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Abstract:  

This paper introduces a new lifetime probability distribution called the Extended Pseudo-Lindley-Poisson 

Distribution (EPLPD), which generalizes the Pseudo-Lindley Distribution and the Poisson Distribution. The 

EPLPD is designed to model count data with varying degrees of dispersion, including zero-inflation and 

over dispersion. We derive the properties of the EPLPD, including its probability mass function, cumulative 

distribution function, moments, and moment generating function The maximum likelihood estimation method 

is used to estimate the parameters of the EPLPD. To demonstrate the applicability of the EPLPD, a 

numerical example was the survival times (in days) of 72 Guinea pigs infected with virulent tubercle bacilli 

is presented, demonstrating the distribution's superiority over existing models. The results show that the 

EPLPD provides a better fit to the data compared to the Poisson and Lindley distributions. The EPLPD can 

be used to model various types of count data in fields such as medicine, biology, and engineering. The 

EPLPD offers a valuable tool for analyzing count data in various fields, including medicine, biology, and 

public health. 

Keywords: Extended Pseudo-Lindley Poisson Distribution, count data, virulent tubercle bacilli, maximum 

likelihood estimation, goodness-of-fit test. 

 

Introduction: 

Count data are ubiquitous in various fields, including medicine, biology, engineering, and 

social sciences. Modeling and analyzing count data require specialized statistical distributions 

that can capture the underlying characteristics of the data. The Poisson distribution is a widely 

used model for count data, but it assumes that the mean and variance are equal, which is often 

not the case in real-world applications. The new distribution formed by the addition of 

parameters are usually termed “generalized distribution”, “compounded distribution”, 

“extended distribution” or “modified distribution” (Mudholkar and Srivastava,1998). Azzalini 

A. 1985, introduced the skew normal distribution by introducing an extra parameter to the 

normal distribution to add more flexibility to the normal distribution. Marshall and Olkin 

(1997) defined another method to introduce an additional parameter to any distribution 

function using the survival functions. Eugene, Lee and Famoye (2002) proposed the beta-

generated class of distribution which is a system that allows more families of flexible 

probability distributions to be generated using the logit of the beta random variable.  The 

Lindley distribution has just a single parameter which makes the distribution maintain just a 

single right-skewed shape and hence, the Lindley distribution is not very flexible and adaptive 

to several data types like biological, financial and engineering data which most of the time 

requires highly flexible models. The two parameter Pseudo- Lindley distribution which was 

proposed to address these shortcomings unfortunately has the same problems. Again, the 

complementary risk problem proposed by Poschan (1963) which is a common problem in 

engineering and survival analysis cannot be handled by both the Lindley and Pseudo Lindley 

distributions.  In view of these problems, a new extension of the Lindley distribution to address 

these shortcomings is proposed. 
 

Construction of the Pseudo Lindley Poisson distribution  

Let 𝑥1, 𝑥2 … … … 𝑥𝑛 be independent and identically distributed (iid) random variables of size 

N from the Pseudo- Lindley (PL) distribution with cumulative distribution function (cdf)  
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𝐺𝑃𝐿(𝑥) = 1 −
(𝜃+𝛽𝑥)𝑒−𝛽𝑥

𝜃
, 𝑥 > 0, 𝛽 > 0, 𝜃 ≥ 1,    and N be a zero truncated Poisson random 

variable independent of X’s with probability mass function of   𝑏𝑦 𝑃(𝑁 = 𝑛) =
𝜆𝑛

𝑛!(𝑒𝜆−1)
   ;            𝑛 = 1,2,3 … … , 𝜆 > 0. Let us define   𝑋(1) = 𝑚𝑖𝑛{𝑥1, 𝑥2, … … 𝑥𝑁}, then the  

conditional random variable  cdf of   𝑋(1)|𝑁=𝑛= k  has the cdf    𝑃(𝑋(1)|𝑁=𝑛 = 𝐾)=       = 1 −

(1 − [1 −
(𝜃+𝛽𝑥)𝑒−𝛽𝑥

𝜃
]

𝑛

). Hence the marginal cumulative distribution function of X can be 

obtained as   

Fplp(x) = 1 −
1

eλ − 1
[e

λ(
θ+βx

θ
)𝑒−𝛽𝑥

− 1]     ;        𝑥 > 0, 𝜆 > 0, 𝛽 > 0, 𝜃 ≥ 0     

Which defines the Extended Pseudo Lindley Poisson Distribution.  And a random variable X 

with cdf given by the equation above is denoted by EPLP distribution. The density function 

associated to F(X) is  

fx = 
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Shape characteristics of pdf  

In this section, we show that the probability density function of the Truncated Pseudo-Lindley-

Poisson distribution is a proper pdf.  Given a random variable x that follows a Truncated 

Pseudo-Lindley-Poisson distribution, the probability density function (f(x)) is  
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Find the derivative of with respect to x. 
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Therefore, the function is a proper pdf for x > 0. The pdf is a decreasing function. This is an 

indication that the function can only be used to model non-negative events, that is, events that 

cannot assume negative values such as lifetime events.  
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Survival and hazard rate function 

The survival function of the new TPLP distribution is given by   𝑆𝑇𝑃𝐿𝑃(𝑥) = 1 − 𝐹𝑇𝑃𝐿𝑃(𝑥) 

= 1 − {1 −  
𝑒

𝜆(
𝜃+𝛽𝑥

𝜃
)𝑒−𝛽𝑥

−1

𝑒𝜆−1
}      =    

𝑒
𝜆(

𝜃+𝛽𝑥
𝜃

)𝑒−𝛽𝑥
−1

𝑒𝜆−1
            𝑥 > 0, 𝜆 > 0, 𝛽 >0    

  

Hazard function of the TPLP distribution is given by 

ℎ𝑇𝑃𝐿𝑃(𝑥) =
𝑓𝑝𝑙𝑝(𝑥)

𝑆𝑝𝑙𝑝(𝑥)
 = 

𝑓𝑝𝑙𝑝(𝑥)

1−𝐹𝑇𝑃𝐿𝑃(𝑥)
 = 

𝐹|(𝑥)

1−𝐹(𝑥)
  =       

𝛽𝜆(𝜃−1+𝛽𝑥)𝑒
𝜆(

𝜃+𝛽𝑥
𝜃

)𝑒−𝛽𝑥
−𝛽𝑥

𝜃(𝑒
𝜆(

𝜃+𝛽𝑥
𝜃

)𝑒−𝛽𝑥
−1)

       𝑥 > 0, 𝜆 > 0, 𝛽 >

0, 𝜃 > 0.  
In figs, 1-4,The plot  showing the various shape of the probability density function of the EPLP  

for different combination of parameter values. 
 

Figure 1. The EPLP density for various parameter values 𝑎, 𝛽 𝑎𝑛𝑑 𝜆. 

 
 NOW, in (1), the parameters 𝜆, 𝛽 𝑎𝑛𝑑  𝜃   control the shape of the distribution. 

 
Figure 2: The EPLP density for various parameter values   of a, 𝜆 𝑎𝑛𝑑 𝛽  
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Figure 3: The TPLP density for various parameter values 𝜆, 𝛽 𝑎𝑛𝑑 a Graphs of the Hazard 

Function

 
Figure 4, Hazard function of the TPLP distribution for various parameters values 1 

 
Figure 5: Hazard function of the PLP distribution for various parameters values 2 

 
Figure 6: Hazard function of the PLP distribution for various parameters values 3 

 

Flexible Shapes: The hazard function can exhibit various shapes, including increasing, 

decreasing, constant, bathtub, and upside-down bathtub. This demonstrates the flexibility of 

the PLP distribution in modeling different types of data, particularly for events with varying 

hazard rates. 
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Graph of Survival Function 

 
Figure 7: Survival function of the TPLP distribution for various parameters values 1 

 
Figure 8: Survival function of the TPLP distribution for various parameters values 2 

 
Figure 9: Survival function of the TPLP distribution for various parameters values 3 

 

Survival Function:    The survival functions, as shown in Figure above, generally decrease, 

reflecting the diminishing probability of survival over time. This aligns with typical survival 

analysis expectations. 
 

In general, the PLP distribution's graphs highlight its right-skewness, unimodal nature, and 

flexible tail behavior, making it suitable for a wide range of data modeling applications. The 

hazard and survival function graphs further emphasize its adaptability in survival analysis and 

reliability studies. 
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Moments. 

Many of the interesting characteristics and features of a distribution can be obtained via its 

moment generating function and moments.   

 

 

They can be used to study the most important features and characteristics of a distribution such 

as skewness and kurtosis. Let X denote a random variable with the probability density function 

EPLP. By definition of moment generating function of X and using EPLP distribution is 

defined as    The   𝒓𝒕𝒉 non-central moment. 

 

The 𝑟𝑡ℎnon-central moment of a random variable X from the TPLP distribution say 𝜇𝑟 
′ ,  is 

given by   𝜇𝑟 
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟∞

0
𝑓𝑝𝑙𝑝(𝑥)𝑑𝑥  given that  𝐹𝑝𝑙𝑝(𝑥) = ∑ 𝑃(𝑁 =∞

𝑛=1

𝑛)  𝐺𝑋(1)|𝑁=𝑛
(𝑥)   follows that    𝑓𝑝𝑙𝑝(𝑥) = ∑ 𝑃(𝑁 = 𝑛)  ∞

𝑛=1 𝑔𝑋(1)|𝑁=𝑛
(𝑥) 

Where 𝑔𝑋(1)|𝑁=𝑛
(𝑥)   =

𝑑𝐺𝑋(1)|𝑁=𝑛
(𝑥)

𝑑𝑥
  .   Then 𝐺𝑋(1)|𝑁=𝑛

(𝑥) = 1 − (
𝜃+𝛽𝑥

𝜃
)

𝑛

𝑒−𝑛𝛽𝑥 

Thus  𝐺𝑋(1)|𝑁=𝑛
(𝑥) =

𝑛𝛽

𝜃
(𝜃 − 1 + 𝛽𝑥) (

𝜃+𝛽𝑥

𝜃
)

𝑛−1

𝑒−𝑛𝛽𝑥 

 

Using 1 we can write 

𝑓𝑝𝑙𝑝(𝑥) = ∑
𝜆𝑛𝑛𝛽

𝑛!(𝑒𝜆−1)𝜃
(𝜃 − 1 + 𝛽𝑥) (

𝜃+𝛽𝑥

𝜃
)

𝑛−1

𝑒−𝑛𝛽𝑥          ∞
𝑛=1 Thus,  we can expressed as  

𝜇𝑟
′ = ∫ 𝑥𝑟 ∑

𝜆𝑛𝑛𝛽

𝑛!(𝑒𝜆−1)𝜃

∞
𝑛=1

∞

0
  (𝜃 − 1 + 𝛽𝑥) (

𝜃+𝛽𝑥

𝜃
)

𝑛−1

𝑒−𝑛𝛽𝑥 𝑑𝑥 

= ∑
𝜆𝑛𝑛𝛽

𝑛! (𝑒𝜆 − 1)𝜃

∞

𝑛=1

∫ 𝑥𝑟(𝜃 − 1 + 𝛽𝑥) (
𝜃 + 𝛽𝑥

𝜃
)

𝑛−1

𝑒−𝑛𝛽𝑥 𝑑𝑥

∞

0

 

= ∑
𝜆𝑛𝑛𝛽

𝑛! (𝑒𝜆 − 1)𝜃𝑛

∞

𝑛=1

∫ 𝑥𝑟(𝜃 − 1 + 𝛽𝑥)(𝜃 + 𝛽𝑥)𝑛−1𝑒−𝑛𝛽𝑥  𝑑𝑥

∞

0

 

= ∑
𝜆𝑛𝑛𝛽

𝑛! (𝑒𝜆 − 1)𝜃𝑛

∞

𝑛=1

∫ 𝑥𝑟(𝜃 − 1 + 𝛽𝑥)(𝜃 + 𝛽𝑥)𝑛−1𝑒−𝑛𝛽𝑥  𝑑𝑥

∞

0

                                

 

We can write 

𝜇𝑟
′ = ∑

𝜆𝑛𝑛𝛽

𝑛! (𝑒𝜆 − 1)𝜃𝑛

∞

𝑛=1

∫ 𝑥𝑟[(𝜃 − 1) + 𝛽𝑥)][1 + (𝜃 − 1) + 𝛽𝑥]𝑛−1𝑒−𝑛𝛽𝑥 𝑑𝑥

∞

0

 

 

Preposition 2 

Let      𝐿1 (𝑛, 𝛽, 𝜃, 𝑟) = ∫ 𝑥𝑟[(𝜃 − 1) + 𝛽𝑥)][1 + (𝜃 − 1) + 𝛽𝑥]𝑛−1𝑒−𝑛𝛽𝑥  𝑑𝑥
∞

0
.  Then 

𝐿1 (𝑛, 𝛽, 𝜃, 𝑟) = ∑ ∑ (
𝑛 − 1

𝑖
) (

𝑖 + 1
𝑗

)
(𝜃 − 1)𝑖−𝑗+1

𝑛𝑟+𝑗+1𝛽𝑟+𝑗
 𝛤((𝑟 + 𝑗 + 1)

𝑖+1

𝑗=0

𝑛−1

𝑖=0

 

 

The above integral can rewritten by using the complete gamma function.          

    𝛤(𝑚) = ∫ 𝑡𝑚−1𝑒−𝑡  𝑑𝑥          𝑡 > 0,
∞

0
 is the complete gamma function. 

 

Proof:  Consider the integral  ∫ 𝑥𝑟[(𝜃 − 1) + 𝛽𝑥)] [1 + (𝜃 − 1) + 𝛽𝑥]𝑛−1𝑒−𝑛𝛽𝑥 𝑑𝑥
∞

0
 

 

Using the binomial expansion formula, we have the following result;  [1 + (𝜃 − 1) +

𝛽𝑥]𝑛−1 = ∑ (𝑛−1
𝑖

)𝑛−1
𝑖=0 [(𝜃 − 1) + 𝛽𝑥]𝑖 
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The integral becomes    ∑ (𝑛−1
𝑖

)𝑛−1
𝑖=1 ∫ 𝑥𝑟[(𝜃 − 1) + 𝛽𝑥)]𝑖+1𝑒−𝑛𝛽𝑥 𝑑𝑥

∞

0
  also    [(𝜃 − 1) +

𝛽𝑥)]𝑖+1 = ∑ (𝑖+1
𝑗

)𝑖+1
𝑗=1 (𝜃 − 1)𝑖−𝑗+1𝛽𝑗𝑥𝑗 

Thus, we have the integral as     = ∑ ∑ (𝑛−1
𝑖

) (𝑖+1
𝑗

) 𝛽𝑗  (𝜃 −𝑖+1
𝑗=1`

𝑛−1
𝑖=1

1)𝑖−𝑗+1 ∫ 𝑥𝑟+𝑗𝑒−𝑛𝛽𝑥𝑑𝑥                            
∞

0
Now, consider the integral   

∫ 𝑥𝑟+𝑗𝑒−𝑛𝛽𝑥𝑑𝑥        
∞

0
Let 𝑣 = 𝑛𝛽𝑥           𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡      𝑥 =

𝑣

𝑛𝛽
 

again when 𝑥 = 0, 𝑣 = 0, 𝑤ℎ𝑒𝑛 𝑥 = ∞, 𝑣 = ∞. 

We have that                                          ∫ 𝑥𝑟+𝑗𝑒−𝑛𝛽𝑥𝑑𝑥   = 
∞

0
∫ (

𝑣

𝑛𝛽
)

𝑟+𝑗

𝑒−𝑣 𝑑𝑣

𝑛𝛽

∞

0
 

= (
1

𝑛𝛽
)

𝑟+𝑗 1

𝑛𝛽
∫ 𝑣𝑟+𝑗𝑒−𝑣𝑑𝑣

∞

0

 

But    𝛤(𝑀) = ∫ 𝑣𝑚−1𝑒−𝑣𝑑𝑣 ,       𝑣 > 0  
∞

0
 

 

where   𝛤(. ) is the complete gamma function it follows that 𝑚 − 1 = 𝑟 + 𝑗 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑚 =

𝑟 + 𝑗 + 1 .         Thus, ∫ 𝑥𝑟+𝑗𝑒−𝑛𝛽𝑥𝑑𝑥   =  
1

𝑛𝑟+𝑗𝛽𝑟+𝑗
 𝛤(𝑟 + 𝑗 + 1)

∞

0
 

∑ ∑ (
𝑛 − 1

𝑖
) (

𝑖 + 1

𝑗
) 𝛽𝑗

(𝜃 − 1)𝑖−𝑗+1

𝑛𝑟+𝑗+1𝛽𝑟+𝑗
𝛤(𝑟 + 𝑗 + 1)

∞

𝑗=1`

∞

𝑖=1

 

 

Hence the proof is established. 

The  𝑟𝑡ℎ non central moment of the TPLP distribution can be expressed as  

𝜇𝑟
′ = ∑

𝜆𝑛𝑛𝛽

𝑛!(𝑒𝜆−1)𝜃𝑛
∞
𝑛=1 𝐿1 (𝑛, 𝛽, 𝜃, 𝑟)   The first four moments of the TPLP distribution can be 

expressed as 𝜇1
, = 𝜇 = ∑

𝜆𝑛𝑛𝛽

𝑛!(𝑒𝜆−1)𝜃𝑛
∞
𝑛=1 𝐿1 (𝑛, 𝛽, 𝜃, 1),𝜇2

, = ∑
𝜆𝑛𝑛𝛽

𝑛!(𝑒𝜆−1)𝜃𝑛
∞
𝑛=1 𝐿1 (𝑛, 𝛽, 𝜃, 2)  

𝜇3
, = ∑

𝜆𝑛𝑛𝛽

𝑛!(𝑒𝜆−1)𝜃𝑛
∞
𝑛=1 𝐿1 (𝑛, 𝛽, 𝜃, 3),   𝜇4

, = ∑
𝜆𝑛𝑛𝛽

𝑛!(𝑒𝜆−1)𝜃𝑛
∞
𝑛=1 𝐿1 (𝑛, 𝛽, 𝜃, 4) 

 

The first moment (𝜇1
, = 𝜇) is the mean of the distribution. Then mean (𝜇), variance 

(𝛿2), coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis 

(CK) are given respectively by   𝜇 = 𝜇1 = 𝐸(𝑋),   

𝛿2 = 𝜇2
′ − 𝜇2, 𝐶𝑉 =

𝛿

𝜇
=

√𝜇2
′ − 𝜇2′

𝜇
 = √

𝜇2
′

𝜇2
− 1 

𝐶𝑆 =
𝐸[(𝑋 − 𝜇)3]

𝐸[(𝑋 − 𝜇)2]
3

2⁄
=  

𝜇3
′ − 3𝜇𝜇2

′ + 2𝜇3

(𝜇2
′ − 𝜇2)

3
2⁄

 

𝐶𝑘 =
𝐸[(𝑋 − 𝜇)4]

𝐸[(𝑋 − 𝜇)2]2
=  

𝜇4
′ − 4𝜇𝜇3

′ + 6𝜇2𝜇2
′ − 3𝜇4

(𝜇2
′ − 𝜇2)2

 

𝐌𝐨𝐦𝐞𝐧𝐭 𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐧𝐠 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 
 

The moment generating function of the TPLP distribution is defined as  

Mx(t) = E(etx),    E(etx) = ∑
tkE(Xk)

K!

∞
k=0  

 

where  

E(Xk) is the kth non central moment of the TPLP distribution given in (3.19). It follows that 

the moment generating function of the TPLP distribution can be expressed as 
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E(etx) = ∑ ∑
λnnβtk

n! k! (eλ − 1)θn
  𝐿1 (𝑛, 𝛽, 𝜃, 𝑘)                                    

∞

n=1

∞

k=0

 

Mx(t) = E(etx) = E(etx) = ∑ ∑
λnnβtk

n!k!(eλ−1)θn
  𝐿1 (𝑛, 𝛽, 𝜃, 𝑘)                                    ∞

n=1
∞
k=0  

:  Maximum Likelihood Estimation of the parameters of the Extended Pseudo- Lindley- 

Poisson Distribution  

For a random independent sample  x1, x2 … . . xn of size n form the EPLP distribution, the 

maximum likelihood estimation of the parameters of the EPLP distribution involve the 

maximization of the log likelihood function defined by 

 

L = ∑ log fplp(xi)

n

n=1

 

= ∑ log [
βλ(θ − 1 + βxi)e

λ(
θ+βxi

θ
) e−βxi

− βxi

θ(eλ − 1)
]

n

e=1

 

= log β + log λ − log θ − log(eλ − 1) + log(θ − 1 + βxi) + λ (
θ + βxi

θ
) − βxi − logβxi 

= ∑ {log β + log λ − log θ − log(eλ − 1) + log(θ − 1 + βxi) + λ (
θ + βxi

θ
) e−βxi − βxi }

n

i=1

 

= n log β + n log λ − n log θ − n log(eλ − 1) + ∑ log(θ − 1 + βxi) +n
i=1

λ ∑ (
θ+βxi

θ
) e−βxi − β ∑ xi

n
i=1    n

i=1                                

Let θ = (θ, β, λ) be the unknown parameter vector .The associated score function is given by 

U(θ) = (
∂L

∂θ

∂L

∂β

∂L

∂λ
). 

where   
∂L

∂θ
, 

∂L

∂β
 and    

∂L

∂λ
 are the partial derivatives of the log-likelihood function w.r.t to each 

parameter given by 

∂L

∂θ
=

−n

θ
+ ∑

1

(θ − 1 + βxi)
− λ ∑

βxi

θ2
e−βxi

n

i=1

n

i=1

          

∂L

∂β
=

n

θ
+ ∑

xi

(θ − 1 + βxi)
+ λ ∑

xi

θ
e−βxi(1 − θ − βxi) − ∑ xi

n

i=1

n

i=1

n

i=1

  

∂L

∂λ
=

n

λ
−

neλ

eλ − 1
+ ∑ (

θ + βxi

θ
) e−βxi

n

i=1

  

 

The maximum likelihood estimate of θ = (θ, β, λ) can be obtained by solving the non-linear 

system of equation, U(θ) = 0. Since the equation s  are not in closed form, the solutions can 

be found numerically using some specialized numerical optimization method. 

Analysis of Data 
 

In this section, the newly derived distribution was compared with similar distributions that can 

be used in modeling lifetime datasets. This is necessary in order to show its superiority over 

some of the existing distributions. In the comparison, AIC and BIC were used. Recall that a 

model with the least Akaike Information Criterion (AIC) or Bayesian Information Criterion 

(BIC) value is better than distributions with higher values of AIC or BIC. This implies a lower 
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AIC or BIC indicates a better fit. The two measures of better fit were used because the AIC 

does not penalize the number of parameters as strongly as BIC. 
 

Table1: The survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli 

0.10, 0.33, 0.44 ,0.56, 0.59, 0.72 ,0.74 ,0.77 ,0.92, 0.93, 0.96, 1.00, 1.00, 1.02 , 1.05,1.07, 1.07, 

1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.20, 1.21, 1.22, 1.22, 1.24,1.30, 1.34, 1.36, 1.39, 

1.44, 1.46, 1.53, 1.59, 1.60, 1.63, 1.63, 1.68, 1.71 ,1.72, 1.76,1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 

2.15, 2.16, 2.22, 2.30, 2.31, 2.40, 2.45, 2.51,  2.53 , 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 

4.02, 4.32, 4.58, 5.55 

Source: Ghitany  et al. (2008) 

 

In Table 1, the results of the maximum likelihood fit of the PLP, PL, Lindley and exponential 

distributions to the data set are presented alongside the AIC, K-S statistic (and its 

corresponding p-value) and log likelihood values of the respective distributions.  

 

Table 2: Maximum likelihood fit of the survival times data  
Distributions PLPD PLD Lindley Exponential 

Parameter 

Estimates (s) 
𝛽̂ = 0.2158 

𝜆̂ = 15.9685 

𝜃̂ = 0.9896 

𝛽̂ = 1.1835 

𝜃̂ = 0.9152 

𝛽̂ = 0.8683 𝑐̂ = 0.5655 

loglikelihood −94.63 −96.53 −106.93 −113.04 

AIC 195.27 197.07 215.86 228.07 

BIC 194.83 196.77 215.72 227.94 

K-S 0.1090 0.1518 0.2467 0.2946 

K-S (p-value)  0.3349 0.0650 0.0002 4.961e − 06 

(Standard error of estimates in parenthesis)  
 

Results in Table 2 clearly show that all the fitted distributions to the data were out-performed 

by the TPLPD. This is because, the proposed TPLPD is observed to possess the lowest AIC 

value and the highest p-value of the K-S statistic.  

 

Discussion of Results 

For the data set, The TPLPD proved to be the best model for the data set. It has the highest p-

values of the K-S statistic and the lowest AIC value.  

 

Conclusion 

In this work, we have studied the development of a new probability distribution that can be 

used in the modeling of lifetime data analysis. The new distribution EPLP compounds the 

Pseudo Lindley distribution and the Poisson distribution. Several structural properties of the 

new distribution have been studied. These properties include moments, hazard, survival and 

the method of maximum likelihood was used to estimate the model parameters. The hazard 

function of the TPLP distribution has different shapes including bath up shapes, upside down 

bathtub shape. The new distribution was further applied to two real data sets in order to 

illustrate the applicability and usefulness of the distribution. 
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