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Abstract 

The Internet of Things (IoT) is a rapidly growing technology that has the potential to revolutionize many 

industries. However, the energy consumption of IoT devices at the physical layer is a major challenge that 

needs to be addressed. This paper proposes a novel energy-efficient consumption model with cloud-based 

controllers for perception layer data acquisition and storage in IoT applications. In the methodology, 

mathematical representation of the non-optimized energy consumption of physical layer components was 

first developed before developing the optimized version. The mathematical models were then implemented 

in software using embedded C language, a hybrid of assembly, C and C++ languages. The developed 

software was implemented using ATMEGA 2560 as a target microcontroller with IoT sensors interfaced to 

it. The system was simulated using proteus professional software. Results show that the optimized algorithm 

developed brought 54.75% in improvement in energy consumption of physical layer components in IoT 

autonomous applications. Further study shall focus on the application of the models developed in this work 

in cloud-based applications where security is a concern.  

Keywords: energy management, IoT sensors, energy optimization, cloud-based applications, optimized 

algorithm 

Introduction 

The escalating demand for energy, coupled with the growing complexity of autonomous 

systems, has spurred the development of innovative energy management strategies. A 

promising approach lies in leveraging the Internet of Things (IoT) to create efficient energy 

management systems (EEMS) that can optimize energy consumption in various autonomous 

applications. By integrating a multitude of sensors and employing intelligent algorithms, 

EEMS can autonomously adapt to changing conditions and minimize energy waste [1]. This 

research aims to address the limitations of existing approaches by developing an EEMS that 

is capable of autonomously managing energy consumption in a variety of autonomous 

applications. The proposed system utilizes a priority-based control mechanism to determine 

which sensors should remain active at any given time, ensuring that only the most critical 

sensors are operational. By strategically arranging sensors and employing advanced 

algorithms, the EEMS can significantly reduce energy waste while maintaining the desired 

functionality of the autonomous system [2]. 

 

Methods 

The research methodology adopted is Simulation Research Methodology. In the development 

of the Efficient Energy-Management System (EEMS), simulation is used to model and test 

system performance under various conditions. This method allows researchers to optimize 

energy consumption and sensor use without physical deployment, demonstrating potential 

energy savings and operational efficiency. Simulation results guide system design refinement 

and future development. The following tools were used: IoT Sensors, Simulation Software 

(e.g., MATLAB, Simulink), Data Analytics Platforms (e.g., TensorFlow, Scikit-learn), Energy 

Management Software, Development Frameworks (e.g., Node-RED). 
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Related Works 

The quest for energy efficiency and the burgeoning field of autonomous applications have 

catalyzed the exploration of innovative energy management systems (EMS) that leverage the 

capabilities of the Internet of Things (IoT). This review delves into pertinent research 

endeavors, focusing on the synergy of IoT sensors, priority-based control mechanisms, and 

advanced algorithms in crafting energy-efficient solutions for autonomous systems. 
 

Previous research has explored the potential of IoT sensors for energy management in different 

domains. For instance, [1] demonstrated the effectiveness of using IoT sensors to monitor 

energy consumption in residential buildings, identifying areas for improvement. Similarly, [2] 

proposed a sensor-based EEMS for smart grids, enabling real-time optimization of energy 

distribution. However, these studies primarily focused on specific applications and did not 

delve into the broader challenges of developing a versatile and efficient EEMS for autonomous 

systems. 
 

IoT Sensors in Energy Management 
The literature abounds with investigations into the role of IoT sensors in energy conservation 

across various domains [1]. These sensors, acting as the system's eyes and ears, furnish real-

time data on environmental parameters, occupancy patterns, and resource utilization [2]. 

Motion detectors, light sensors, and temperature sensors have been widely deployed to enable 

context-aware energy management strategies [3]. Studies have consistently highlighted the 

efficacy of IoT-enabled EMSs in curtailing energy wastage and optimizing consumption in 

both residential and commercial settings [4]. 
 

Priority-Based Control Mechanisms 
The notion of prioritizing sensor operations based on situational relevance has emerged as a 

pivotal theme in energy-efficient EMS design [5]. By dynamically adjusting the active sensor 

set in response to evolving needs, these mechanisms strike a balance between functionality 

and energy conservation [6]. Researchers have explored diverse priority assignment strategies, 

incorporating factors like criticality, data relevance, and energy constraints [7]. The 

implementation of priority-based control has yielded promising results in curtailing redundant 

sensor operations and enhancing overall system efficiency [8]. 
 

Advanced Algorithms and Decision-Making 
The marriage of IoT-driven EMSs with advanced algorithms empowers intelligent decision-

making and adaptive energy management [9]. Machine learning and artificial intelligence 

techniques have been leveraged to glean insights from sensor data, predict energy demands, 

and proactively optimize resource allocation [10]. The literature showcases the potential of 

such algorithms in learning user behaviors, anticipating environmental changes, and tailoring 

energy management strategies accordingly [11]. 
 

Conclusion of Review and Future Directions 
The body of research reviewed herein underscores the transformative potential of IoT-powered 

EMSs in enabling energy-efficient autonomous applications. The synergy of IoT sensors, 

priority-based control, and intelligent algorithms paves the way for a paradigm shift in energy 

management, transcending traditional approaches. Future research endeavors may explore the 

integration of renewable energy sources, energy harvesting techniques, and distributed control 

architectures to further amplify the impact of these systems. As autonomous technologies 

continue to proliferate, the pursuit of energy-efficient solutions remains paramount in ensuring 

their sustainability and environmental responsibility. 
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Energy Challenges in Autonomous Applications 

The rise of autonomous applications, encompassing self-driving vehicles, drones, and robots, 

heralds a new era of technological advancements. However, their widespread adoption and 

effectiveness are significantly constrained by the pressing challenge of energy consumption 

[1]. Autonomous systems, with their reliance on an array of sensors, processors, and actuators, 

demand substantial power resources [2]. This reliance often outstrips the capabilities of 

conventional energy sources, such as batteries, thereby limiting operational range and duration 

[3]. Furthermore, the dynamic and unpredictable nature of autonomous tasks introduces 

additional energy complexities [4]. Unexpected scenarios, environmental fluctuations, and 

increased computational demands can lead to rapid energy depletion, compromising mission 

success and safety [5]. Addressing these energy hurdles necessitates innovative solutions 

across multiple fronts. Advancements in energy-efficient hardware, intelligent power 

management algorithms, and the exploration of alternative energy sources, including solar and 

fuel cells, are vital to unlocking the full potential of autonomous applications [6]. 

Mathematical Model for Efficient Energy Consumption Management with IoT Sensors 

in Autonomous Applications  

Energy consumption management is crucial for IoT sensors in autonomous applications, 

especially in remote battery-powered scenarios. This section considers the development of 

mathematical model that represents the energy consumption of a typical IoT system at the 

perception layer (PL). The model begins by analyzing the power and energy consumption of 

each component in the PL setup including sensors, analog-to-digital converters (ADCs), 

cloud-based controllers, and IoT gateways. The analysis reveals that without energy 

management, consumption is high and unsustainable for battery-powered devices. To address 

this, an energy management function, lambda (𝛌) is introduced. This function classifies each 

PL component as of high, mid, or low priority, based on their role in the IoT application. High-

priority sensors trigger time-critical events, mid-priority sensors monitor thresholds, and low-

priority sensors collect essential data that are not time critical. The IoT gateway is only 

activated only during data transmission. 

 

By applying 𝛌 to the power consumption model, we can break down the total consumption 

into the consumptions of each sensor type and the gateway. This allows us to optimize energy 

usage by strategically controlling the activation and operation of each component. The 

optimized energy consumption model takes into account the time duration each component is 

active, allowing for precise control and significant energy savings. This model is essential for 

developing optimized and efficient energy management algorithms for PL in IoT applications, 

ensuring longer battery life and sustainable operation in remote environments. 

 

The Theoretical Framework of the Mathematical Model 

Consider a typical perception layer set-up in IoT autonomous application as shown in figure 

1. The components of the setup are: 

1. The power supply unit which provides energy in form of current and voltage to the 

entire system. 

2. The sensors which help the cloud-based controller to perceive or sense the physical 

environment. The sensors are transducers to convert the physical quantities to be 

measured into equivalent voltage or current signals. 

3. The analog to digital converter (ADC) transforms the measured physical analogue 

quantity to its digital equivalent. 

4.  The cloud controller collects the digital data, processes them and transmit to the cloud 

via the IoT gateway. 
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Figure 1: Typical perception layer setup in IoT application 

 

Now, mathematically, power P is defined as the product of current I and voltage V. This 

implies that  
 

𝑃 = 𝐼 ∗ 𝑉         (1) 
 

Electrical Energy E on the other hand is defined as the product of power and time T. It implies 

that 

𝐸 = 𝐼 ∗ 𝑉 ∗ 𝑇         (2) 

 

It is a standard practice for perception layer components to operate at the same level of voltage. 

The current may differ depending on the power consumption of each component. This makes 

for compatibility. It is a standard for internet of things (IoT) design. Now, with respect to figure 

1 let the current rating of sensor 1 be i1 , the current rating of sensor 2 be i2 , the current rating 

of sensor 3 be i3,the current rating of sensor n be in , the current rating of the ADC be i adc, the 

current rating of the cloud-based controller be icc
 , the current rating of the IoT gateway be ig. 

The total power consumption PT of the entire perception layer setup can then be written as: 

 

𝑃𝑇=  𝑖1  ∗ 𝑉 + 𝑖2  ∗ 𝑉 + 𝑖3  ∗ 𝑉 + 𝑖𝑛  ∗ 𝑉 + 𝑖𝑎𝑑𝑐  ∗ 𝑉 + 𝑖𝑐𝑐  ∗ 𝑉 + 𝑖𝑔  ∗ 𝑉    

𝑃𝑇  = (∑ (i ∗ v) ) +
𝑛

𝑛=1
𝑖𝑎𝑑𝑐  ∗ 𝑉 + 𝑖𝑐𝑐  ∗ 𝑉 + 𝑖𝑔  ∗ 𝑉     (3) 

 

Similarly, the total energy consumption ET of the entire Setup can be written as 

𝐸𝑇=  𝑖1  ∗ 𝑉 ∗ 𝑡 + 𝑖2  ∗ 𝑉 ∗ 𝑡 + 𝑖3  ∗ 𝑉 ∗ 𝑡 + 𝑖𝑛  ∗ 𝑉 ∗ 𝑡 + 𝑖𝑎𝑑𝑐  ∗ 𝑉 ∗ 𝑡 + 𝑖𝑐𝑐  ∗ 𝑉 ∗ 𝑡 + 𝑖𝑔  ∗

𝑉 ∗ 𝑡   

𝐸𝑇  = ((∑ (i ∗ v) ) +
𝑛

𝑛=1
𝑖𝑎𝑑𝑐  ∗ 𝑉 + 𝑖𝑐𝑐  ∗ 𝑉 + 𝑖𝑔  ∗ 𝑉) ∗ 𝑡    (4) 

 

Where t is the total on duration time of the perception layer unit. 

Equation 4 is a case of zero energy management. In other words, there is no energy 

management at all. This situation is not desirable given that IoT at perception layer is mostly 

situated at remote locations, so most times it is battery powered. It is therefore necessary to 

introduce energy management in equation 4 so as to optimized energy consumptions at 

perception layer in IoT implementation. 
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Energy Consumption Management and Optimization Hypothesis 

Since equation 4, the mathematical model for energy consumption in perception layer of IoT 

autonomous applications (PLIoTAP) developed from Figure 2 is not efficient, an energy 

management function (EMF) or block is introduced in figure 2 as shown in figure 3. 

 

 

 

 

 

 

 

 

Figure 3: Block diagram of optimized and efficient energy management in PLIoTAP 
 

Let the energy management function be lambda 𝛌. 𝛌 is such that it has both input and output 

variables.  

Input variables to 𝛌 are those set of definitions and declaration that classify all the components 

of perception layer (PL) as either: 1. High Priority, Mid Priority or Low Priority. The output 

variables are the state of each component of PL and on time duration of each state. The 

following hypothesis is proposed: The sensors to be adopted at the perception layer must be 

energy saving and IoT compliant. 

1. High-Priority sensors are sensors that trigger time-critical events. Most times they send 

external interrupt to the cloud-based controllers.  

2. Mid-Priority sensors are sensors that monitor the upper and lower thresholds of events 

in IoT applications. They can also serve as an interrupt to the cloud-based controller but 

do not necessarily need to be on 24/7. 

3. Low Priority sensors are sensors that enable cloud-based controller collect data from the 

perception layer. These data are not needed for taking time-critical decisions. Rather 

they are stored at the cloud for further analysis on a later time. 

4. The IoT gateway should be on only and only if there is need to send data to the cloud 

and should be switched off once data sending cycle is completed. 

5. Cloud controller should be in power saving mode 

From the above hypothesis, it implies that when 𝛌 acts on equation 3, it will break it into 

five distinct sections: 

i. Power Consumption of the high-priority Sensors. 

ii. Power consumption of the mid-priority sensors. 

iii. Power consumption of the low-priority sensors. 

iv. Power consumption of the cloud controller 

v. Power consumption of the IoT gate way 
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Mathematically, it means that 

λ (𝑃𝑇) = 𝑃ℎ + 𝑃𝑚 + 𝑃𝑙 + 𝑃𝑐𝑐 + 𝑃𝑔       (5) 

where  

Ph =Power consumption of high priority sensors (hps) 

Pm =Power consumption of the mid-priority sensors (mps) 

PL=Power consumption of the low-priority sensors (Lps) 

Pcc =Power consumption of the cloud controller 

Pg =Power Consumption of the gateway. 

If the total number of high, mid and low priority sensors are known together with their 

respective ratings, equation 5 can be computed using equation 4.6 

λ(𝑃𝑇  ) = ∑ (i ∗ v)  +ℎ=ℎ𝑚𝑎𝑥
ℎ=1 ∑ (𝑖 ∗ 𝑣) 𝑚=𝑀𝑚𝑎𝑥

𝑚=1 + ∑ (𝑖𝑣) +𝐿=𝐿𝑚𝑎𝑥
𝐿=1  icc ∗ V + 𝑖𝑔  ∗ 𝑉 (6) 

hmax is the maximum number of High-priority Sensors. 

Mmax is the maximum number of Mid-priority sensors. 

Lmax is the maximum number of Low-Priority Sensors. 

In order to keep equation 6 simple, the current consumption of the sensors has been generalized 

as i. In practical implementation however, the current consumption of each sensor should be 

gotten from the sensor’s data sheet. 

Similarly, the energy consumption after optimization will now be 

λ (𝐸𝑇  ) = ∑ (𝑖 ∗ 𝑣)ℎ=ℎ𝑚𝑎𝑥
ℎ=1 𝑡𝑜𝑛ℎ  ∑ (𝑖 ∗ 𝑣) 𝑡𝑜𝑛𝑚   

𝑚=𝑀𝑚𝑎𝑥
𝑚=1  +  ∑ (𝑖 ∗ 𝑣)𝑡𝑜𝑛𝐿  

𝐿=𝐿𝑚𝑎𝑥
𝐿=1  + 

icc*V*𝑡𝑜𝑛𝑐𝑐  + ig*V*𝑡𝑜𝑛𝑔        (7) 

where  

 𝑡𝑜𝑛ℎ   is the total time the hps were on, 𝑡𝑜𝑛𝑚  is the total time the mps were on, 𝑡𝑜𝑛_𝐿  is the total 

time the Lps were on 

𝑡𝑜𝑛𝑐𝑐   is the total time the cloud controller was on, 𝑡𝑜𝑛𝑔   is the total time the gateway was on.,  

Equation 7 is the proposed optimized equation for efficient energy management at perception 

layer during data acquisition in IoT applications. 

 

System Simulation 

In order to validate equations 4 and 7, embedded systems representing physical layer of IoT 

autonomous application were designed using proteus professional software as shown in figure 

4. Five sensors namely motion sensor, gas sensor, distance sensor, temperature and humidity 

sensors are interfaced to a microcontroller, ATMEGA 2560 to investigate and validate 

equations 4 and 7. Virtual display is also attached to the controller so that data can be collected. 

As an ongoing PhD research, an IoT gate way is also attached to the controller for research on 

the security aspect of the work. Embedded c language, a hybrid of assembly, C and C++ 

languages, is used to write codes or algorithms that implement equations 4 and 7. Energy 

consumption of figure 4 when algorithm that implements equation 4 was compared with that 

of energy consumption as a result of equation 7. 
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Figure 4: Complete schematic design for testing energy consumption models  
 

Simulated Results 

Figure 5 is a snap shot of sample simulation result. Tables 4.1 and 4.2 shows the 

comprehensive data collected when non-optimized and optimized algorithms were 

implemented respectively. Figures 6 and 7 shows the plots of cumulative energy 

consumption for non-optimized and optimized cases respectively 

 
Figure 5: Simulation result 

 

Table 1: Data received at the virtual terminal for non-optimized energy 

consumption  

Sam

ple 

No 

 

Motion 

gas 

level 

Tem

perat

ure 

level 

Humi

dity 

level 

Distan

ce 

Cumul

ative 

time 

Cumulati

ve power 

used 

Cumulative 

energy 

Consumed 

1 1023 315 33 81 380.65 0 2.01 45.84 

2 1023 671 35 79 387.07 0 4.01 91.67 

3 1023 648 35 79 387.07 0 6.02 137.51 

4 1023 202 35 79 82.2 0 8.03 183.34 

5 1023 21 41 75 82.2 22.83 2.01 45.84 

6 2 22 41 75 82.2 45.66 4.01 91.67 

7 2 18 41 75 82.2 68.5 6.02 137.51 

8 2 19 41 75 82.3 91.33 8.03 183.34 

9 2 22 41 75 82.18 114.16 10.04 229.18 

10 2 22 41 75 82.3 136.99 12.04 275.01 

11 2 22 41 75 82.2 159.82 14.05 320.85 

12 2 20 41 75 82.2 182.66 16.06 366.68 
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13 1023 21 41 75 82.2 22.83 2.01 45.84 

14 2 22 41 75 82.2 45.66 4.01 91.67 

15 2 18 41 75 82.2 68.5 6.02 137.51 

16 2 19 41 75 82.3 91.33 8.03 183.34 

17 2 20 41 75 82.18 114.16 10.04 229.18 

18 2 22 41 75 82.3 136.99 12.04 275.01 

19 2 20 41 75 82.2 159.82 14.05 320.85 

20 2 20 41 75 82.2 182.66 16.06 366.68 

21 2 20 41 75 82.2 205.49 18.07 412.52 

22 2 21 41 75 82.2 228.32 20.07 458.35 

23 2 19 41 75 82.18 273.98 24.09 550.02 

24 2 19 41 75 82.2 296.82 26.1 595.86 

25 2 19 41 75 82.2 319.65 28.1 641.69 

26 2 19 41 75 82.18 342.48 30.11 687.53 

27 1023 565 38 82 509.25 91.33 8.03 183.34 

28 1023 556 38 82 509.37 136.99 12.04 275.01 
 

Table 2: Data received at the virtual terminal using optimized energy consumption model 

Sampl

e No 

moti

on 

gas 

leve

l 

Temp

eratur

e level 

Humi

dity 

level 

Distan

ce 

Cumulativ

e time 

Cumula

tive 

power 

availabl

e 

Cumulative 

energy 

Consumed 

1 2 19 41 75 82.2 726 2.01 18.52 

2 2 19 41 75 82.18 23515 4.01 37.41 

3 2 21 41 75 82.28 46316 6.02 56.67 

4 1023 454 39 78 501.76 69146 8.03 76.29 

5 1023 441 39 78 501.76 91977 10.04 96.29 

6 1023 445 39 78 501.76 114823 12.04 116.66 

7 1023 406 36 82 501.76 137686 14.05 137.4 

8 1023 414 36 82 501.76 160536 16.06 158.51 

9 1023 434 36 82 501.76 183388 18.07 179.99 

10 1023 434 36 82 501.76 206239 20.07 201.85 

11 1023 408 36 82 501.76 229089 22.08 224.07 

12 1023 452 36 82 501.76 251942 24.09 246.67 

13 2 303 25 73 501.76 753 2.01 18.52 

14 2 353 20 71 501.76 753 2.01 18.52 

15 2 370 20 71 501.76 23576 4.01 37.42 

16 2 369 20 71 501.76 46409 6.02 56.68 

17 2 373 20 71 501.76 137731 14.05 137.44 

18 2 367 20 71 501.76 183356 18.07 180.04 

19 2 352 20 71 501.76 206196 20.07 201.89 

20 2 355 20 71 501.76 251854 24.09 246.71 

21 2 365 20 71 501.76 274705 26.1 269.67 

22 2 348 20 71 501.76 297545 28.1 293.01 

23 2 372 20 71 501.76 343150 32.12 340.79 

24 2 389 20 71 501.76 365989 34.13 365.23 

25 2 345 20 71 501.76 46335 6.02 56.68 

26 2 361 20 71 501.76 69182 8.03 76.32 

27 2 352 20 71 501.76 92019 10.04 96.32 

28 2 344 20 71 501.76 114854 12.04 116.69 
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Figure 6: Cumulative energy consumption by the PLIoTAP system for non-optimized case 

 

Figure 7: Cumulative energy consumption by the PLIoTAP system for optimized case 

 

Discussions 

The first thing that was noted after designing and simulating the PLIoTAP system is that the 

virtual terminal can only receive what is transmitted. As shown in figure 5 the first set of data 

transmitted when non-optimized energy consumption algorithm is loaded into the 

microcontroller are: motion Value (1023), gasValue (315), Distance (380.65), Humidity (81), 

Temperature (33), Total power consumption (2.01), Total energy consumption (45.84), 

Cumulative time taken to acquire data (22.83), cumulative power (2.01) and cumulative energy 

(45.84). It is observed from table 1 that nothing was received as cumulative time, so the virtual 

terminal returned zero as shown in table 1 and figure 6. Troubleshooting the codes revealed 

that the time field was not transmitted. The error was corrected, and 100% integrity was 
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achieved in data transmission as revealed when table 2 is compared with table 1 (sample no 

=1). 
 

Now, the primary focus of this research is energy consumption optimization at physical layer 

for IoT autonomous applications. From table 4.1, the average energy consumption per data set 

transmitted (aec/dst) for non-optimized energy consumption (NOEC) is 45.83429 miliWH. 

For optimized energy consumption (OEC) as shown from table 2, aec/dst is 20.74091 miliWH. 

It means the approach proposed in this research improved energy saving by a factor of 2.20, 

and it represents 54.75% in improvement in energy consumption of physical layer in IoT 

autonomous applications. Figures 6 and 7 also confirm that there is significant improvement 

in the energy consumption of the system because the cumulative energy consumption for non-

optimised case is 687.53miliWH while that of optimised case is 365.23 miliWH. 

 

Conclusion 

This work basically developed and validated mathematical equations for optimized energy 

consumption in autonomous applications. The result of this work can be applied in IoT 

systems. As an on-going PhD work, security is not considered in this mathematical model. 

Further works, shall investigate the suitability of the model developed in this work for cloud-

based applications where security is a concern. 
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