A Novel Approach on the Sensitivity of Preserved Plasmodium falciparum Positive RDT kits for the Molecular Detection of Pfmdr 1 and Pfcrf Genes in Pregnant Women

Abubakar Hafiz*1, Bala Aminu Yabo2, Bandiya Haliru Muhammad2, Shuaibu Abdulmalik Bello3

1Department of Biological Sciences, Federal University Birnin Kebbi, Nigeria
2Department of Zoology, Usman Danfodiyo University Sokoto, Nigeria
3Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usman Danfodiyo University Sokoto, Nigeria

Submitted: 19th July, 2023; Accepted: 5th Sept., 2023; Published online: 31st Oct., 2023
DOI: https://doi.org/10.54117/jcbr.v3i5.4
*Corresponding Author: Abubakar Hafiz; abubakarhafiz95@gmail.com; +2348030510042

Abstract

Storing blood samples for molecular screening have become increasingly difficult due to unstable electricity and high cost of generators fuels. Samples often deteriorate giving false negative upon molecular analysis. This research was aimed at determining the sensitivity of preserved Plasmodium falciparum positive RDT kits for the molecular detection of Pfmdr 1 and Pfcrf genes among pregnant women in From February 2020 to May 2020, Sokoto, Nigeria. 200 pregnant patients who visited the hospital for ANC had their blood samples taken, and a questionnaire was given out. To detect Plasmodium falciparum, RDT kits tailored to its monoclonal antibody were utilized. P. falciparum positive Rapid Diagnostic Test Kits were air tighten with nylon and silica-preserved for three months in a closed cabinet. The preserved positive samples were utilized to extract DNA, and the Pfmdr1 and Pfcrf genes' existence was then checked using a PCR procedure. 4 samples tested positive for both genes, suggesting a 21.05 % prevalence, according to the results of the inquiry into the Pfcrf and Pfmdr1 genes. This study has revealed the sensitivity of preserved

RDT kits (with silica) for DNA extraction. Researchers and molecular laboratories should be preserving positive RDT kits meant for DNA extraction and other molecular analysis as it is much easier to preserve and there is no cost involved.

Key words: RDT Kits, DNA extraction, Pfmdr1 gene, Pfcrf gene, pregnant women, Plasmodium falciparum.

Introduction

Rapid diagnostic tests (RDTs) are widely employed as a supplementary method to microscopy for the detection of malaria (Wongsrichanalai et al., 2007), and in some cases, they can even be utilized as a point-of-care diagnostic tool (Wiese et al., 2006). The detection of Plasmodium infections is frequently reliant only on RDTs in environments where high-quality microscopy is not accessible (Chilton et al., 2006; Osman et al., 2010). The World Health Organization (WHO) supports the widespread use of RDTs for malaria diagnosis in places where malaria is common and advises using them as part of parasite-based diagnosis (WHO, 2009a; 2009b).

In more rural areas where microscopy services are less accessible, rapid diagnostic
test kits (RDTs) have emerged as the most popular diagnostic technique for detecting patients with *Plasmodium falciparum* malaria (Wongsrichanalai et al., 2007). A possible source of *P. falciparum* DNA is RDTs that test positive for the parasite. Plasmodium DNA may be recovered from RDT using a variety of methods (Wiese et al., 2006; Chilton et al., 2006; Osman et al., 2010), and the quantity and quality of the extracted parasite DNA varies depending on the method used (Wiese et al., 2006). RDT-derived Plasmodium DNA has been evaluated for assessment of 18S rRNA (Wongsrichanalai et al., 2007; Osman et al., 2010; WHO, 2009a), the *P. falciparum* histidine-rich protein-2 and 3 genes (WHO, 2009b), *P. falciparum* polymorphic microsatellite markers (WHO, 2009c), drug resistance markers Pfcr and Pfmdrl (Bell et al., 2006) and tRNA methionine-based quantification of Plasmodium parasites (Cnops et al., 2010).

According to a previous work (Wiese et al., 2006), the RDT sample that was kept at room temperature for 36 months (n = 1) was successfully amplified for the 18S rRNA gene. In more rural areas where microscopy services are less accessible, rapid diagnostic test kits (RDTs) have emerged as the most popular diagnostic technique for detecting patients with *Plasmodium falciparum* malaria (Mouatcho et al., 2013). A possible source of *P. falciparum* DNA is RDTs that test positive for the parasite. Plasmodium DNA may be recovered from RDT using a variety of procedures (Veron et al., 2006; Cnops et al., 2011; Ishengoma et al., 2011), and the quantity and quality of the extracted parasite DNA varies depending on the method used (Veron et al., 2006). The most effective extraction method for extracting parasite DNA from RDT samples among the three examined was phenol/chloroform extraction (Veron et al., 2006). RDT derived *Plasmodium* DNA has been evaluated for assessment of 18S rRNA (Veron et al., 2006; Ishengoma et al., 2011; Papa et al., 2016), the *P. falciparum* histidine-rich protein-2 and 3 genes (Beshir et al., 2017), *P. falciparum* polymorphic microsatellite markers (Nabet et al., 2016), drug resistance markers Pfcr and Pfmdrl (Morris et al., 2013) and tRNA methionine-based quantification of *Plasmodium* parasites (Robinson et al., 2019).

According to a previous work (Veron et al., 2006), the RDT sample that was kept at room temperature for 36 months (n = 1) was successfully amplified for the 18S rRNA gene. For usage in molecular genetics research, however, the RDT blood spots' poor quality and amount of extracted DNA continue to be a significant problem (Suttipat et al., 2020).

Methodology

Hospital Consent

The management of the Maryam Abacha Women and Children Hospital (MAWCH), Sokoto, Nigeria, gave its agreement prior to the commencement of the research. Patients who gave their consent after being fully informed of the study's purpose and goals donated their blood. Introduction letter was obtained from the Head of Biological Sciences department which was addressed to the management of MAWCH seeking them to assist and give me access to their facilities.

Sample Size Determination

Sample Size Determination Samples from the pregnant women participating in this study, who came to healthcare facility for antenatal treatment using a stratified sampling method, have been collected. The formula below, which was used by Abubakar et al., 2022, was used to determine the sample size. n = \(Z^2 \frac{p(1-p)}{e^2} \) Where; n = Desired sample size, \(Z \) = Confidence interval (95%) = 1.96, p = Previous Prevalence, p = 7% e = Degree of precision (0.05) (Ekpereonne et al., 2018). Therefore, substituting Z for 1.96, P for 0.07 and e for 0.05, then the minimum sample size will be: \(n = (1.96)^2 \times 0.07 (1 -0.07) / (0.05)^2 \)
n = 3.8416 x 0.07 (0.93)/ 0.0025 = 100
The minimum sample size is 100 but it has been adjusted to 200.

Blood Sample Collection

Pregnant women who visited the research area for Anti-Natal Care had two milliliters of blood drawn through the vein with the aid of a qualified nurse using a needle and a 5 ml syringe. The blood samples were placed into an ethylene diamine tetraacetic acid (EDTA) container after collection to prevent the blood from coagulating. The blood samples were transferred in a cold chain to the parasitology lab at the faculty of science at Usman Danfodiyo University Sokoto (UDUSok).

Plasmodium falciparum Rapid Diagnostic Test Kit (RDT Kit)

All the 200 blood samples were screened using *Plasmodium falciparum* mono clonal antibody specific RDT kit to confirm the presence of the parasite (*Plasmodium falciparum*). The RDT (SD BIOLINE Malaria Ag P.f) Kit was used in accordance with the manufacturer’s instruction.

P. falciparum Positive samples were transported to the central research laboratory of the Faculty of Veterinary Medicine, Usman Danfodiyo University Sokoto (UDUSok) for DNA extraction and molecular screening.

Preservation of Plasmodium falciparum positive RDT Kits

Five (5 per nylon) *Plasmodium falciparum* positive RDT Kits were placed in air tight nylon and preservative silica (2 packs of silica per nylon). The nylon containing both the RDT kits and silica were place in air tight cabinet and kept for three months. The kits were later transported to central research laboratory, Faculty of Veterinary Medicine for molecular screening.

Molecular Screening

Plasmodium falciparum positive samples were subjected to DNA extraction. The extracted DNAs were further subjected to PCR for the purpose of identifying the drug-resistant genes in *P. falciparum* (Olasehinde et al., 2014). PCR amplicons were loaded in agarose gel electrophoresis (Sharma et al., 2015).

Preparation of RDT Kit for DNA extraction

Using a sterile blade, scissors, and forceps, RDT cassettes were opened, and the nitrocellulose strip was extracted from the plastic casing (Nguyen et al., 2019). The test strip’s DNA-containing positive section was divided up after the nitrocellulose strip was removed (Nguyen et al., 2019). The strips were placed in microtubes and 200μl of nuclease free water (molecular grade water) was added to dissolve the content of the strip (Nguyen et al., 2019). This was achieved via multiple aspiration and inspiration. The empty strip was later removed and sample was subjected to DNA extraction (Nguyen et al., 2019).

Deoxyribonucleic acid (DNA) Extraction

According to manufacturer's instructions, DNA extraction was performed using a Qiagen DNA easy extraction kit (Qiagen, Krefeld, Germany) (Olasehinde et al., 2014).

Polymerase Chain Reaction (PCR)

From the blood of pregnant women who tested positive for malaria, Polymerase Chain Reaction (PCR) was performed to identify the resistance genes of *Plasmodium falciparum* (Sharma et al., 2015).

PCR amplification of Pfcrt gene

In a 0.2 ml nuclease-free microfuge tube, a 25 μl reaction mix with the following ingredients was used for the PCR: 12.5 μl of Top Taq master mix (qiagen, USA), 2 μl of each 10 μm Pfcr F and Pfcr R primers, 2 μl of coral load (both from Qiagen, USA), 1.5 μl of nuclease-free water, and 5 μl of DNA template (Sharma et al., 2015). The tubes were then transferred to the thermocycler of Applied Biosystems ABS 9700, (Sharma et al., 2015). The cycling conditions used by Vathsala et al. 2004 and Sharma et al. (2015) was adopted, they are; denaturation at 94 °C for 3 min,
followed by 45 cycles of denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s, extension at 72 °C for 1 min, 72 °C for 5 min and post hold at 8°C.

PCR amplification of Pfmdr1 gene
The PCR was carried out in a 0.2 ml nuclease free microfuge tube containing a 25μl reaction mix with the following components; 12.5μl of Top Taq master mix (qiagen,USA), 2μl of each 10μm Pfmdr 1 F and Pfmdr 1 R, 2.5μl of coral load (qiagen,USA), 2μl of Nuclease free water (qiagen,USA) and 4μl of DNA template. The tubes were transferred to Applied Biosystem (ABS) 9700 thermocycler (Sharma et al., 2015). The cycling conditions used by Vathsala et al. 2004 and Sharma et al. (2015) was adopted, they are; denaturation at 94 °C for 3 minutes, followed by 35 cycles of final denaturation at 94 °C for 30 s, annealing at 56 °C for 1 minutes, extension at 72 °C for 2 minutes, 72 °C for 5 min and post hold at 8°C.

<table>
<thead>
<tr>
<th>Table 1: List of primers used in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
</tr>
<tr>
<td>Pfcrt- F</td>
</tr>
<tr>
<td>Pfcrt- R</td>
</tr>
<tr>
<td>Pfmdr 1- F</td>
</tr>
<tr>
<td>Pfmdr 1 – R</td>
</tr>
</tbody>
</table>

Source: Vathsala et al. (2004)

Agarose Gel Electrophoresis
The amplified products were subjected to 1.5% agarose gel electrophoresis pre-stained with ethidium bromide with a 100 bp ladder used as a standard.
The electrophoresis was conducted at 80 volts for 1 hour in a BioRad agarose gel electrophoresis unit. The gel was visualized using a U-V trans-eliminator in a BioRad XRS gel documentation device.

Statistical analysis
Occurrence of the resistant genes was computed using frequency distribution. Version 4.1.0 of InVivoStat was used for the analysis. The level of significance for all analysis was set at P0.05, with the confidence level being maintained at 95%.

Results
Using microscopy and an RDT kit, 200 pregnant women were examined for the presence of malaria parasites. The results for microscopy revealed 3 samples positive for *Plasmodium falciparum* representing 1.50% prevalence. The results of this study with respect to *P. falciparum* mono clonal antibody specific RDT kit revealed 19 samples positive for *P. falciparum* representing 9.50% prevalence (Table 2). Out of the 19 samples tested for Pfmdr1 and Pfcrt genes, 17 samples were positive for Pfmdr1 (89.50%) and 5 samples (26.30%) were positive for Pfcrt gene. While 4 samples (sample 6, 10, 13, and 14) were positive for both genes representing 21.05% prevalence (Table 2).
Table 2: Malaria, Pfmdr1 and Pfcrt genes Prevalence

<table>
<thead>
<tr>
<th>Testing Tools</th>
<th>Examined</th>
<th>Positive</th>
<th>Percentage Positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDT kit</td>
<td>200</td>
<td>19</td>
<td>9.50</td>
</tr>
<tr>
<td>Microscopy</td>
<td>200</td>
<td>3</td>
<td>1.50</td>
</tr>
</tbody>
</table>

P. falciparum drug Resistant genes

<table>
<thead>
<tr>
<th>Genes</th>
<th>Examined</th>
<th>Positive</th>
<th>Percentage Positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfmdr1</td>
<td>19</td>
<td>17</td>
<td>89.5</td>
</tr>
<tr>
<td>Pfcrt</td>
<td>19</td>
<td>5</td>
<td>26.3</td>
</tr>
</tbody>
</table>

Fig. 1: Pfmdr1 gene gel
Key: ML = Molecular ladder, NC = Negative control

Fig. 2: Pfcrt gene gel
Key:
Positive wells = well 6, 10, 13 and well 14
ML = Molecular ladder, NC = Negative control

Fig. 3: Pfmdr1 and Pfcrt genes gel
Key:
Positive sample: Pfcrt = 18
Negative samples: Pfmdr1 = 18 and 19, Pfcrt = 19
ML = Molecular ladder, NC = Negative Control

Discussion
This study shows that the Qiagen DNA easy (Qiagen, Krefeld, Germany) extraction kit successfully recovered Plasmodium falciparum DNA from the nitrocellulose strip of P. falciparum positive RDT Kits. The results of this study concur with those of Cnops et al. (2011), who found that accurate Plasmodium species identification by a sensitive real-time PCR assay was possible for the four Plasmodium species with varying parasite densities on RDTs stored for weeks to months after typical laboratory diagnosis in a reference setting.

The molecular identification of P. falciparum chloroquine resistant transporter gene (Pfcrt) and P. falciparum multidrug resistant gene 1 (Pfmdr1) using DNA recovered from archived (for 3 months) P. falciparum positive RDT Kits was clearly demonstrated. The results of this work are consistent with those of Nguyen et al. (2019), who noted the value of archival RDTs with a large sample size for molecular characterisation of P. falciparum population diversity, MOI, and the distribution of CQ-resistant haplotypes. P. falciparum positive RDT Kits can therefore be stored overtime (for as long as 3 months) in areas with unstable electricity until required for molecular screening/analysis (DNA extraction and PCR).

PCR protocol was used to detect the occurrence of Pfmdr1 and Pfcrt genes of Plasmodium falciparum. Prevalence of Pfmdr1 gene observed in this study (89.50%) was relatively higher than previously reported (45.0%) by Simon-oke et al. (2018), in Akure, Ondo State and 18.90% Pfmdr1 gene prevalence reported in Benin metropolis, Edo State by Okungbowa and Mordi (2013). The prevalence of the Pfcrt gene in this study (26.30%) was also greater than that previously reported by Okungbowa and Mordi (2013) (24.0%). High indiscriminate use of drugs (without a prescription) for the
treatment of malaria by pregnant women, the partial withdrawal of chloroquine from the treatment of malaria, variations in the environmental conditions, or the presence of *Plasmodium falciparum*, the disease's causative agent throughout the nation, which may have been caused by people moving from one location to another for recreational activities, could all contribute to the high prevalence of these mutant genes in the study area.

Four samples were found to have both of the two mutant Pfcr1 and Pfmdr1 genes. They therefore have tendency of conferring resistance to Chloroquine in addition to Mefloquine (MQ), Halofantrine (HF), and Lumefantrine (LM). While the remaining 13 samples (1-5, 7-9, 11, 12, 15, 16 and 17) with only Pfmdr1 gene have tendency of conferring resistance to Mefloquine (MQ), Halofantrine (HF), and Lumefantrine (LM) as earlier reported (Price et al., 2004, Rohrbach et al., 2006).

Prevalence of malaria infection observed by RDT in this study (9.5%) is lower compared to previous researches conducted among pregnant women attending ante-natal care in Sokoto by Udomah et al. (2015) with 52.2% prevalence and 10.6% malaria infection prevalence reported also in Sokoto by Buhari et al. (2016). This low prevalence of malaria among pregnant women in the study area may be attributed to period of the study (no rainfall) (Patricia et al., 2014), use of antimalarial drugs (WHO, 2020) and the fact that the pregnant women are going for ante natal care (ANC) (Fana et al., 2015). Earlier Udomah et al. (2015) reported malaria prevalence to be low due to the period of the study (dry season).

This study is limited to the use of preserved *P. falciparum* positive RDT kits (for 3 months) for molecular analysis of Pfmdr 1 and Pfcr1 genes. Feature studies should test the sensitivity of preserved *P. falciparum* positive RDT kits over a long period of time (more than 3 months).

Recommendations

1. We therefore recommend preservation of *P. falciparum* positive RDT kits if required for feature use since samples can last for as long as 3 months and the procedure is user friendly, free/not expensive as the RDT kits comes with the silica in the pack.

2. Researchers, students, laboratory technologist and research centers/institutes should be educated on the use of silica in preservation of *P. falciparum* positive RDT kits since the protocol prevent deterioration of samples and does not affect the sensitivity during molecular screening.

Conclusion

This research has provided evidence of the effectiveness and sensitivity of *P. falciparum* Positive RDT kits preserved for 3 months in the molecular detection of Pfmdr 1 and Pfcr1 genes and also contributed in the reduction of risk factors for global warming caused by generators (carbon emission) used in the laboratories that power up freezers/refrigerators.

Conflict of interest

No conflict interests.

References

the blood retained in used Rapid Diagnostic Test kits. Sci Rep. 9 (p 51).

