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Abstract  

A statistical comparative analysis of 22 factorial experiments were compared with Two-Way analysis of 

variance (ANOVA) interactive model. The three models for Two-Way ANOVA were considered with respect 

to when to test for the main effects. The three models are; fixed effect, random and mixed effect models. 

When the two factors namely; factor A and factor B are fixed, the common denominator for testing for the 

main effects is mean square error (MSe). Conversely, when the two factors are random, the common 

denominator for testing for the main effects is mean square interaction (MSλ). However, when factor A is 

fixed and factor B is random, the denominator for testing for factor A is MSλ while that of factor B is MSe. 

Conversely, when factor A is random and factor B is fixed, the denominator for testing for factor A is MSe 

while that of factor B is MSλ. The 22 factorial experiments have no model specifications. After the statistical 

analysis, the results from the fixed effect model for the Two-Way ANOVA gave the same result with that of 22 

factorial experiments using the Yates’ technique or any other technique. The researcher therefore 

recommends that when both factors are fixed, either 22 factorial design or Two-Way analysis of variance 

(ANOVA) interactive model could be used. But when both factors are random or mixed, the Two-Way analysis 

of variance (ANOVA) interactive model is highly recommended. 

Keywords: Interactions, Mixed effect model, Random effect model, Mixed effect model. 

 

Introduction  

A 2k factorial experiment is a factorial experiment with k factors observed at 2 levels. The 

levels of the factors are 0 and 1. The low factor is observed at 0 level while the higher factor 

is 1. Roman capital letters are used to denote the factors while small letters are used to denote 

the levels of the factors. (1) is used to indicate that all factors involved in the experiment occur 
at their lowest level. 

A 2×2 factorial design (22) is a type of experimental design that allows researchers to 

understand the effects of two independent variables (each with two levels) on a single 

dependent variable. The k factors in this paper are factor A and factor B each observed at two 

levels 0 and 1. These factors A and B are compared with two-way analysis of experiments 

balanced design with more than one observation per cell.  

When the levels of any of the factors is more than 2, the implementation of the 22 factorial 

experiments become complicated. The model of the experiment cannot be determined if they 

are fixed, random or mixed. A factor is said to be fixed if the entire treatment levels are 

observed. It is random when a random sample of both factors are observed and it is mixed 

when either factor is random or fixed and vice versa. The estimations of the treatment effects 

of 22 factorial design are determined by any of the following methods: Expansion of products, 
Even and odd rule, Sign Table and Yates Techniques. 

Two-way ANOVA (analysis of variance) is a statistical test used to determine the differences 

between means in two variables. It can also be defined as an ANOVA test used to analyze the 

difference between the means of more than two groups. A two-way ANOVA is used to 

estimate how the mean of a quantitative variable changes according to the levels of two 

categorical variables. 

https://www.statology.org/levels-of-independent-variable/
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Two-way ANOVA helps researchers answer questions about more complex relationships than 
those explored with just one independent variable. 

The model for a 2-way ANOVA is  

1,2,...,

1,2,...,

1,2,...

ijk i j ij ijk

i p

X j q

k r

    




     
 

    (1) 

Where ijkX is the kth observation in ijth cell,      

   is a constant,  
i is the average effect of factor A, 

      j is the average effect of factor B, 

     ij is the interaction that exists between factor A and 

factor B,    ijk is the error associated with ijkX .  

  

Equation (1) is said to be a fixed effect model or model 1 

 if  20 and 0, .i j i j ijk

i j i j

N                   (2)  

similarly, equation (1) is said to be a random effect model or model 2 if   

        2 2 2 20, ; 0, ; 0,  and 0,i j ij ijkN N N N             (3) 

For mixed effect model or model 3 we have two cases:    

  For case 1: When factor A is fixed while factor B is random, we have 

    2 20; 0,  and 0, .i ij j ijk

i i

N N           (4)  

For case 2: When factor A is random while factor B is fixed, we have   

    2 20,  0;and 0, .i j ij ijk

j j

N N                       (5) 

There are varying F-ratios for testing for the main effects in equation (1) depending on if the 
model is fixed, random or mixed effect. Details of these will be discussed in the methodology. 

When the levels of any of the factors are more than 2 levels, 2^2 factorial experiments become 
a problem. The model of the experiment is assumed to be fixed since it involves 2 levels. 

Conversely, two-way ANOVA has more than 2 levels and the model can be determined if it is 

a fixed effect, random effect or mixed effect model. The problem arises when to use a 2^2 

factorial experiments or 2-way ANOVA. 
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Stampfer, Burning, Willet, Rosner, Eberlein and Hennekens (1985) worked on the 2 x 2 

factorial design which calls for randomizing each participant to treatment A or B to address 

one question and further assignment at random within each group to treatment C or D to 

examine a second issue, permitting the simultaneous test of two different hypotheses. The 

Physicians' Health Study, a randomized trial of aspirin and beta-carotene among U.S. 

physicians, illustrates some features and potential problems in the design and analysis of a 

factorial trial. The most common concern, interaction between treatments, is generally an 

advantage rather than a limitation of this design. They concluded that if the interaction is 

sufficiently severe, however, then loss of power is possible. 

 Further, Hennekens and Eberlin (1985) worked on the 2 x 2 factorial design: its application 

to a randomized trial of aspirin and carotene in U.S. physicians. In their study, the Physicians' 

Health Study, a randomized trial of aspirin and beta-carotene among U.S. physicians, 

illustrates some features and potential problems in the design and analysis of a factorial trial. 

The most common concern, interaction between treatments, is generally an advantage rather 

than a limitation of this design. Although such interactions are relatively uncommon, this 

design provides a means to measure an effect which otherwise might not be apparent. If the 
interaction is sufficiently severe, however, then loss of power is possible. 

Satterfield, Greco, Goldhaber, Stampfer, Swartz, Stein, Kaplan and Hennekens (1990) worked 

on Biochemical markers of compliance in the Physicians' Health Study. The Physicians' Health 

Study is a randomized, double-blind, placebo-controlled trial using a 2 x 2 factorial design to 

test the effects of low-dose aspirin on risk of cardiovascular disease and beta-carotene 

supplementation on the incidence of cancer. They concluded that there was a highly significant 

positive correlation between levels of these biochemical markers and the self-reports of 

compliance (r = 0.65 for thromboxane B2 and r = 0.69 for beta-carotene, P-value less than 

.0001). These findings support the validity of the self-reported compliance in the Physicians' 
Health Study. 

Whether 2x2 factorial experiments or 2-way (ANOVA) with more than one observation per 

cell, the study of the presence of interactions is very necessary. If interaction is present, it could 

obscure the validity of the experiment.  

Aylin and KurtView (2021) studied Testing non-additivity (interaction) in two-way ANOVA 

tables with no replication. In their work, they argued that testing for any significant interaction 

between two variables depends on the number of replicates in each cell of the two-way table 

and structure of the interaction. When there are several observations taken at each level 

combination of two variables, testing non-additivity can easily be done by usual two-way 

ANOVA method which cannot be used when there is only one observation per cell they 

concluded. 

Eze, Adimonye, Nnanwa and Ezeani (2013) worked on An Appropriate F-Test for Two-Way 

Balanced Interactive Model. The presence of interaction in a set of data/ model in a two-way 

interactive model may lead to a biased result when testing for the main effects. The nuisance 

parameter which is the interaction was removed from the data without distorting the 

assumption of homogeneity condition of analysis of variance. This is done by a linear 

combination such that the differences between the corresponding yield row-wise as well as 

column-wise difference is a constant and yet the total sum of the yield remains unchanged. 
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A key issue in various applications of analysis of variance (ANOVA) is testing for the 

interaction and the interpretation of resulting ANOVA tables. Jesper and Sven (2008) 

demonstrated that for a two-way ANOVA, whether interactions are incorporated or not may 

have a dramatic influence when considering the usual statistical tests for normality of 
residuals. 

Iskandar, Noprianto, Bahtiar, Benfano, and Raymondus (2016) in their work Two-Way 

ANOVA with Interaction Approach to Compare Content Creation Speed Performance in 

Knowledge Management System examined the speed performance of content creation in four 

modules of BINUS University KMS: Documents, Video, Material, and Binuspedia. The 

examined mean value of speed performance was conducted in 3 location campuses of BINUS 

University: Anggrek Campus, Syahdan Campus and Alam Sutera Campus, each was done 

with five repetitions. The speed performance was analyzed using Two-way ANOVA with 

interaction approach. According to the experiment results, F calculated for module is greater 

than F table, F calculated for campus is less than F table and F calculated for interaction is less 

than F table. Thus, the conclusions are: (1) there are differences in the average value of speed 

performance for each module, (2) there is no difference in the average value of speed 

performance for each campus, and (3) there is no interaction between campuses and modules 
on the speed performance. 

Gulab (2019) studied Methodology and Application of Two-way ANOVA and concluded that 

there are commonly two types of ANOVA tests for univariate analysis-One way ANOVA and 

Two-Way ANOVA. One way-ANOVA is used when one can interested in studying the effect 

of one independent variable factor on population, whereas Two-way ANOVA is used for 

studying the effects of two factors on population at the same time. He concluded that in many 

statistical applications in business administration, psychology, social science, and the natural 

sciences we need to compare more than two groups. For hypothesis testing more than two 

population means scientists have developed ANOVA method. The analysis of variance 

assumes that the observations are normally and independently distributed with the same 
variance for each treatment or factor level. 

Abdulhafedh (2023) in analyzing the Impact of Age and Gender on COVID-19 Deaths Using 

Two-Way ANOVA can effectively determine whether the age and gender are significant 

factors in COVID-19 death cases in the US. The dependent variable in the analysis is the 

number of COVID deaths in the entire US, and the two independent variables are the age 

groups and gender (sex). The age groups consist of 11 subgroups or levels ranging from babies 

to elderly people. The sex is either male or female. Results showed that age group is a 

significant factor in COVID deaths, while gender was found to be insignificant factor in the 
mortality of COVID. 

2^2 factorial experiment and 2-way ANOVA must obey the assumptions of ANOVA. 

ANOVA has certain assumptions that need to be met in order for the test to be valid. One of 

the most important assumptions of ANOVA is the normality assumption. This assumption 

states that the data should be normally distributed within each group. Normality is important 

because ANOVA is based on the assumption that the errors are normally distributed. If the 

data is not normally distributed, the results of ANOVA may not be accurate. Another important 

assumption of ANOVA is the homogeneity of variance assumption. This assumption states 

that the variance of the data should be equal across all groups. Homogeneity of variance is 

important because ANOVA assumes that the variances are equal across all groups. If the 

variances are not equal, the results of ANOVA may not be accurate. There are several ways to 
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check for homogeneity of variance, including the Levene's test and the Bartlett's test. The 

independence assumption states that the observations within each group should be independent 

of each other. This means that the observations should not be influenced by each other. 

Independence is important because ANOVA assumes that the observations are independent of 
each other. If the observations are not independent, the results of ANOVA may not be accurate. 

A valid interpretation of most statistical techniques requires that one or more assumptions be 

met. In published articles, however, little information tends to be reported on whether the data 

satisfy the assumptions underlying the statistical techniques used. This could be due to self-

selection: Only manuscripts with data fulfilling the assumptions are submitted. Another 

explanation could be that violations of assumptions are rarely checked for in the first place 

Rink, Henk and Addie (2012). 

Any statistical method not tested may led to a serious problem when analyzing the data (Olsen 

2003 and Choi 2005) which can influence Type 1 and Type 11 errors and this can cause 

overestimation or underestimation of the inferential measures and effect sizes (Osborne and 

Waters, 2002). Keselman  et al. (1998) argues that “The applied researcher who routinely 

adopts a traditional procedure without giving thought to its associated assumptions may 

unwittingly be filling the literature with non-replicable results.” 

Many authors have written on the robustness of some methods as regards the violations of 

assumptions of ANOVA (see Kohr and Games, 1974; Bradley, 1980; Sawilowsky and 
Blair,1992; Wilcox and Keselman,2003; Bathke,2004),   

It is a common practice for researchers to test for assumptions of ANOVA to see if it satisfies 

or violate the assumptions of ANOVA. (Schucany and Ng, 2006) argued that that it is not 

appropriate to check assumptions by means of tests (such as Levene’s test) carried out before 

deciding on which statistical analysis technique to use because such tests compound the 

probability of making a Type I error. Even if one desires to check whether or not an assumption 

is met, two problems stand in the way. First, assumptions are usually about the population, and 

in a sample the population is by definition not known. For example, it is usually not possible 

to determine the exact variance of the population in a sample-based study, and therefore it is 

also impossible to determine that two population variances are equal, as is required for the 

assumption of equal variances (also referred to as the assumption of homogeneity of variances) 

to be satisfied. Second, because assumptions are usually defined in a very strict way (e.g., all 

groups have equal variances in the population, or the variable is normally distributed in the 

population), the assumptions cannot reasonably be expected to be satisfied. Given these 

complications, researchers can usually only examine whether assumptions are not violated 

“too much” in their sample; for deciding on what is too much, information about the robustness 

of the technique with regard to violations of the assumptions is necessary. 

Montgomery (2001) demonstrated that interaction occurs between two factors when the 

difference in response between the levels of one factor is not the same at all levels of the other 

factors. According to Montgomery (2001), a significant interaction can mask the significance 

of the main effects. This means that, when interaction is present, the main effects of the factors 
involved in the interaction may not have much meaning. 

Methodology  

1. The 22 Design. A 2k factorial design is a k-factor design such that  

(i) Each factor has two levels (coded -1 and +1) or (0 and 1). 
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(ii) The 2k experimental runs are based on the 2k combinations of the   factor levels. The 

simplest 2k design is the 22 designs. This is a special case of a two-factor factorial design with 

factors A and B having two levels.  A 22 design has only 4 runs, therefore several (n) 

replications are taken. Notationally, lowercase letters a, b, ab, and (1) to indicate the sum of 

the responses for all replications at each of the corresponding levels of A and B. If the lower-

case letter appears, then that factor is at its high (+1) level. If the lower-case letter does not 
appear, then that factor is at its low (1) level. This can be demonstrated below: 

Table 1 

22 factorial Experiment 

 

A 

    a0            a1 

    b0       (1)                                a 

    b1            b                               ab 

 

 

This can be further demonstrated as follows: 

Factor level 

combination 

Coded levels Replicates  

1,      2, …    n 

Sum of n 

replicates 

A low, B low 

A high, B low 

A low, B high 

A high, B high 

-1          -1 

+1          -1 

-1            +1 

+1           +1 

xxx   xxx …xxx 

xxx   xxx …xxx    

xxx   xxx …xxx    

xxx   xxx …xxx       

(1) = y11 

a = y21 

b = y12 

ab = y22 

 The notation A+ and A-1 to represent the set of observations with factor A at its high (+1) 

and its low ( -1) levels, respectively. The same notation applies to B+ and B for factor B-1. 

a and ab correspond to A+ and (1) and b correspond to A-1.  

b and ab correspond to B+ and (1) and a correspond to B-1. yA+ and yA are the means of all 
observations when A = +1 and A = -1, respectively.  

 and A Ay y 
 are the means of all observations when 1 and 1A A    respectively. 

 and B By y 
 are the means of all observations when 1 and 1B B    respectively. 

The average effect of a factor is the average change in the response produced by a change in 

the level of that factor averaged over the levels of the other factor. For a 22 design with r 
replicates, the 

Average effect of factor A is  2

1
(1)

2 *
A AA y y ab a b

r
       . 

Average effect of factor B is  2

1
(1)

2 *
B BB y y ab a b

r
       . 
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Interaction effect between Factors A and B, denoted AB, is the difference between (i) the 

average change in response when the levels of Factor A are changed given Factor B is at its 

high level and (ii) the average change in response when the levels of Factor A are changed 

given Factor B is at its low level: 

    2

(1)

2 *A B A B A B A B

ab a b
AB y y y y

r
       

  
      

This average effect is the same if we use the rules of Expansion of products, Even and odd 

rule, Sign Table or Yates Techniques and divide the effects by 2k x r where k is the number of 

factors and r is the number of replicates. 

When estimating the effects for A, B and AB, the following contrasts are used. 

(1),  (1),  (1)A ab a b B ab a b AB ab a b                

, ,  and A B AB   are used to estimate A, B and AB and they are orthogonal contrasts. 
 

The coefficient vectors for the contrasts are [1 1 -1 -1] for A, [1- 1 1 -1] for B, and [1 -1 -1 1] 

for AB. Note the dot product of any two vectors = 0. This is why they are called orthogonal 
contrasts. 

The sum of squares for contrast    are: 

 For a replicated 22 design, this is equivalent to: 

     (1) (1) (1)
, ,

4 4 4
A B AB

ab a b ab a b ab a b
SS SS SS

r r r

        
    

There are two levels for both factors, the degree of freedom associated with each sum of 

squares is 1. Thus ,  and A A B B AB ABSS MS SS MS SS MS    

There are r replicates for each of four A*B treatment combinations, there are 4(r-1) degree of 
freedom for error for the four parameters interaction model. 

2. The Two-way Analysis of Variance (ANOVA) 

Equations (1) to (5) defines the model for Two-way analysis of variance with more than one 

observation per cell. 
 

Equation (2) defines the conditions for a fixed effect model of equation (1). The expected mean 

squares are shown in Table 2 below (Montogomery (1991)). 
Table 2 

Expected mean squares for fixed effect 2-way ANOVA 

Factor  Expected mean square 

i  2

2

1

i

i

qr

p




 



 

j  
2

2

1

j

j

pr

q




 



 

ij  
2

2

( 1)( 1)

ij

ij

r

p q




 
 


 

ijk  
2

  
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From Table 3.2, if we are interested to test for the main effect for model 1 (fixed effect model) we shall have: 

01 1 2 02 1 2 03 11 12: ... ;  : ... ;  : ...p q pqH H H                  

01 02 03The ratio for  is ;  The ratio for  is ;  The ratio for  is 
MSMS MS

F H F H F H
MS MS MS

 

  
    

Similarly, the expected mean squares for random effect model (model 2) are shown in Table 3. 

 

Table 3 

Expected mean squares for random effect 2-way ANOVA 

Factor  Expected mean square 

i  2 2 2r qr       

j  
2 2 2r pr       

ij  
2 2r    

ijk  
2

  

Under model 2, if we are interested to test for the random effect we shall have  

 
2 2 2

01 02 03: 0;  : 0;  : 0H H H        

The corresponding F-ratios are  

01 02 03The ratio for  is ;  The ratio for  is ;  The ratio for  is 
MSMS MS

F H F H F H
MS MS MS

 

  
  

Under mixed effect model (model 3), there are two cases viz: 

Case 1: Here factor A is fixed and factor B is random. The expected mean squares are shown 

in Table 4. 

Table 4 

Expected mean squares for mixed effect 2-way ANOVA (case 1) 

Factor Expected mean square 

i  2 2 2r qr       

j  
2 2pr    

ij  
2 2r    

ijk  
2

  

Here, the hypotheses under mixed effect case 1, we have 

2 2

01 1 2 02 03: ... ;  : 0;  : 0pH H H           

The corresponding F-ratios are  
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01 02 03The ratio for  is ;  The ratio for  is ;  The ratio for  is 
MSMS MS

F H F H F H
MS MS MS

 

  

   Case 

2: Here factor A is random and factor B is fixed. The expected mean squares are shown in 

Table 3.5. 

 

Table 5 

Expected mean squares for mixed effect 2-way ANOVA (case 2) 

Factor  Expected mean square 

i  2 2qr    

j  
2

2 2

1

j

j
r pr

q
 



  



 

ij  
2 2r    

ijk  
2

  

The hypotheses under mixed effect case 2, we have 
2 2

01 02 1 2 03: ;  : ... ;  : 0qH H H          

The corresponding F-ratios are  

01 02 03The ratio for  is ;  The ratio for  is ;  The ratio for  is 
MSMS MS

F H F H F H
MS MS MS

 

  

    

There are varying denominators for testing for the main effects for all the models. 

 

3. Discussions and Results 

Response variable(s) in any experiment can be found to be affected by a number of factors in 

the overall system some of which are controlled or maintained at desired levels in the 

experiment. An experiment in which the treatments consist of all possible combinations of the 

selected levels in two or more factors is referred as a factorial experiment. For example, an 

experiment on rooting of cuttings involving two factors, each at two levels, such as two 

hormones at two doses, is referred to as a 2 x 2 or a 22 factorial experiment. Its treatments 

consist of the following four possible combinations of the two levels in each of the two factors. 

 

Table 6: 22 factorial experiments 
 

                                                                 Treatment combination 

Treatment number Hormone Dose (ppm) 

1 NNA 10 

2 NNA 20 

3 IBA 10 

4 IBA 20 

Source: https://www.fao.org 

 

When the treatments include all combinations of the selected levels of the factor we term it 

complete factorial experiment. On the other hand, when only a fraction of all the combinations 

is tested, we term it fractional factorial experiment. 

 

If the factors appear at more than two levels, the above procedure becomes complicated since 

there are many ways to express the differences between the average responses.  
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For example: 

Table 7. Data from a 2x2 factorial experiment 

   Factor B 

  Level b1 b2 

  a1 20 30 

Factor A       

  a2 40 52 

Source: https://www.fao.org 

 

The main effect of factor A is the difference between the mean response at the first level of A 

and the mean response at the second level of A. This is  

 
This means increasing factor A from level 1 to level to 2 causes an average increase in the 

response by 21 units. Similarly, the main effect of B is  

 
The interaction between the factors can be checked. In some cases, the difference in response 

between the levels of one factor is not the same at all levels of the other factors. When this 

occurs, there is an interaction between the factors. 
 

The graph in Table 7 is shown below 

 
Figure 1: The graph of Table 7 

 
 

Table 8: Data for 2x2 factorial experiment 

    Factor B 

  Levels b1 b2 
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  a1 20 40 

Factor A       

  a2 50 12 

Source: https://www.fao.org 

 

The graph in Table 8 is shown below 

 
Figure 2: The graph in Table 8 showing the presence of interaction. 

 

Suppose an exploration on how a detergent and a particular water temperature affect the dirt 

removal of laundry. Interest is on how to check if the combined effect of detergent and water 

temperature can affect the dirt removal. Here two types of detergents, namely x and y is 

assumed. Three types of water temperatures, the levels of which are cold, warm and hot were 

used. Here the detergent and the water temperature are independent variables, while the 

amount of dirt removed is the dependent variable. 
 

With each combination, one would wash five loads, which shall be replicates. Suppose the 

information is as follows: 

Table 9 

Two-way ANOVA with three levels 

                                                       Water Temperature 

Detergent Cold Warm Hot 

Detergent x 4 

5 

5 

6 

5 

7 

8 

9 

12 

3 

10 

11 

12 

19 

15 

Detergent y 4 

4 

6 

6 

5 

12 

12 

13 

15 

13 

10 

12 

13 

13 

12 
Source: Wallstreetmojo Team, Statistics Guides (2024) 

 

Since the interest is on 2 levels, the level for warm temperatures will be deleted to have cold 

and hot temperatures. The cold temperature represents low level while the hot temperatures 

represent the high temperatures. 
 

Table 10 

Two-way ANOVA with three levels 

Detergent Cold Hot 

Detergent x 4 

5 

5 

10 

11 

12 
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6 

5 

19 

15 

Detergent y 4 

4 

6 

6 

5 

10 

12 

13 

13 

12 

The normality test for the data in Table 10 was tested and presented in Table 11. 

                                                        

Table 11 
                                                   Tests of Normality 

 

Temperature 

Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

Observations cold .200 10 .200* .832 10 .035 

warm .255 10 .064 .845 10 .051 
 

Table 11 shows that the data is normally distributed. 
 

The test for constant variance is shown Table 12. 
 

Table 12 

Test of Homogeneity of Variances 
Observations   

Levene Statistic df1 df2 Sig. 

4.239 1 18 .064 

Table 12 shows that the data has constant variance, 

Finally, the test for independent is shown in Table 13. 
 

Table 13 

Chi-square Tests 

 Value df Asymptotic Significance(2-sides) 

Pearson Chi-Square 

Likelihood Ratio 

Linear-by-Linear 

Association 

N of Valid Cases 

60.000a 

49.781 

.001 

20 

64 

64 

1 

.619 

.904 

.976 

 

 

The result shows that the data is independent since the p-value is greater than 0.05. 

The analysis of the data in Table 10 using Yates’ technique is shown in Table 14. 

 

Table 14 

Yates’ technique 

Treatment 

combinations 

Yield Col 1 Col 2 SS col 

(1) 

a 

b 

ab 

25 

67 

25 

60 

92 

85 

42 

35 

177 

77 

-7 

-7 

1566.45 

296.45 

2.45 

2.45 

In Table 14, ‘a’ is the water temperature while ‘b’ is detergent. ‘ab’ is the interactions between 

water temperatures and detergent. 
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2

(1) 2

2 2 2

2 2 2

177
 is 1566.45

2 *5

77 7 7
296.45; 2.45; 2.45

2 *5 2 *5 2 *5
A B AB

SS

SS SS SS



 
     

 

 

 

 

The ANOVA Table is presented in Table 15. 

 
Table 15 

ANOVA Table for 22 factorial Experiments 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 301.350a 3 100.450 24.650 .000 

Intercept 1566.450 1 1566.450 384.405 .000 

Temperature 296.450 1 296.450 72.748 .000 

Detergent 2.450 1 2.450 .601 .449 

Temperature * Detergent 2.450 1 2.450 .601 .449 

Error 65.200 16 4.075   

Total 1933.000 20    

Corrected Total 366.550 19    

 

Looking at Tables 14 and 15, the sum of squares for both 22 factorial experiments and Two-

way ANOVA are the same when both factors are fixed as well as the conclusion for the test. 

When factor A and factor B are random, the common denominator for testing for the main 

effect is the mean square interaction  MS . The ANOVA Table is shown in Table 16. 
 

Table 16 

ANOVA Table for Two-way random model 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept Hypothesis 1566.450 1 1566.450 5.284 .261 

Error 296.410 1.000 296.450a   

Temperature Hypothesis 296.450 1 296.450 121.000 .058 

Error 2.450 1 2.450b   

Detergent Hypothesis 2.450 1 2.450 1.000 .500 

Error 2.450 1 2.450b   

Temperature * 

Detergent 

Hypothesis 2.450 1 2.450 .601 .449 

Error 65.200 16 4.075c   

 

When factor A is fixed and factor B is random and vice versa the ANOVA result will be the 

same as in Table 16, since they have the same mean square. 

 

Conclusion  

The analytical results obtained from 2k factorial experiment and that of Two-Way analysis of 

variance when both factors are fixed gave the same results. The results when both factors are 

random or mixed gave varying results.  
 

Having carefully studied the analytical comparisons between the 22 factorial experiment and 

that of Two-Way analysis of variance, it is recommended to either use 22 factorial experimental 
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method or Two-Way analysis of variance when both factors are fixed. However, when both 

factors are random or mixed, the Two-Way ANOVA should be used.  
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