory of the Department of Veterinary Medicine, University of Ibadan, to the site of the study in a cold pack as described by Wolking (2013).

Birds, management and design

Sixty (60) day-old unsexed Arbor acre broiler chicks were used for the study. Prior to the arrival of the birds, the pens were cleaned and washed with detergent solutions. Disinfection of the pen was done using saponated cresol (Lysol®), and the pen was left unstocked for one week and the floor litter laid to 5cm³ with wood shavings. On arrival of the chicks, anti-stress solution (mixture of water, glucose and multivitamin) was served as well as normal feed (Top® starter feed, 22% crude protein (CP), 2800 kcal/kg metabolizable energy) and clean drinking water on *ad libitum* basis. Routine vaccinations (Newcastle disease vaccine (NDV) intra-ocular (i/o), Lasota and Infectious bursal disease (IBD)) were administered accordingly during the two weeks of acclimatization. IBD vaccine was repeated on day fourteen. After acclimatization, the birds were allocated to four treatments in a completely randomized design. The experimental dosing and groupings were as stated hereunder:

T₁ = distilled water (control), T₂ = *Salmonella enteritidis* (SE) inoculated (1 × 10⁷ CFU/mL, per os (PO)), T₃ = SE inoculated + *P. amarus* (150 mg/kg), and T₄ = SE inoculated + enrofloxacin (10 mg/kg).

They were replicated thrice with each replicate having 5 birds and SE (1 × 10⁷ CFU/mL, PO) was inoculated at 5 wks of age. One hour prior to per os inoculation of SE, T₃ and T₄ received *P. amarus* (150 mg/kg) and enrofloxacin (10 mg/kg) in drinking water respectively. There was continuous administration of *P. amarus* and enrofloxacin for another 4 days (ie; 5 days in all) in T₃ and T₄. Finisher Top feed® (19% CP, 3200 kcal/kg) was given by 7 am and 5 pm daily whereas clean borehole water was supplied *ad libitum* throughout the experimental duration of 21 days under standard environmental conditions (a 12 h light and 12 h darkness cycle). Also, coccidiostat was given when the birds showed clinical signs of coccidiosis at week four.

Histo-pathological preparation

A bird per replicate was randomly selected, sacrificed humanely through cervical dislocation after stunning, at the Veterinary Pathology/Microbiology Laboratory, University of Ibadan. The birds were eviscerated of spleen, kidney, liver, heart and intestine and were stored in buffered 10% formalin for 24 hours before histo-pathological preparation.

Analyses

The histo-pathology plates were viewed by veterinary pathologists of the Department of Veterinary Pathology, University of Ibadan, Nigeria, for lesions’ detection and interpretations as described by Neel et al. (2007).
Figure 1: There is no observable lesion (H&E, ×400)

Figure 2: There is multifocal hepatocellular coagulation necrosis and inflammation (arrow). (H&E, ×400)

Figure 3: There is moderate atrophy of hepatic plates (arrows) (H&E, ×400)

Figure 4: There is hepatocellular atrophy, coagulation necrosis and inflammation (H&E, ×400)
Figure 5: There is no observable lesion (H&E, ×400)

Figure 6: There is moderate lymphoid follicular hyperplasia (arrow) (H&E, ×400)

Figure 7: There is no observable lesion (H&E, ×400)

Figure 8: There is denudation of villi tips due to sloughing of enterocytes (arrows). (H&E, ×400)

Figure 9: There is moderate villi atrophy, cryptal cell necrosis and inflammation (arrow). (H&E, ×400)
Figure 10: There is no observable lesion. (H&E, ×400)

Figure 11: There are patchy tubular epithelial coagulation necrosis, perivascular inflammation (arrow). (H&E, ×400)

Figure 12: There is no observable lesion. (H&E, ×400)

Figure 13: There is myofibre degeneration and necrosis with inflammatory cellular infiltrates (arrows). (H&E, ×400)

Legend: H&E = haemotoxylin and eosin
Results and Discussion

There was no observable lesion in the T₁ (control) visceral organs (liver, spleen, intestine, kidney and heart). Meanwhile, the liver showed multifocal hepatocellular coagulation necrosis and inflammation, moderate atrophy of hepatic plates and hepatocellular atrophy, coagulation necrosis and inflammation in T₂, T₃ and T₄ respectively. Probably the *Salmonella enteritidis* has predilection for liver no wonder the observable lesions but it was assuaged by the administration of *P. amarus* hence the effect on the liver was only moderate (T₃) but not the same in T₄ possibly because enrofloxacin has hepatotoxic effect. However, the moderate atrophy of hepatic plates correlates with the findings of Adedapo *et al.* (2005) and Igwe *et al.* (2007) that *P. amarus* has toxic potentials to the liver and increases hepatic cell function respectively. Contrary to the result of the present study, Srirama *et al.* (2012), Kandhare *et al.* (2013), Kushwaha *et al.* (2013), and Hunaleyo *et al.* (2017) reported hepatoprotective property of the plant. With respect to the spleen, it was only T₂ that had moderate lymphoid follicular hyperplasia whereas other treatments had no observable lesions. Since the spleen filters the blood (Tarantino *et al.*, 2011) as part of the immune system, it could have activated infection-fighting leucocytes that possibly caused the moderate lymphoid follicular hyperplasia since it has been established that bacterial infection causes enlargement of the spleen (Couto and Gamblin, 2000). The intestine had no observable lesions in T₁ and T₃ but demonstrated varied lesions including denudation of villi tips due to sloughing of enterocytes in T₂ and moderate villi atrophy, cryptal cell necrosis and inflammation in T₄. The *P. amarus* in T₃ could have neutralized the *S. enteritidis* since it has been observed to have antimicrobial property by some researchers (Oluwafemi and Debiri, 2008; Adegoke and Adebayo-Tayo, 2009a, 2009b; Ushie *et al.*, 2013; Oluboyo *et al.*, 2016). The toxic effect on the liver could have been occasioned by alkaloids and lots of other antioxidants contained by *P. amarus* (Adomi *et al.*, 2017; Sangeeta *et al.*, 2017; Meena *et al.*, 2018) which is consistent with the notion that antioxidants may be associated with toxicities, particularly when arbitrarily consumed (Miller *et al.*, 2005). The kidney likewise had no observable lesions in all the treatments excepting T₂ where there was patchy tubular epithelial coagulation necrosis and perivascular inflammation. The *S. enteritidis* in circulation could have been filtered into the renal tubules resulting to inflammatory reaction and necrosis. With respect to kidney, the result contradicts the reports of Adedapo *et al.* (2005) and Manjrekar *et al.* (2008) whose experiments using wistar rats recorded necrosis and protein casts in the renal tubules. This might be due to the high doses of *P. amarus* they used. Similarly, only T₂ (Figure 13) showed observable lesions in the heart characterized by myofibre degeneration and necrosis with inflammatory cellular infiltrations. The results in other organs but liver, in this present study showed that *P. amarus* has no deleterious effect. This has been corroborated by reports of other researchers who found no histopathological changes associated with the plant (Patel *et al.*, 2011; Jantan *et al.*, 2014; Ilangkovan *et al.*, 2015; Harikrishnan *et al.*, 2018).
Conclusion

The results of this present study have shown that *P. amarus* has hepato-protective property at lower dose whereas effects generally are dose-dependent no wonder there was moderate atrophy of the hepatic plates but not in T2 and T4 where there were profound toxicities. It also showed reparative property to the pathologic effects of *S. enteritidis* in the spleen, intestine, kidney and heart, hence there were no visible lesions unlike T2.

Acknowledgement

We want to appreciate Solomon Zacchaeus Olamilekan and Dorcas Abosede Adeyemi for their invaluable commitment at feeding the experimental birds whereas Adeniran Onaolapo Adeleke and Matthew Oluwatoyin Ojo ensured that biosecurity and cleanliness around the poultry house were at top notch during the study. We also extend our gratefulness to Dr Popoola Moshood for his assistance in the analysis of the data.

Conflict of interest

The authors declare no conflict of interest.

References

