A NEW ALGORITHM FOR ESTIMATING THE PARAMETERS OF THE THREE-PARAMETER WEIBULL DISTRIBUTION

Ogbonna, U.A, Obiora-Ilouno, H.O

Department of Statistics, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.

Abstract

In this work we propose an algorithm for estimating the parameters of the three-parameter Weibull distribution. The proposed algorithm is an extension of the closed form estimator for the shape parameter proposed by Teimouri and Gupta (2013). We compared the proposed algorithm with Teimouri and Gupta's estimator and found out that the proposed method performs better when $\beta > 1$, however when $\beta \le 1$ the Teimouri and Gupta estimator is prefered. We also discovered that the performance of the methods always increases with sample size. The proposed method also provides a prior knowledge of a likely range of the true shape parameter value.

Keywords: Distribution, Estimators, coefficient of Variation, Algorithm, Parameter

1. Introduction

The use of Weibull distribution to describe real phenomena has a long history. This distribution was originally proposed by the Swedish physicist Waloddi Weibull in (1951). Up to the end of the 1950s, lifetime in engineering was nearly always modeled by the exponential distribution which later was gradually substituted by the more flexible Weibull distribution. For more than half a century, the Weibull distribution has attracted the attention of statisticians working on theory and methods as well as various fields of applied statistics. Together with the Normal, Exponential and F distributions, the Weibull distribution is without any doubt the most applied distribution in modern statistics (Rinne, 2008). The Weibull distribution is of great interest to theory-oriented statisticians because of its great number of features. It is also of great interest to weather data or observations made in economics and business administration.

Lloyd (1967) as well as so many others have expanded the scope and usefulness of the Weibull distribution to other branches of statistics such as quality control.

Originally, the Weibull distribution has three parameters; the shape parameter (β), the scale parameter (θ) and the location parameter (γ).

The three-parameter Weibull distribution has the following probability density function (Pdf);

$$f(x) = \frac{\beta}{\theta} \left(\frac{x-\gamma}{\theta}\right)^{\beta-1} e^{-\left(\frac{x-\gamma}{\theta}\right)^{\beta}} x > \gamma, \ \beta > 0, \theta > 0 \tag{1}$$

with distribution function given as $F(x) = 1 - e^{-\left(\frac{x-\gamma}{\theta}\right)^{\beta}}$ (2)

which is fitted when all the three parameters are unknown but are assumed to be non-zero, (Cohen and Whitten, 1982a & b).

For $\beta < 2.6$ the Weibull distribution is positively skewed (has a right tail), for $2.6 < \beta < 3.7$, its coefficient of skewness approaches zero (no tail). Consequently, it may approximate the normal, and for $\beta > 3.7$, it is negatively skewed (left tail). In this paper, we will be dealing with beta values in the interval $0 < \beta < 2.6$.

2.0 MATERIAL AND METHOD

2.1Parameter Estimation

In general, one of the best methods for estimating the parameters of a distribution is the maximum likelihood method (MLE). But its application to the three-parameter Weibull distribution has been a problem for the following reasons;

- 1. the Weibull distribution does not satisfy the regularity condition that is required for the maximum likelihood estimate to be the most efficient method.
- 2. the MLE solutions are biased and the amount of bias is not known. This bias strongly depends on the shape parameter and the sample size.
- 3. the MLE solutions are not available in closed form for two of the parameters of a three parameter Weibull distribution.

2.2 Teimouri and Gupta Method

Therefore,

The third reasons above was addressed by Teimouri and Gupta (2013) in an attempt to solve this problem, they used theorem 1.0 below to construct a closed form estimator for the slope parameter.

Theorem 1.0: suppose $x_1, x_2, ..., x_n$ is a random sample from a weibull distribution. Let ρ denote the sample correlation coefficient between x_i and their ranks. Let C and S denote the sample coefficient of variation and the sample standard deviation respectively. Then,

$$\rho = \left(\frac{\mu_x - \gamma}{\sigma_x}\right) \left(\frac{1}{2} - \frac{1}{2^{1+\frac{1}{\beta}}}\right) \sqrt{\frac{12(n-1)}{n+1}}$$
(3)

Where $\mu_x = E(x)$ and $\sigma_x^2 = Var(x)$ (see Teimouri and Gupta 2013 for proof) **Corollary 1.0:** suppose $x_1, x_2, ..., x_n$ is a random sample from a weibull distribution with known location parameter. Let ρ denote the sample correlation coefficient between x_i and their ranks. Let C and S denote respectively the sample coefficient of variation and sample standard deviation. Then the estimator of the shape parameter is;

$$\hat{\beta} = \frac{-\ln 2}{\ln\left[1 - \frac{\rho}{\sqrt{3}} \left(\frac{1}{C} - \frac{\gamma}{S}\right)^{-1} \sqrt{\frac{n+1}{n-1}}\right]}$$
(4)

Teimouri and Gupta (2013) proposed $\hat{\gamma} = x_{(1)} - \frac{1}{n}$ as an estimator for γ

 $\hat{\beta} = \frac{-\ln 2}{\ln\left[1 - \frac{\rho}{\sqrt{3}} \left(\frac{1}{c} - \frac{x_{(1)} - \frac{1}{n}}{s}\right)^{-1} \sqrt{\frac{n+1}{n-1}}\right]}$ (5)

They also stated that the estimator for the scale parameter can be obtained by maximizing the likelihood function of the three-parameter Weibull distribution with respect to the scale parameter and making the scale parameter subject of the formula gives;

$$\hat{\theta} = \left(\frac{\Sigma(x_i - \hat{\gamma})\hat{\beta}}{n}\right)^{1/\hat{\beta}}$$
(6)

2.3 PROPOSED ALGORITHM BASED ON THE SAMPLE COEFFICIENT OF VARIATION

Step 1

Find an initial estimate for the shape parameter based on the sample coefficient of variation Recall that $CV = \frac{\sigma_x}{\mu_x}$

Substituting in equation 4 and solves gives;

$$\rho = \left(\frac{1}{CV} - \frac{\gamma}{\sigma_{\chi}}\right) \left(\frac{1}{2} - \frac{1}{2^{1+\frac{1}{\beta}}}\right) \sqrt{\frac{12(n-1)}{n+1}}$$
(7)

Now making CV the subject of the formula we have;

$$CV = \frac{\sigma_{\chi} \left(\frac{1}{2} - \frac{1}{2^{1 + \frac{1}{\beta}}}\right) \sqrt{\frac{12(n-1)}{n+1}}}{\sigma_{\chi} \rho + \gamma \left(\frac{1}{2} - \frac{1}{2^{1 + \frac{1}{\beta}}}\right) \sqrt{\frac{12(n-1)}{n+1}}}$$
(8)

Using equation 8 we performed multiple simulation experiments and discovered that there is a strong relationship between coefficient of variation and the shape parameter of the distribution. Precisely, we observed that for $0.2 < \beta < 1.4$ the coefficient of variation falls within the interval 0.52 < CV < 3.0 (95% *confidence*) and for $1.5 < \beta < 2.8$ the CV falls within the interval 0.2 < CV < 0.51 (95% *confidence*).

Therefore, to find an initial estimate of β ($\widehat{\beta_{in}}$), we first calculate the coefficient of variation (CV), then the mean of the interval of β that corresponds to the sample CV will be an initial estimate of β .

The mean of a uniform interval is given by $\frac{a+b}{2}$.

So, for
$$0.2 < CV < 0.51$$
, $\widehat{\beta_{in}} = \frac{1.5 + 2.8}{2} = 2.15$ (9)

for
$$0.52 < CV < 3.0$$
, $\widehat{\beta_{in}} = \frac{0.2 + 1.4}{2} = 0.9$ (10)

Step 2

Estimate the Scale Parameter

From the simulation experiments, we also discovered that the sample mean of data that follows the weibull distribution is very close to the scale parameter value 99% of the time especially when $1.5 < \beta < 2.8$. Therefore, we propose that the sample mean be used as an estimator of the scale parameter;

$$\hat{\theta} = \bar{x} \tag{11}$$

Step 3 Estimate the location parameter

Recall that the mean equation of the three-parameter Weibull distribution is given by;

$$\bar{X} = \gamma + \theta \Gamma \left(\frac{1}{\beta} + 1\right) \tag{12}$$

Equating this to the sample mean in equation (11) gives;

$$\bar{x} = \gamma + \theta \Gamma \left(\frac{1}{\beta} + 1\right) \tag{13}$$

Making γ the subject of the formula and replacing θ with the estimate obtained in step 2 we have;

$$\gamma = \bar{x} - \left[\Gamma\left(\frac{1}{\beta_{in}} + 1\right)\right]\bar{x} \tag{14}$$

where β_{in} is an initial estimate of the shape parameter obtained from step 1.

Step 4

Remove the effect of the location parameter by subtracting the estimate gotten from step 1 from each element of the sample.

Step 5

Obtain the final estimate of the shape parameter From equation 6, we have;

$$\hat{\beta} = \frac{-\ln 2}{\ln\left[1 - \frac{\rho}{\sqrt{3}} \left(\frac{1}{c} - \frac{x_{(1)} - \frac{1}{n}}{s}\right)^{-1} \sqrt{\frac{n+1}{n-1}}\right]}$$
(15)

Removing the effect of the location parameter by letting $x_{(1)} - \frac{1}{n} = 0$, the equation becomes;

$$\hat{\beta} = \frac{-\ln 2}{\ln\left[1 - \frac{\rho(CV)}{\sqrt{3}}\sqrt{\frac{n+1}{n-1}}\right]}$$
(16)

The estimate for the shape parameter is obtained using equation 16.

2.4 Method of Comparison

We compare the proposed algorithm to the method proposed by Teimouri and Gupta (2013) using simulation. We generated samples from the Weibull distribution with different shape parameter values. We chose 0.5, 1, 1.5 and 2.5 to cover the interval $0 < \beta < 2.6$ and we put the scale and location parameters at 100 and 10 respectively. The scale and location parameters need not to be varied because they are just scaling parameters. We also varied the sample size as 10, 20 and 50 to represent small, medium and large samples sizes. 1000 samples were generated for each sample category and the methods were applied on each sample. All simulation experiments and computation were done using the R software.

The root means square error (RMSE) was used as a measure of accuracy. RMSE is given as;

$$RMSE = \sqrt{Var(x) + bias^2}.$$
(17)

Also, to assess the performance of the methods in predicting the three parameters for each category we used the Euclidean norm of the vector containing the RMSE of the shape, scale and location parameters. The Euclidean norm is given as;

 $||X|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$ where x_is are the elements of the vector

3. Results

True β	True θ	True γ	Sample size n
0.5	100	10	10
0.5	100	10	20
0.5	100	10	50
1	100	10	10
1	100	10	20
1	100	10	50
1.5	100	10	10
1.5	100	10	20
1.5	100	10	50
2.5	100	10	10
2.5	100	10	20
2.5	100	10	50

Table 3.1: Categories of data simulation

Table 3.2:	Results	for n=10	and beta=	0.5
------------	---------	----------	-----------	-----

		BIAS	RMSE	EUCLIDEAN NORM
	β	-0.03445494	0.1971911	
Proposed	θ	8.926951	185.5696	186.801
Method	γ	14.82412	22.01566	
	β	0.1327512	0.1626008	
Teimouri An	d θ	18.42228	71.90500	72.095
Method	γ	-2.163484	5.309800	

Table 3.3: Results for n=20 and beta= 0.5

		BIAS	RMSE	EUCLIDEAN NORM
	β	-0.0616117	0.1457542	
Proposed Mathad	θ	8.926951	149.4446	150.083
Method	γ	13.98512	18.04774	
	β	-0.00234304	0.1188928	
Teimouri And	θ	-11.15802	52.17167	52.015
Method	γ	0.4591412	1.247136	

Table 3.4: Results for n=50 and beta= 0.5

		BIAS	RMSE	EUCLIDEAN NORM
	β	0.120495	0.1492751	
Proposed	θ	8.926951	125.1546	126.751
Method	γ	-20.83912	21.10285	
	β	4.37837e-05	0.07617271	
Teimouri	θ	-5.792638	31.03455	31.000
And Gupta Method	γ	0.06195151	0.1941643	

		BIAS	RMSE	EUCLIDEAN NORM
	β	0.2167867	0.4133144	
Proposed	θ	8.926951	32.75525	36.276
Method	γ	-15.68215	15.76821	
	β	-0.1689997	0.2847648	
Teimouri	θ	-23.16872	38.70501	42.522
And Gupta	γ	10.29491	17.60728	
Method				

Table 3.5: Results for n=10 and beta= 1

Table 3.6: Results for n=20 and beta= 1

		BIAS	RMSE	EUCLIDEAN NORM
	β	0.2125245	0.3094314	
Proposed	θ	8.926951	24.7096	29.322
Method	γ	-15.75905	15.80246	
	β	-0.08500607	0.1989304	
Teimouri And	θ	-11.91453	25.06324	26.527
Gupta	γ	4.938966	8.725661	
Method				

Table 3.7: Results for n=50 and beta= 1

		BIAS	RMSE	EUCLIDEAN NORM
	β	0.2251297	0.2648941	
Proposed	θ	8.926951	17.2042	23.326
Method	γ	-15.74039	15.75732	
	β	-0.0327187	0.4812885	
Teimouri	θ	-4.030083	15.42769	15.803
And Gupta Method	γ	1.97096	3.39117	

		BIAS	RMSE	EUCLIDEAN NORM
	β	-0.03818768	0.4261418	
Proposed	θ	8.926951	20.42073	20.602
Method	γ	1.377303	2.700893	
	β	-0.4584609	0.5364848	
Teimouri	θ	-31.26084	37.86138	44.585
And Gupta Method	γ	19.34675	23.54054	

Table 3.8: Results for n=10 and beta= 1.5

Table 3.9: Results for n=20 and beta= 1.5

		BIAS	RMSE	EUCLIDEAN NORM
	β	-0.05372831	0.2906152	
Proposed	θ	8.926951	13.84383	14.004
Method	γ	1.40345	2.109452	
	β	-0.2805753	0.3622391	
Teimouri	θ	-17.20969	23.52643	27.613
And Gupta Method	γ	12.10774	14.44512	

Table 3.10 Results for n=50 and beta= 1.5

		BIAS	RMSE	EUCLIDEAN NORM
	β	-0.03608594	0.1684401	
Proposed	θ	8.926951	8.927062	9.082
Method	γ	1.438244	1.759658	
	β	-0.1574609	0.2237386	
Teimouri	θ	-9.816728	14.2841	16.478
And Gupta Method	γ	6.803893	8.214172	

		BIAS	RMSE	EUCLIDEAN NORM
	β	-0.04431032	0.7789568	
Proposed	θ	8.926951	11.99993	12.157
Method	γ	1.259622	1.853849	
	β	-1.231671	1.283226	
Teimouri	θ	-43.98572	41.46263	56.797
And Gupta Method	γ	35.7258	38.80891	

Table 3.11 Results for n=10 and beta= 2.5

Table 3.12 Results for n=20 and beta= 2.5

		BIAS	RMSE	EUCLIDEAN NORM	
Proposed Method	β	-0.05643378	0.515282		
	θ	8.926951	8.745896	8.905	
	γ	1.264323	1.604951		
	β	-0.9306541	0.9873057		
Teimouri And Gupta	θ	-32.20311	35.10124	46.119	
	γ	27.42744	29.91266		
Method					

Table 3.13 Results for n=50 and beta= 2.5

		BIAS	RMSE	EUCLIDEAN NORM
	β	-0.04752342	0.2900169	
Proposed Method	θ	8.926951	5.518459	5.685
	γ	1.228817	1.371911	
	β	-0.6004832	0.655485	
Teimouri And	θ	-21.00493	23.08954	23.272
Gupta Method	γ	1.970963	2.759584	

4. Discussion and Summary

From the results of the experiments, it is evident that when $\beta \ge 1$, the accuracy of the proposed method is relatively high (especially when $\beta > 1$). However, when $\beta < 1$, the proposed method estimator for the scale parameter ($\hat{\theta} = \bar{x}$) does not perform too well. This was actually expected because, when $\beta < 1$, the Weibull distribution is very positively skewed and the mean of a skewed distribution favors extreme values. This is why the estimates produced at $\hat{\theta} = \bar{x}$ deviates from the true scale. When $\beta \le 1$, the Mahdi and Gupta method performed well but it loses its accuracy as β increases.

5. Conclusion

From the above findings, the proposed method is the best method for estimating the parameters of the three parameter Weibull distribution when $\beta > 1$. This means that as the distribution gradually becomes symmetric and other methods begin to lose accuracy, the proposed method produces the most accurate estimates and should be preferred. This also means that when modeling the wear out period of a device, the proposed method should be adopted. However, the Teimouri and Gupta method should be adopted for estimating the parameters of the three-parameter Weibull distribution when $\beta \leq 1$. This means that when the Weibull distribution is very positively skewed. Therefore, for modelling the infant mortality period of a device, the Teimouri and Gupta method of parameter estimation should be the choice. Sample size does not affect the choice of method, though the performances of the methods always improve as sample size increases.

References

- [1] Cohen, A. C. and Whitten, B. (1982a) Modified Maximum Likelihood For The Three-Parameter Weibull Distribution, Communications in Statistics Theory and Methods 11, 197-214.
- [2] Cohen, A. C. and Whitten, B. (1982b) Modified Moment Estimators For The Three-Parameter Weibull Distribution, Communications in Statistics Theory and Methods 11, 2631-2656.
- [3] Lloyd, N. S. (1967) Weibull Probability Paper, Industrial Quality Control 23, 452–453.
- [4] Rinne, H. (2008) The Weibull Distribution: A Hand Book, CRC press, London.
- [5] Teimouri, M. and Gupta, A.K. (2013) On the three-parameter weibull distribution shape parameter estimation, journal of data science 11, 403-414.
- [6] Weibull, W. (1951) A Statistical Distribution Function of Wide Applicability, Journal of Applied Mechanics, Transactions of The American Society of Mechanical Engineers, 51, 293-279.