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Abstract: This paper presents a convenient method to describe the degree of the elastic 

anisotropy in a given type of wood and then discusses its practical values. Besides 

mechanical and elastic behaviour of wood are investigated in order to understand the 

optimum mechanical behaviour of it in selected directions. Bounds on the wood elastic 

constants have been constructed in terms of elasticity and compliance tensors for any type 

of woods by developing Hill (1952) approach. So for any type of wood with known elastic 

constants, it is possible to choose the best set of elastic constants (effective elastic 

constants) which determine the optimum mechanical and elastic properties of  it. Bounds on 

the wood elastic constants as well as the degree of elastic anisotropy are significant and 

critical cases in design of any engineering and structural materials made up of wood. 

 

Key words: elastic anisotropy, bounds, elastic constants, elasticity tensor, compliance 

tensor 

 

1 INTRODUCTION 

Wood is a cellulosic, semicrystalline, cellular material. The tissue making up the woody 

substance is oriented such that mechanical properties are generally higher along the bole of 

a tree than across the bole. The mechanical properties (elastic, strength and rheologic) 

exhibit strong orientation effects and are complicated by the addition of growth 

irregularities. Mechanically, clear wood obeys the laws of elastic orthotropic materials, and 

its failure characteristics are well described by strain energy of distortion-type theory. 

Wood also shows properties of high toughness and stiffness. These values vary greatly 

depending on the type of wood and the direction in which the wood is tested, as wood 

shows a high degree of anisotropy. Wood's properties are also strongly affected by the 

amount of water present in the wood. Generally, increasing the water content of wood 

lowers its strength. Wood shows viscoelasticity and has different properties when wet. 

 

It is also a fibre-composite material (cellulose fibres in a lignin matrix) with complex 

overall structure and a cellular material. Cells form the basic unit of life and are immensely 
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complicated. There are roughly 1012 cells of 4 main types in a tree. Cells display a great 

deal of self-organisation and assembly. Additionally, the constituents of a tree  

undergo continuous renewal, making a tree a dynamic system. Trees are divided into two 

classes: hardwoods and softwoods. The hardwoods such as Teak, birch, maple have broad 

leaves. The terms "hardwoods" and "softwoods" are not directly associated with the 

hardness or softness of the wood although in most cases hardwoods are actually harder and 

tougher than softwoods. In general softwoods originate from cone-bearing trees and 

hardwoods from trees that have their seeds contained in a seed-case. 

 

The starting point in the paper is Voigt (1928) and Reuss (1929) schemes that are 

frequently used in averaging the single-crystal elastic constants for polycrystalline 

behaviour. In these averaging schemes, it is recalled that, Voigt assumed the uniform strain 

throughout a polycrystalline aggregate and Reuss assumed the uniform stress. 

It is evident that Voigt and Reuss assumptions are true only when the aggregate concerned 

is made of isotropic crystals, but for an aggregate containing anisotropic crystals, their 

assumptions become immediately invalid. Hill (1952) has that for an aggregate of 

anisotropic crystals Voigt and Reuss assumptions result in theoretical maximum and 

minimum values of the isotropic elastic moduli of the polycrystalline aggregate, 

respectively, and suggested that a difference between these limiting values may be 

proportional to the degree of elastic anisotropy of the crystal. 

In the present paper, anisotropic Hooke's law is summarized and Kelvin inspired 

formulation of anisotropic Hooke's law is presented in section 2. Bounds on the wood 

elastic constants have been constructed and the difference between Voigt and Reuss limits 

has been examined in detail for wood and used the result as the basis of the present method 

of describing the elastic anisotropy in sections 3 and 4 respectively. In addition, numerical 

examples are given in section 5. Finally, in the last section, the results of numerical 

implementations are discussed and conclusions pertinent to this work are stated. 

 

2      THEORETICAL BACKGROUND 

2. 1      Anisotropic Hooke's Law 

The anisotropic form of Hooke's law in linear elasticity is often written in indicial notation 

as 

                 
kmijkmij EcT 

                                                                                      (1)                         

where  
ijT   are components of stress tensor,  

kmE   are components of infinitesimal strain 

tensor and  ijkmc   are the components of elasticity tensor (Mehrabadi, 1995). In other 
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words,  ijkmc   are the components of a fourth-rank tensor called the elastic constant tensor 

(stiffness tensor) and  .3,2,1,,, mkji   
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The indices are abbreviated according to the replacement rule given in the following Table: 

Table 1: Abbreviation of Indices for Four Index and Double Index Notations 

 (Nye, 1957) 

Four index notation 11 22 33 23, 32 13, 31 12, 12 

Double index notation 1 2 3 4 5 6 

 

Alternatively, Hooke's law is also written in indicial notation as 

kmijkmij TsE         (3) 

where  ijkms   are the compliance constants of the anisotropic material. There are three 

important symmetry restrictions on the elastic constant tensor. These are 

kmijijkmijmkijkmjikmijkm cccccc        (4) 

which follow from the symmetry of the stress tensor, the symmetry of the strain tensor and 

the elastic strain energy. These restrictions reduce the number of independent elastic 

constants  ijkmc   from 81 to 21 (Nye, 1957). 

 

2.2      Tensorial Presentation of the Kelvin Formulation 

It is written as a linear transformation in six dimensions, Hooke's law has the representation  

cET    and in Voigt notation equation (2) is represented as follows 

 

ÇİĞDEM DİNÇKAL: JOIRES 2(2), April, 2011: 67-80. 

 

-69- 

Analysis of Elastic Anisotropy of Wood Material for Engineering Applications 



















































































12

13

23

33

22

11

665646362616

565545352515

464544342414

363534332313

262524232212

161514131211

12

13

23

33

22

11

2

2

2

E

E

E

E

E

E

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

T

T

T

T

T

T

                (5) 

 

The relationships of the components of  
ijkmc   to the components of the symmetric matrix c 

are given Table 2. By introducing new notation, equation (5) can be rewritten in the form  

EcT ˆ   , where the shearing components of these new six dimensional stress and strain 

vectors which are denoted by  T  and  E, respectively. They are multiplied by  2  ,  ĉ   a 

new six-by-six matrix is obtained (Mehrabadi, 1995). The matrix form of  EcT ˆ    is given 

by 
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The matrix  ĉ is called the matrix of elastic constants and its inverse  ŝ , TsE ˆ ,   

1ˆˆ  cs   is called the compliance matrix. A table relating these various notations for the 

specific elastic constants is given in Table 2. The symmetric matrices  ĉ   and  ŝ   can be 

shown to represent the components of a second-rank tensor in a six dimensional space. In 

this thesis, these matrices are used in the following chapters. Since the components of the 

matrix  c  appearing in equation (5) do not form a tensor (Mehrabadi, 1995). 

 

Table 2: The Elasticity and Compliance in Different Notations 

1    2    3    1    2    3   

 c1111    c11    ĉ11    s1111    s11    ŝ11   

 

ÇİĞDEM DİNÇKAL: JOIRES 2(2), April, 2011: 67-80. 

 

-70- 

Analysis of Elastic Anisotropy of Wood Material for Engineering Applications 



 c2222    c22    ĉ22    s2222    s22    ŝ22   

 c3333    c33    ĉ33    s3333    s33    ŝ33   

 c1122    c12    ĉ12    s1122    s12    ŝ12   

 c1133    c13    ĉ13    s1133    s13    ŝ13   

 c2233    c23    ĉ23    s2233    s23    ŝ23   

 c2323    c44    
1

2
ĉ44    s2323    

1

4
s44    

1

2
ŝ44   

 c1313    c55    
1

2
ĉ55    s1313    

1

4
s55    

1

2
ŝ55   

 c1212    c66    
1

2
ĉ66    s1212    

1

4
s66    

1

2
ŝ66   

 c1323    c54    
1

2
ĉ54    s1323    

1

4
s54    

1

2
ŝ54   

c1312    c56    
1

2
ĉ56    s1312    

1

4
s56    

1

2
ŝ56   

 c1223    c64    
1

2
ĉ64    s1223    

1

4
s64    

1

2
ŝ64   

 c2311    c41   
 

1

2
ĉ41

  
 s2311    

1

2
s41    

1

2
ŝ41

  

c1312    c56    
1

2
ĉ56    s1312    

1

4
s56    

1

2
ŝ56   

 c1311    c51   
 

1

2
ĉ51

  
 s1311    

1

2
s51    

1

2
ŝ51

  

 

ÇİĞDEM DİNÇKAL: JOIRES 2(2), April, 2011: 67-80. 

 

-71- 

Analysis of Elastic Anisotropy of Wood Material for Engineering Applications 



 c1211    c61   
 

1

2
ĉ61

  
 s1211    

1

2
s61    

1

2
ŝ61

  

 

 c2322    c42   
 

1

2
ĉ42

  
 s2322    

1

2
s42    

1

2
ŝ42

  

 c1322    c52   
 

1

2
ĉ52

  
 s1322    

1

2
s52    

1

2
ŝ52

  

 c1222    c62   
 

1

2
ĉ62

  
 s1222    

1

2
s62    

1

2
ŝ62

  

 c2333    c43   
 

1

2
ĉ43

  
 s2333    

1

2
s43    

1

2
ŝ43

  

 c1333    c53   
 

1

2
ĉ53

  
 s1333    

1

2
s53    

1

2
ŝ53

  

 c1233    c63   
 

1

2
ĉ63

  
 s1233    

1

2
s63    

1

2
ŝ63

  

 c1222    c62   
 

1

2
ĉ62

  
 s1222    

1

2
s62    

1

2
ŝ62

  

 c2333    c43   
 

1

2
ĉ43

  
 s2333    

1

2
s43    

1

2
ŝ43

  

 c1333    c53   
 

1

2
ĉ53

  
 s1333    

1

2
s53    

1

2
ŝ53

  

 1233c    63c    632
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1 ŝ   

 

In Table 2, column 1 illustrates the Voigt notation of these quantities as fourth rank tensor 

components in a three dimensional Cartesian space. Column 2 represents the same Voigt 

matrix in double index notation. Column 3 illustrates the Kelvin-inspired notation for these 

quantties as second rank tensor components in a six dimensional cartesian space. 
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2.3      Bounds on the Wood Elastic Constants 

For wood, there are nine independent components of elastic constant tensor. These 

components are used to construct bounds for wood elastic constants. The upper bounds are 

denoted by  VK   (bulk modulus of Voigt) ,  VG   (shear modulus of Voigt) ,    R   

(Poisson's ratio of Reuss) , EV   (Young's modulus of Voigt). The lower bounds are 

denoted by  KR   (bulk modulus of Reuss) ,  GR   (shear modulus of Reuss) ,  V   

(Poisson's ratio of Voigt) ,    ER   (Young's modulus of Reuss). Bulk modulus, shear 

modulus, Poisson's ratio and Young's modulus are also called engineering constants (Nye, 

1957). The effective anisotropic elastic constants, Keff   (effective bulk modulus),   G e f f  

(effective shear modulus) ,  eff   (effective Poisson's ratio) and  Eeff   (effective Young's 

modulus)of wood must satisfy the following bounds: 

,, VeffRVeffR GGGKKK       (7) 

., ReffVVeffR EEE          (8) 

 Keff   ,  G eff   ,  eff   and  Eeff   are the best sets of elastic constants of wood which should lie 

between the above bounds. 
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The bulk modulus of Voigt for wood can be obtained by substituting  t,    u,    v   into the 

equation (9), so it takes the form 

, 
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where  ,332211 ccct     
132312 cccu    and  .665544 cccv    

The shear modulus of Voigt for wood can be found by substituting  ,t    ,u    v   into 

equation (10) then this equation becomes 

. 
15
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
         (12) 

 Poisson ratio of  Voigt for wood is obtained by substituting the values of  
VK   and  

VG   in 
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 where  
V
  represents the Poisson's ratio of Voigt for wood and it is also expressed by 

substituting the appropriate elastic constants 
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 Young's modulus of Voigt for wood is found by substituting the values of  
VK   and  

VG   in 
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 where  VE   represents the Young's modulus of Voigt for wood and it is also expressed by 

putting the appropriate elastic constants  
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 ,VK    GV,    ,R    
VE   are upper bounds. In similar way, for wood, Reuss bounds in terms of 

compliance tensors are 
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The bulk modulus of Reuss for wood can be obtained by substituting  ,, qx    w   into the 

equation (17), then the equation takes the form 
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
         (19) 

Where  ,332211 sssx     
132312 sssq    and 

 

 .665544 sssw    

 

For wood, the shear modulus of Reuss can be found by substituting  ,x    ,q    w   into 

equation (18), then it becomes 
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Poisson ratio of  Reuss for wood is obtained by substituting the values of  RK   and  RG   
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Where  Rv   represents the Poisson's ratio of Reuss for wood and it is also expressed in 

terms of the appropriate elastic constants  
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 For wood, Young's modulus of Reuss is found by substituting the values of  RK   and  

RG   in 
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 where  RE   represents the Young's modulus of Reuss for wood and it is also expressed in 

terms of compliance tensors as 
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3      ELASTIC ANISOTROPY OF WOOD 

Wood is probably the most commonly recognized anisotropic composite material on earth. 

As wood possesses a complex fiber-composite structure, it varies in its most properties with 

the directions, called anisotropy. It is the best described mechanically as an orthotropic 

material and given the orthogonal symmetry of wood, the orthorhombic (a kind of elastic 

anisotropy) elasticity concepts developed to describe crystal characteristics. 

In previous section,  
VG   and  

RG   are needed to construct bounds in order to find the 

effective shear modulus. Furthermore  
VG   and  

RG   represent the averaged polycrystalline 

shear moduli according to the Voigt and Reuss schemes, respectively. For isotropic 

materials,  
VG   is exactly the same as  .RG   On the other hand, for anisotropic materials, it 

is expected from Voigt and Reuss assumptions that  
VG   exceeds  

RG   and they represent 

the theoretical maximum and minimum limits of the true shear modulus for the isotropic 

polycrystalline aggregate, respectively. Here, for lower symmetry materials such as 

orthorhombic materials, these two limiting shear moduli  
VG   and  

RG   are taken to 

examine the difference between them as a measure of the elastic anisotropy. For highly 

anisotropic crystals, however, the difference ( 
VG RG  ) would be a sizable quantity 

proportional to the magnitude of the elastic anisotropy possessed by the crystals. 

Now a dimensionless quantity  A   can be defined, such that  

RV

RV

GG

GG
A




         (25) 

Equation (25) is an important result of the present analysis and it represents the degree of 

elastic anisotropy for wood. However, in an attempt to find a better parameter,  A   can be 

described, such that 

 















RV

RV

GG

GG
A )100()percentin (       (26) 

 

The elastic anisotropy specified by the equation (25) has the following properties of a 

practical importance: 

a)  0A   for materials which are elastically isotropic. (If the magnitude of  A   is closer 

to  0  , the material property is said to be more isotropic.) 

b)  0A   for materials which exhibit anisotropy. (If  A   is greater than  0   in magnitude, 

the material exhibits more anisotropic property.) 

c)  A   gives the relative magnitude of the elastic anisotropy. 
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4      NUMERICAL ANALYSIS 

To construct bounds numerically and illustrate the properties of  A  , several examples are 

immediately obvious. In the following tables, a few of these are considered. The elastic 

constants (both elastic stiffnesses and compliances) of hardwoods' and softwoods' species 

(Hearmon, 1948) can be displayed in Tables 3, 4, 5 and 6 respectively. The units are GPa. 

 

Table 3: The Elastic Constants (Elastic Stiffnesses) of Hardwoods Species 

 

Hard 

woods 
 c11    c22    c33    c12    c13    c23    c44    c55    c66   

Maple  1.451   2.256  11.492 1.197 1.267 1.818 2.460 2.194 0.584 

Oak 0.350 2.983 16.958 1.007 1.005 1.463 2.380 1.532 0.784 

Ash 1.439 2.439 17.000 1.037 1.485 1.968 1.720 1.218 0.500 

Beech 1.659 3.301 15.437 1.279 1.433 2.142 3.216 2.112 0.912 

 

 

Table 4:  The Elastic Constants (Elastic Compliances) of Hardwoods Species 

 

 

Table 5:  The Elastic Constants (Elastic Stiffnesses) of Softwoods Species 

Hard 

woods 
 s11    s22    s33    s12    s13    s23    s44    s55    s66   

Maple  1.242  0.762 0.078 0.551 0.030 0.027 2.1-6 1.489 2.342 

Oak 1.093 0.614 0.064 0.552 0.024 0.020 0.415 0.551 1.969 

Ash 0.933 0.469 0.050 0.553 0.018 0.013 0.334 0.432 1.587 

Beech 1.000 0.529 0.055 0.552 0.020 0.016 0.368 0.481 1.745 

Soft 

woods 
 c11    c22    c33    c12    c13    c23    c44    c55    c66   

Balsa  0.127  0.360 6.380 0.086 0.091 0.154 0.624 0.406 0.066 

DouglasFir 1.226 1.775 17.004 0.753 0.747 0.941 2.348 1.816 0.160 

Spruce 0.443 0.775 16.286 0.192 0.321 0.442 1.234 1.52 0.072 

Pine 0.721 1.405 16.929 0.454 0.535 0.857 3.484 1.344 0.132 
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Table 6:  The Elastic Constants (Elastic Compliances) of Softwoods Species 

 

Table 7: Bounds on Hardwood Elastic Constants and Elastic Anisotropy for 

Hardwoods Species  

Hardw

oods 

 KR    
VK    

RG    
VG    ER    

VE    
Rv   

 Vv    A    A  (%)   

Maple  1.155  2.675 0.525 1.796 1.368 4.403 0.303 0.226 0.548 54.8 

Oak 1.727 3.138 0.821 2.127 2.126 5.205 0.295 0.224 0.443 44.3 

Ash 3.318 3.520 0.987 1.780 2.707 4.530 0.372 0.272 0.287 28.7 

Beech 2.451 3.345 0.911 2.284 2.431 5.582 0.335 0.222 0.423 42.3 

 

Table 8: Bounds on Softwood Elastic Constants and Elastic Anisotropy for  

Softwoods Species  

Softwoods  KR    KV    GR    GV    ER    EV    vR    vV   
A   A   (%) 

Balsa 0.164  0.837 0.121 0.655 0.292 1.558 0.203 0.190 0.687  68.7  

Douglas Fir 0.830  2.765  0.395  2.036  1.023   4.904   0.297  0.204  0.675  67.5  

Spruce 0.534  2.157  0.296  1.669  0.750   3.979   0.266  0.193  0.699  69.9  

Pine 0.726  2.527  0.364  2.139  0.935   5.006   0.285  0.170  0.709  70.9  

 

Effective elastic constants for hardwood and softwood can be selected between the 

corresponding values found in Tables 7 and 8 respectively. 

 

5      DISCUSSION AND CONCLUDING REMARKS 

Results of the Tables illustrated in section 4 can be interpreted as follows: According to 

Table 7; Maple exhibits the most anisotropy among the other hardwoods' species since it 

has the greatest degree of elastic anisotropy with  %.8.54   Whereas Ash is close to isotropy 

more than both hardwoods' and softwoods' species because of  its degree of elastic 

anisotropy with  %.7.28    

Softwoods 
 s11    s22    s33    s12    s13    s23    s44    s55    s66   

Balsa 7.634 4.120 0.159 2.70 -0.123 0.086 1.692 2.179 17.540 

DouglasFir 1.202 0.737 0.0532 0.354 0.022 0.018 0.429 0.500 0.547 

Spruce 1.984 1.175 0.072 0.614 0.035 0.030 0.622 0.746 10.310 

Pine 1.399 0.848 0.058 0.418 0.025 0.021 0.480 0.567 9.010 
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From Table 8; it is seen that Pine shows the most anisotropy among all wood species with 

the degree of elastic anisotropy  %9.70  . So it's mechanical and elastic behavior are 

expected to be more anisotropic. These results prove that different wood types selected 

from same anisotropic elastic symmetry (orthorhombic symmetry), depending upon the 

degree of elastic anisotropy, can exhibit whether close to isotropy or anisotropy. 

 

In this paper, it has been also shown that it is possible to construct bounds on the wood 

elastic constants in terms of elasticity and compliance tensors. It has been mainly focussed 

on engineering elastic properties of selected materials and represented anisotropy in terms 

of engineering properties:  K  ,  G  , and    ,  E    in order to construct bounds. 

Constructing bounds on the anisotropic elastic constants provides a deeper understanding 

about mechanical behavior of  anisotropic materials. Besides, the degree of elastic 

anisotropy also has significant effects on many applications in different fields such as: 

1) design of wood-based composite materials, 

2) determination of wood types which are highly anisotropic or close to isotropic, 

3) understanding the mechanical and elastic behaviour of natural composites such as wood 

types. 
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