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Abstract 

In this work we propose an algorithm for estimating the parameters of the three-parameter 

Weibull distribution. The proposed algorithm is an extension of the closed form estimator for 

the shape parameter proposed by Teimouri and Gupta (2013). We compared the proposed 

algorithm with Teimouri and Gupta’s estimator and found out that the proposed method 

performs better when 𝛽 > 1, however when 𝛽 ≤ 1 the Teimouri and Gupta estimator is 

prefered. We also discovered that the performance of the methods always increases with 

sample size. The proposed method also provides a prior knowledge of a likely range of the true 

shape parameter value. 
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1. Introduction 

The use of Weibull distribution to describe real phenomena has a long history. This distribution 

was originally proposed by the Swedish physicist Waloddi Weibull in (1951). Up to the end of 

the 1950s, lifetime in engineering was nearly always modeled by the exponential distribution 

which later was gradually substituted by the more flexible Weibull distribution. For more than 

half a century, the Weibull distribution has attracted the attention of statisticians working on 

theory and methods as well as various fields of applied statistics. Together with the Normal, 

Exponential and F distributions, the Weibull distribution is without any doubt the most applied 

distribution in modern statistics (Rinne, 2008). The Weibull distribution is of great interest to 

theory-oriented statisticians because of its great number of features. It is also of great interest 

to practitioners because of its ability to fit to data from various fields, ranging from life data to 

weather data or observations made in economics and business administration. 

Lloyd (1967) as well as so many others have expanded the scope and usefulness of the Weibull 

distribution to other branches of statistics such as quality control. 

Originally, the Weibull distribution has three parameters; the shape parameter (𝛽), the scale 

parameter (𝜃) and the location parameter (𝛾).  

The three-parameter Weibull distribution has the following probability density function (Pdf); 

 

                                        𝑓(𝑥) =
𝛽

𝜃
(

𝑥−𝛾

𝜃
)

𝛽−1

𝑒−(
𝑥−𝛾

𝜃
)

𝛽

𝑥 > 𝛾, 𝛽 > 0, 𝜃 > 0                       (1) 

 

with distribution function given as 𝐹(𝑥) = 1 − 𝑒−(
𝑥−𝛾

𝜃
)

𝛽

     (2) 

 

which is fitted when all the three parameters are unknown but are assumed to be non-zero, 

(Cohen and Whitten, 1982a & b). 

For 𝛽 < 2.6 the Weibull distribution is positively skewed (has a right tail), for 2.6 < 𝛽 < 3.7, 
its coefficient of skewness approaches zero (no tail). Consequently, it may approximate the 

normal, and for 𝛽 > 3.7, it is negatively skewed (left tail). In this paper, we will be dealing 

with beta values in the interval 0 <𝛽 < 2.6. 
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2.0 MATERIAL AND METHOD 

 

2.1Parameter Estimation 
In general, one of the best methods for estimating the parameters of a distribution is the 

maximum likelihood method (MLE). But its application to the three-parameter Weibull 

distribution has been a problem for the following reasons;  

1. the Weibull distribution does not satisfy the regularity condition that is required for the 

maximum likelihood estimate to be the most efficient method. 

2. the MLE solutions are biased and the amount of bias is not known. This bias strongly 

depends on the shape parameter and the sample size. 

3. the MLE solutions are not available in closed form for two of the parameters of a three 

parameter Weibull distribution. 

 

2.2 Teimouri and Gupta Method 

The third reasons above was addressed by Teimouri and Gupta (2013) in an attempt to solve 

this problem, they used theorem 1.0 below to construct a closed form estimator for the slope 

parameter. 

 

Theorem 1.0: suppose 𝑥1, 𝑥2, … , 𝑥𝑛 is a random sample from a weibull distribution. Let 𝜌 

denote the sample correlation coefficient between 𝑥𝑖 and their ranks. Let C and S denote the 

sample coefficient of variation and the sample standard deviation respectively. Then, 

 

                                        𝜌 = (
𝜇𝑥−𝛾

𝜎𝑥
) (

1

2
−

1

2
1+

1
𝛽

) √
12(𝑛−1)

𝑛+1
                                    (3) 

 

Where 𝜇𝑥 = 𝐸(𝑥) and 𝜎2
𝑥 = 𝑉𝑎𝑟(𝑥)  (see Teimouri and Gupta 2013 for proof) 

Corollary 1.0: suppose 𝑥1, 𝑥2, … , 𝑥𝑛 is a random sample from a weibull distribution with 

known location parameter. Let 𝜌 denote the sample correlation coefficient between 𝑥𝑖and their 

ranks. Let C and S denote respectively the sample coefficient of variation and sample standard 

deviation. Then the estimator of the shape parameter is; 

 

                           𝛽̂ =
− ln 2

ln[1−
𝜌

√3
(

1

𝐶
−

𝛾

𝑆
)

−1
√

𝑛+1

𝑛−1
]

           (4) 

 

Teimouri and Gupta (2013) proposed 𝛾 = 𝑥(1) −
1

𝑛
 as an estimator for 𝛾 

 

Therefore,                        𝛽̂ =
− ln 2

ln[1−
𝜌

√3
(

1

𝐶
−

𝑥(1)−
1
𝑛

𝑆
)

−1

√
𝑛+1

𝑛−1
]

                                  (5) 

 

They also stated that the estimator for the scale parameter can be obtained by maximizing the 

likelihood function of the three-parameter Weibull distribution with respect to the scale 

parameter and making the scale parameter subject of the formula gives; 

               

                                        𝜃 = (
∑(𝑥𝑖−𝛾̂)𝛽̂

𝑛
)

1
𝛽̂

⁄

                                                  (6) 
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2.3 PROPOSED ALGORITHM BASED ON THE SAMPLE COEFFICIENT OF 

VARIATION 

Step 1 

Find an initial estimate for the shape parameter based on the sample coefficient of variation 

Recall that 𝐶𝑉 =
𝜎𝑥

𝜇𝑥
 

Substituting in equation 4 and solves gives; 

 

                                              𝜌 = (
1

𝐶𝑉
−

𝛾

𝜎𝑥
) (

1

2
−

1

2
1+

1
𝛽

) √
12(𝑛−1)

𝑛+1
                       (7)     

 

Now making 𝐶𝑉 the subject of the formula we have; 

 

                                            𝐶𝑉 =

𝜎𝑥(
1

2
−

1

2
1+

1
𝛽

)√
12(𝑛−1)

𝑛+1

𝜎𝑥𝜌+𝛾(
1

2
−

1

2
1+

1
𝛽

)√
12(𝑛−1)

𝑛+1

              (8) 

 

Using equation 8 we performed multiple simulation experiments and discovered that there is a 

strong relationship between coefficient of variation and the shape parameter of the distribution. 

Precisely, we observed that for 0.2 < 𝛽 < 1.4 the coefficient of variation falls within the 

interval 0.52 < 𝐶𝑉 < 3.0 (95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)and for 1.5 < 𝛽 < 2.8 the CV falls within the 

interval 0.2 < 𝐶𝑉 < 0.51 (95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ). 

 

Therefore, to find an initial estimate of 𝛽 (𝛽𝑖𝑛̂), we first calculate the coefficient of variation 

(CV), then the mean of the interval of 𝛽 that corresponds to the sample CV will be an initial 

estimate of  𝛽. 

The mean of a uniform interval is given by 
𝑎+𝑏

2
. 

 

So, for  0.2 < 𝐶𝑉 < 0.51, 𝛽𝑖𝑛̂ =
1.5+2.8

2
= 2.15                                               (9) 

 

 for  0.52 < 𝐶𝑉 < 3.0,  𝛽𝑖𝑛̂ =
0.2+1.4

2
= 0.9                                                           (10) 

 

Step 2 
Estimate the Scale Parameter  

From the simulation experiments, we also discovered that the sample mean of data that follows 

the weibull distribution is very close to the scale parameter value 99% of the time especially 

when 1.5 < 𝛽 < 2.8. Therefore, we propose that the sample mean be used as an estimator of 

the scale parameter;  

 

                                  𝜃 = 𝑥̅                                                                                            (11) 

 

Step 3 

Estimate the location parameter 
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Recall that the mean equation of the three-parameter Weibull distribution is given by; 

                                         𝑋̅ =  𝛾 + 𝜃𝛤 (
1

𝛽
+ 1)                       (12) 

Equating this to the sample mean in equation (11) gives; 

 

                                        𝑥̅ =  𝛾 + 𝜃𝛤 (
1

𝛽
+ 1)            (13) 

 

Making 𝛾 the subject of the formula and replacing 𝜃 with the estimate obtained in step 2 we 

have; 

 

                                 𝛾 = 𝑥̅ − [𝛤 (
1

𝛽𝑖𝑛
+ 1)] 𝑥̅            (14) 

 

where 𝛽𝑖𝑛 is an initial estimate of the shape parameter obtained from step 1. 

 

Step 4  
Remove the effect of the location parameter by subtracting the estimate gotten from step 1 from 

each element of the sample.  

 

Step 5 

Obtain the final estimate of the shape parameter 

From equation 6, we have;  

 

                         𝛽̂ =
− ln 2

ln[1−
𝜌

√3
(

1

𝐶
−

𝑥(1)−
1
𝑛

𝑆
)

−1

√
𝑛+1

𝑛−1
]

          (15) 

 

Removing the effect of the location parameter by letting 𝑥(1) −
1

𝑛
= 0, the equation becomes; 

 

                            𝛽̂ =
−𝑙 𝑛 2

𝑙 𝑛[1−
𝜌(𝐶𝑉)

√3
√

𝑛+1

𝑛−1
]

                                                     (16) 

 

The estimate for the shape parameter is obtained using equation 16. 

 

2.4 Method of Comparison  
We compare the proposed algorithm to the method proposed by Teimouri and Gupta (2013) 

using simulation. We generated samples from the Weibull distribution with different shape 

parameter values. We chose 0.5, 1, 1.5 and 2.5 to cover the interval 0 <𝛽 < 2.6 and we put the 

scale and location parameters at 100 and 10 respectively. The scale and location parameters 

need not to be varied because they are just scaling parameters. We also varied the sample size 

as 10, 20 and 50 to represent small, medium and large samples sizes. 1000 samples were 

generated for each sample category and the methods were applied on each sample. All 

simulation experiments and computation were done using the R software. 

 

The root means square error (RMSE) was used as a measure of accuracy. RMSE is given as; 

 



                                                                                 Journal of Basic Physical Research Vol. 9., No 2, July 2019 

 

157 
 

                         𝑅𝑀𝑆𝐸 = √𝑉𝑎𝑟(𝑥) + 𝑏𝑖𝑎𝑠2.       (17) 

 

Also, to assess the performance of the methods in predicting the three parameters for each 

category we used the Euclidean norm of the vector containing the RMSE of the shape, scale 

and location parameters.  The Euclidean norm is given as; 

 

‖𝑋‖ = √𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2where xis are the elements of the vector  

 

                

 

3. Results  

Table 3.1: Categories of data simulation 

True 𝛽 True 𝜃 True 𝛾 Sample size n 

0.5 100 10 10 

0.5 100 10 20 

0.5 100 10 50 

1 100 10 10 

1 100 10 20 

1 100 10 50 

1.5 100 10 10 

1.5 100 10 20 

1.5 100 10 50 

2.5 100 10 10 

2.5 100 10 20 

2.5 100 10 50 
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Table 3.2: Results for n=10 and beta= 0.5 

 

BIAS RMSE EUCLIDEAN 

NORM 

 

Proposed 

Method 

𝛽 

𝜃 

𝛾 

-0.03445494 

8.926951 

14.82412 

0.1971911 

185.5696 

22.01566 

186.801 

 

Teimouri And 

Gupta 

Method 

𝛽 

𝜃 

𝛾 

0.1327512 

18.42228 

-2.163484 

0.1626008 

71.90500 

5.309800 

72.095 

 

Table 3.3: Results for n=20 and beta= 0.5 

BIAS RMSE EUCLIDEAN 

NORM 

 

Proposed 

Method 

𝛽 

𝜃 

𝛾 

-0.0616117 

8.926951 

13.98512 

0.1457542 

149.4446 

18.04774 

150.083 

 

Teimouri And 

Gupta 

Method 

𝛽 

𝜃 

𝛾 

-0.00234304 

-11.15802 

0.4591412 

0.1188928 

52.17167 

1.247136 

52.015 

 

Table 3.4: Results for n=50 and beta= 0.5 

BIAS RMSE EUCLIDEAN NORM 

 

Proposed 

Method 

𝛽 

𝜃 

𝛾 

0.120495  

 8.926951  

 -20.83912 

0.1492751 

 125.1546  

 21.10285 

 

126.751 

 

Teimouri 

And Gupta 

Method 

𝛽 

𝜃 

𝛾 

4.37837e-05 

-5.792638 

0.06195151 

0.07617271 

31.03455 

0.1941643 

 

31.000 
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Table 3.5: Results for n=10 and beta= 1 

BIAS RMSE EUCLIDEAN NORM 

 

Proposed 

Method 

𝛽 

𝜃 

𝛾 

0.2167867 

 8.926951  

 -15.68215 

0.4133144 

 32.75525  

 15.76821 

36.276 

 

Teimouri 

And Gupta 

Method 

𝛽 

𝜃 

𝛾 

-0.1689997 

-23.16872 

10.29491 

0.2847648 

38.70501 

17.60728 

42.522 

 

 

Table 3.6: Results for n=20 and beta= 1 

BIAS RMSE EUCLIDEAN 

NORM 

 

Proposed 

Method 

𝛽 

𝜃 

𝛾 

0.2125245 

 8.926951  

 -15.75905 

0.3094314 

 24.7096   

 15.80246 

29.322 

 

Teimouri And 

Gupta 

Method 

𝛽 

𝜃 

𝛾 

-0.08500607 

-11.91453 

4.938966 

0.1989304 

25.06324 

8.725661 

26.527 

 

Table 3.7: Results for n=50 and beta= 1 

BIAS RMSE EUCLIDEAN 

NORM 

 

Proposed 

Method 

𝛽 

𝜃 

𝛾 

0.2251297 

8.926951  

 -15.74039 

0.2648941 

 17.2042   

 15.75732 

23.326 

 

Teimouri 

And Gupta 

Method 

𝛽 

𝜃 

𝛾 

-0.0327187 

-4.030083 

1.97096 

0.4812885 

15.42769 

3.39117 

15.803 
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Table 3.8: Results for n=10 and beta= 1.5 

BIAS RMSE EUCLIDEAN 

NORM 

 

Proposed 

Method 

𝛽 

𝜃 

𝛾 

-0.03818768 

8.926951    

 1.377303 

0.4261418 

 20.42073 

 2.700893 

20.602 

 

Teimouri 

And Gupta 

Method 

𝛽 

𝜃 

𝛾 

-0.4584609 

-31.26084 

19.34675 

0.5364848  

 37.86138  

 23.54054 

44.585 

 

Table 3.9: Results for n=20 and beta= 1.5 

BIAS RMSE EUCLIDEAN 

NORM 

 

Proposed 

Method 

𝛽 

𝜃 

𝛾 

-0.05372831 

 8.926951 

 1.40345 

0.2906152 

 13.84383 

 2.109452 

14.004 

 

Teimouri 

And Gupta 

Method 

𝛽 

𝜃 

𝛾 

     -0.2805753  

-17.20969  

12.10774 

0.3622391  

 23.52643   

14.44512 

27.613 

 

Table 3.10 Results for n=50 and beta= 1.5 

BIAS RMSE EUCLIDEAN 

NORM 

 

Proposed 

Method 

𝛽 

𝜃 

𝛾 

-0.03608594 

 8.926951 

 1.438244 

0.1684401 

 8.927062 

 1.759658 

9.082 

 

Teimouri 

And Gupta 

Method 

𝛽 

𝜃 

𝛾 

-0.1574609  

-9.816728  

6.803893  

0.2237386   

14.2841    

8.214172 

16.478 
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Table 3.11 Results for n=10 and beta= 2.5 

BIAS RMSE EUCLIDEAN NORM 

 

Proposed 

Method 

 

𝛽 

𝜃 

𝛾 

-0.04431032 

 8.926951 

 1.259622 

   0.7789568 

 11.99993 

 1.853849 

12.157 

 

Teimouri 

And Gupta 

Method 

𝛽 

𝜃 

𝛾 

 -1.231671 

-43.98572 

35.7258 

1.283226 

41.46263 

38.80891 

56.797 

 

Table 3.12 Results for n=20 and beta= 2.5 

BIAS RMSE EUCLIDEAN NORM 

 

Proposed 

Method 

 

𝛽 

𝜃 

𝛾 

     -0.05643378 

 8.926951 

 1.264323 

0.515282 

 8.745896 

 1.604951 

8.905 

 

Teimouri 

And Gupta 

Method 

𝛽 

𝜃 

𝛾 

-0.9306541 

-32.20311 

27.42744 

0.9873057 

35.10124 

29.91266 

46.119 

 

Table 3.13 Results for n=50 and beta= 2.5 

BIAS RMSE EUCLIDEAN 

NORM 

 

Proposed Method 

 

𝛽 

𝜃 

𝛾 

-0.04752342 

 8.926951    

 1.228817 

0.2900169 

5.518459 

 1.371911 

5.685 

 

Teimouri And 

Gupta Method 

𝛽 

𝜃 

𝛾 

-0.6004832 

-21.00493 

1.970963 

0.655485 

23.08954 

2.759584 

23.272 
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4. Discussion and Summary  

From the results of the experiments, it is evident that when 𝛽 ≥ 1, the accuracy of the proposed 

method is relatively high (especially when 𝛽 > 1). However, when 𝛽 < 1, the proposed 

method estimator for the scale parameter (𝜃 = 𝑥̅) does not perform too well. This was actually 

expected because, when 𝛽 < 1, the Weibull distribution is very positively skewed and the mean 

of a skewed distribution favors extreme values. This is why the estimates produced at 𝜃 = 𝑥̅ 

deviates from the true scale. When 𝛽 ≤ 1, the Mahdi and Gupta method performed well but it 

loses its accuracy as 𝛽 increases. 

 

5. Conclusion  

From the above findings, the proposed method is the best method for estimating the parameters 

of the three parameter Weibull distribution when 𝛽 > 1. This means that as the distribution 

gradually becomes symmetric and other methods begin to lose accuracy, the proposed method 

produces the most accurate estimates and should be preferred. This also means that when 

modeling the wear out period of a device, the proposed method should be adopted. However, 

the Teimouri and Gupta method should be adopted for estimating the parameters of the three-

parameter Weibull distribution when 𝛽 ≤ 1. This means that when the Weibull distribution is 

very positively skewed. Therefore, for modelling the infant mortality period of a device, the 

Teimouri and Gupta method of parameter estimation should be the choice. Sample size does 

not affect the choice of method, though the performances of the methods always improve as 

sample size increases. 
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