Journal of Innovative Research in Engineering and Science 2(2), April, 2011.
ISSN : 2141-8225
© Global Research Publishing, 2011.

Analysis of Elastic Anisotropy of Wood Material for
Engineering Applications (p. 67-80)

CIGDEM DINCKAL
Faculty of Engineering, Ankara University, Ankara, Turkey.
Correspondence e-mail: cigdemdinckal2004@yahoo.com

Abstract: This paper presents a convenient method to describe the degree of the elastic
anisotropy in a given type of wood and then discusses its practical values. Besides
mechanical and elastic behaviour of wood are investigated in order to understand the
optimum mechanical behaviour of it in selected directions. Bounds on the wood elastic
constants have been constructed in terms of elasticity and compliance tensors for any type
of woods by developing Hill (1952) approach. So for any type of wood with known elastic
constants, it is possible to choose the best set of elastic constants (effective elastic
constants) which determine the optimum mechanical and elastic properties of it. Bounds on
the wood elastic constants as well as the degree of elastic anisotropy are significant and
critical cases in design of any engineering and structural materials made up of wood.
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1 INTRODUCTION

Wood is a cellulosic, semicrystalline, cellular material. The tissue making up the woody
substance is oriented such that mechanical properties are generally higher along the bole of
a tree than across the bole. The mechanical properties (elastic, strength and rheologic)
exhibit strong orientation effects and are complicated by the addition of growth
irregularities. Mechanically, clear wood obeys the laws of elastic orthotropic materials, and
its failure characteristics are well described by strain energy of distortion-type theory.
Wood also shows properties of high toughness and stiffness. These values vary greatly
depending on the type of wood and the direction in which the wood is tested, as wood
shows a high degree of anisotropy. Wood's properties are also strongly affected by the
amount of water present in the wood. Generally, increasing the water content of wood
lowers its strength. Wood shows viscoelasticity and has different properties when wet.

It is also a fibre-composite material (cellulose fibres in a lignin matrix) with complex
overall structure and a cellular material. Cells form the basic unit of life and are immensely
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complicated. There are roughly 1012 cells of 4 main types in a tree. Cells display a great
deal of self-organisation and assembly. Additionally, the constituents of a tree

undergo continuous renewal, making a tree a dynamic system. Trees are divided into two
classes: hardwoods and softwoods. The hardwoods such as Teak, birch, maple have broad
leaves. The terms "hardwoods" and "softwoods" are not directly associated with the
hardness or softness of the wood although in most cases hardwoods are actually harder and
tougher than softwoods. In general softwoods originate from cone-bearing trees and
hardwoods from trees that have their seeds contained in a seed-case.

The starting point in the paper is Voigt (1928) and Reuss (1929) schemes that are
frequently used in averaging the single-crystal elastic constants for polycrystalline
behaviour. In these averaging schemes, it is recalled that, Voigt assumed the uniform strain
throughout a polycrystalline aggregate and Reuss assumed the uniform stress.

It is evident that Voigt and Reuss assumptions are true only when the aggregate concerned
is made of isotropic crystals, but for an aggregate containing anisotropic crystals, their
assumptions become immediately invalid. Hill (1952) has that for an aggregate of
anisotropic crystals Voigt and Reuss assumptions result in theoretical maximum and
minimum values of the isotropic elastic moduli of the polycrystalline aggregate,
respectively, and suggested that a difference between these limiting values may be
proportional to the degree of elastic anisotropy of the crystal.

In the present paper, anisotropic Hooke's law is summarized and Kelvin inspired
formulation of anisotropic Hooke's law is presented in section 2. Bounds on the wood
elastic constants have been constructed and the difference between Voigt and Reuss limits
has been examined in detail for wood and used the result as the basis of the present method
of describing the elastic anisotropy in sections 3 and 4 respectively. In addition, numerical
examples are given in section 5. Finally, in the last section, the results of numerical
implementations are discussed and conclusions pertinent to this work are stated.

2 THEORETICAL BACKGROUND

2.1 Anisotropic Hooke's Law

The anisotropic form of Hooke's law in linear elasticity is often written in indicial notation
as

T Cipn o (D

1_/’:

where T, are components of stress tensor, E, are components of infinitesimal strain

km

tensor and  Cyy, are the components of elasticity tensor (Mehrabadi, 1995). In other
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words, C ijkm are the components of a fourth-rank tensor called the elastic constant tensor

(stiffness tensor) and 4, j, k,m=1,2,3.

T, S G2 Gz Cias Gus Ge | En

T, Con Coan €33 Gy Canz Sz Ex 2)
T _ Cair O30 G333 Caaos Caans Caann|| B

T, G Gann Ca3zz Coyyy Casiz Cospa|| 2B,

T, Cai Gsm Gy Gaas Cais G || 2B
LT [Gan Goae Gass Cioos Gy Coana )| 2 |

The indices are abbreviated according to the replacement rule given in the following Table:

Table 1: Abbreviation of Indices for Four Index and Double Index Notations
(Nye, 1957)

Four index notation 11 22 33 23,32 13,31 12,12

Double index notation 1 2 3 4 5 6

Alternatively, Hooke's law is also written in indicial notation as

E, s T. 3)

=" ijkm

where S are the compliance constants of the anisotropic material. There are three

ijkm

important symmetry restrictions on the elastic constant tensor. These are
Ciitm=C jikm  Cikm=Cijmk  Cijtm=C komij 4)
which follow from the symmetry of the stress tensor, the symmetry of the strain tensor and

the elastic strain energy. These restrictions reduce the number of independent elastic

constants  Cy,, from 81 to 21 (Nye, 1957).

2.2 Tensorial Presentation of the Kelvin Formulation
It is written as a linear transformation in six dimensions, Hooke's law has the representation
T =cE and in Voigt notation equation (2) is represented as follows
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T, ¢y G C3 Gy G5 G| Ey
T, Ciy €y €y Gy G5 Oy | Eyy
T, _ Ciz Gy Cy3 Cyy Gy Gy || By ©)
Ty, Cly Copy C3y Cyy Cys Cug || 2By
s Cis Cys C35 Cys Css Csg || 2Ep5
_le_ 1Ci6 €26 C36 Cas Cse 666__2E12_

The relationships of the components of Cijpm 1O the components of the symmetric matrix c

are given Table 2. By introducing new notation, equation (5) can be rewritten in the form
T=¢E , where the shearing components of these new six dimensional stress and strain
vectors which are denoted by T and E, respectively. They are multiplied by 2 , ¢ a
new six-by-six matrix is obtained (Mehrabadi, 1995). The matrix form of 7 =¢£ is given
by

L, Ci Cia €3 \/5614 \/ECIS ‘/5616 [ E,, 1
T, Cia Cxn Ca3 \/5024 \/5025 \/Eczs Es, (6)
Ty _| €3 Ca3 C33 ‘/5034 \/EC” \/5036 Ey

‘/ETzz - \/ECM \/EC]S \/ECI(, 2¢c,,  2c,5  2c4 \/EE23
V21, V2e,, N2eys N2e, 24 2¢q 24 2E,,
VT, | [V2e,, V2e,s N2e, 20, 205 2c4 __\/EEB_

The matrix € is called the matrix of elastic constants and its inverse S , E=3T,

§=¢7" s called the compliance matrix. A table relating these various notations for the

A

specific elastic constants is given in Table 2. The symmetric matrices ¢ and S canbe
shown to represent the components of a second-rank tensor in a six dimensional space. In
this thesis, these matrices are used in the following chapters. Since the components of the
matrix ¢ appearing in equation (5) do not form a tensor (Mehrabadi, 1995).

Table 2: The Elasticity and Compliance in Different Notations

Cli11 C11 C11 S1111 S11 S11
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C2222 C22 C22 §2222 8§22 §22
C3333 C33 C33 §3333 §33 833
Cl122 C12 C12 S1122 S12 512
C1133 C13 C13 §1133 513 513
2233 23 C23 §2233 523 §23
14 1 A
2323 C44 5 Ca4 §2323 4544 5544
14 1 1z
C1313 Css 5Css §$1313 4555 5555
14 1 1z
C1212 Co6 5 Ce66 S1212 4566 5566
14 1 1z
C1323 Cs4 5 Cs4 §1323 4554 5554
14 1 1z
C1312 Cs6 5Cs6 S1312 4556 5556
14 1 1a
C1223 Co4 5 Co4 §1223 4564 5564
1 4 1 1 ¢
C2311 C41 3041 §2311 5541 fsu
14 1 1z
C1312 Cs6 5Cs6 S1312 4556 5556
1 4 1 1 ¢
C1311 Cs1 3051 S1311 5551 fsﬂ
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1 » 1 1 a
Ci1211 Ceo1 3061 S1211 5561 fsm
1 4 1 1
C2322 Ca2 fc42 §$2322 5542 fhz
1 4 1 1 _a
C1322 Cs2 fcsz S1322 5552 fssz
1 » 1 1 a
C1222 Ce62 fC‘sz S1222 5562 fsaz
1 4 1 P
€2333 C43 3043 §2333 5543 fs“
1 » 1 1 -
C1333 Cs3 fC‘s3 §1333 5553 fS53
1 » 1 1 -
C1233 C63 fé‘ﬁ §1233 5563 fs63
1 4 1 1 »
C1222 C62 3062 §1222 5562 fs62
1 » 1 1 -
C2333 C43 3043 §2333 5543 fs“
C1333 Cs3 L és3 | s13m3 Lsss L §s5
2 2 2
1 A 1 1 A
Ci233 Ce3 73 63 S1233 2563 72563

In Table 2, column 1 illustrates the Voigt notation of these quantities as fourth rank tensor
components in a three dimensional Cartesian space. Column 2 represents the same Voigt
matrix in double index notation. Column 3 illustrates the Kelvin-inspired notation for these

quantties as second rank tensor components in a six dimensional cartesian space.
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2.3 Bounds on the Wood Elastic Constants
For wood, there are nine independent components of elastic constant tensor. These
components are used to construct bounds for wood elastic constants. The upper bounds are

denoted by K, (bulk modulus of Voigt), G, (shear modulus of Voigt) > Vi

(Poisson's ratio of Reuss) » Ey (Young's modulus of Voigt). The lower bounds are

denoted by Kr (bulk modulus of Reuss) » Gr (shear modulus of Reuss) » Vv,

(Poisson's ratio of Voigt) » Eg (Young's modulus of Reuss). Bulk modulus, shear
modulus, Poisson's ratio and Young's modulus are also called engineering constants (Nye,

1957). The effective anisotropic elastic constants, K eff (effective bulk modulus), Geﬁ

(effective shear modulus) » Ef—’ﬁ (effective Poisson's ratio) and E eff (effective Young's
modulus)of wood must satisfy the following bounds:

Ky<K, <K, G, <G, <G,, ™

Ey<E,<E,, v, <v,<v, ®)

Ky | Goy | ’Feff and Eey are the best sets of elastic constants of wood which should lie
between the above bounds.

K, = Ci1 FCy + Gy " 2(¢), + ¢y +0y3) ’ 9)
9 9
G, = Cli+CnCyy Gt Gy +Cy  3(Cy tCs5 + ) ) (10)
15 15 15

The bulk modulus of Voigt for wood can be obtained by substituting >, %, V into the
equation (9), so it takes the form

K, =L+Y, (11
9 9
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where t=c,, +c,, +¢55, u=c,+ep+ep; and v=c,,+C55+C4
The shear modulus of Voigt for wood can be found by substituting ¢, u#, Vv into

equation (10) then this equation becomes

GV:t—u+3v. (12)
15

Poisson ratio of Voigt for wood is obtained by substituting the values of K, and G, in

L Lo 36, (13)
Vv >
2 3K, +G,

where |, represents the Poisson's ratio of Voigt for wood and it is also expressed by

substituting the appropriate elastic constants

VV:I[St—E%u—Zv] (14)
20 6t =9u+v

Young's modulus of Voigt for wood is found by substituting the values of g, and G, in

-Gk, (15)
3G, +9K,
where E, represents the Young's modulus of Voigt for wood and it is also expressed by

putting the appropriate elastic constants

_ (t+2u)(t —u+3v)

16
6t +9u + 3v (16)

14
K,, G» v, E, areupper bounds. In similar way, for wood, Reuss bounds in terms of

compliance tensors are

K, = ! : (17
S H Sy 855+ 208, + 5,5 +53)

= 15 (18)
2 .
A0S, + Sy, +533) —4(8), + 55 +53) +3(85,, + 855+ S¢6)

-74-
Analysis of Elastic Anisotropy of Wood Material for Engineering Applications



CIGDEM DINCKAL: JOIRES 2(2), April, 2011: 67-80.

The bulk modulus of Reuss for wood can be obtained by substituting X, ¢, W into the

equation (17), then the equation takes the form

Ky=—— (19)
x+2q

Where x=s,,+5,,+55;, g=s5,+5,;+s,; and
W=, + 855+ 8-

For wood, the shear modulus of Reuss can be found by substituting x, ¢, W into

equation (18), then it becomes

_ 15 (20)
B 4x—4g+3w

Poisson ratio of Reuss for wood is obtained by substituting the values of K, and G,
in

Vp=—
2| 3K, +G,

1{1_ 3G, } 2y

Where V, represents the Poisson's ratio of Reuss for wood and it is also expressed in

terms of the appropriate elastic constants

_1{w—2x—8q] (22)

vR—2
3x+2g+w

For wood, Young's modulus of Reuss is found by substituting the values of K, and
G g 1N

_ 27Gr K, (23)
® 3G, +9K,
where E, represents the Young's modulus of Reuss for wood and it is also expressed in

terms of compliance tensors as
15

RS - (24)
3x+2g+w
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3 ELASTIC ANISOTROPY OF WOOD

Wood is probably the most commonly recognized anisotropic composite material on earth.
As wood possesses a complex fiber-composite structure, it varies in its most properties with
the directions, called anisotropy. It is the best described mechanically as an orthotropic
material and given the orthogonal symmetry of wood, the orthorhombic (a kind of elastic
anisotropy) elasticity concepts developed to describe crystal characteristics.

In previous section, G, and G, are needed to construct bounds in order to find the

effective shear modulus. Furthermore G, and G, represent the averaged polycrystalline

shear moduli according to the Voigt and Reuss schemes, respectively. For isotropic

materials, G, is exactly the same as G,. On the other hand, for anisotropic materials, it

4

is expected from Voigt and Reuss assumptions that G, exceeds G, and they represent

the theoretical maximum and minimum limits of the true shear modulus for the isotropic
polycrystalline aggregate, respectively. Here, for lower symmetry materials such as
orthorhombic materials, these two limiting shear moduli G, and ¢, are taken to

examine the difference between them as a measure of the elastic anisotropy. For highly
anisotropic crystals, however, the difference ( G, — G, ) would be a sizable quantity

proportional to the magnitude of the elastic anisotropy possessed by the crystals.

Now a dimensionless quantity 4 can be defined, such that

A= G, -G, (25)
G, +G,

Equation (25) is an important result of the present analysis and it represents the degree of

elastic anisotropy for wood. However, in an attempt to find a better parameter, 4 can be
described, such that

A(in percent) = (IOO){?_(G;R} (26)
Vv + R

The elastic anisotropy specified by the equation (25) has the following properties of a
practical importance:

a) A=0 for materials which are elastically isotropic. (If the magnitude of A is closer
to O , the material property is said to be more isotropic.)

b) A >0 for materials which exhibit anisotropy. (If A is greater than 0 in magnitude,
the material exhibits more anisotropic property.)

c) A gives the relative magnitude of the elastic anisotropy.
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4 NUMERICAL ANALYSIS

To construct bounds numerically and illustrate the properties of A , several examples are
immediately obvious. In the following tables, a few of these are considered. The elastic
constants (both elastic stiffnesses and compliances) of hardwoods' and softwoods' species
(Hearmon, 1948) can be displayed in Tables 3, 4, 5 and 6 respectively. The units are GPa.

Table 3: The Elastic Constants (Elastic Stiffnesses) of Hardwoods Species

Hard

woods ey | ey | e ci2 ci3 | €23 | caa | Css Cé6
Maple | 1.451 | 2.256 | 11.492 | 1.197 | 1.267 | 1.818 | 2.460 | 2.194 | 0.584
Oak 0.350 | 2.983 | 16.958 | 1.007 | 1.005 | 1.463 | 2.380 | 1.532 | 0.784
Ash 1439 | 2.439 | 17.000 | 1.037 | 1.485 | 1.968 | 1.720 | 1.218 | 0.500
Beech | 1.659 | 3.301 | 15437 | 1.279 | 1.433 | 2.142 | 3216 | 2.112 | 0.912

Table 4: The Elastic Constants (Elastic Compliances) of Hardwoods Species

Hard

woods S $22 $33 | S12 513 5§23 Sas | S55 | See
Maple 1242 | 0762 |0.078 | 0.551 | 0.030 |0.027 |2.1-6 | 1.489 | 2.342
Oak 1.093 | 0.614 | 0.064 | 0552 | 0.024 | 0.020 | 0.415 | 0.551 | 1.969
Ash 0933 | 0469 | 0.050 | 0.553 | 0.018 | 0.013 | 0334 | 0432 | 1.587
Beech | 1.000 | 0.529 | 0.055 | 0.552 | 0.020 | 0.016 | 0.368 | 0.481 | 1.745

Table 5: The Elastic Constants (Elastic Stiffnesses) of Softwoods Species

Soft

woods cii | ¢ | ¢33 cia | ci3 | ca3 | cas | €55 | Ceo

Balsa 0.127 | 0360 | 6380 | 0.086 | 0.091 | 0.154 | 0.624 | 0.406 | 0.066

DouglasFir | 1.226 | 1.775 | 17.004 | 0.753 | 0.747 | 0.941 | 2.348 | 1.816 | 0.160

Spruce 0443 | 0.775 | 16286 | 0.192 | 0321 | 0442 | 1234 | 152 | 0072

Pine 0.721 | 1.405 | 16.929 | 0.454 | 0.535 | 0.857 | 3.484 | 1.344 | 0.132
_77_
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Table 6: The Elastic Constants (Elastic Compliances) of Softwoods Species

Softwoods

S11 822 533 S12 513 823 S44 855 866
Balsa 7.634 | 4.120 | 0.159 | 2.70 -0.123 | 0.086 | 1.692 | 2.179 | 17.540
DouglasFir | 1.202 | 0.737 | 0.0532 | 0.354 | 0.022 | 0.018 | 0.429 | 0.500 | 0.547
Spruce 1.984 | 1.175 | 0.072 | 0.614 | 0.035 0.030 | 0.622 | 0.746 | 10.310
Pine 1.399 | 0.848 | 0.058 0.418 | 0.025 0.021 | 0.480 | 0.567 | 9.010
Table 7: Bounds on Hardwood Elastic Constants and Elastic Anisotropy for
Hardwoods Species
Hardw | Kp K, Gr G, | Ex | E, | m v, | 4 A (%)
oods
Maple 1.155 | 2.675 0.525 1.796 | 1.368 | 4.403 | 0.303 | 0.226 | 0.548 | 54.8
Oak 1.727 3.138 0.821 2.127 | 2.126 | 5.205 | 0.295 | 0.224 | 0.443 | 44.3
Ash 3.318 3.520 0.987 1.780 | 2.707 | 4.530 | 0.372 | 0.272 | 0.287 | 28.7
Beech | 2.451 3.345 0.911 2.284 | 2.431 | 5.582 | 0.335 | 0.222 | 0.423 | 423
Table 8: Bounds on Softwood Elastic Constants and Elastic Anisotropy for
Softwoods Species
Softwoods Kr Ky Gr Gy Er Ey VR vy A 4 (%)
Balsa 0.164 | 0.837 | 0.121 | 0.655 | 0.292 | 1.558 0.203 0.190 | 0.687 | 68.7
Douglas Fir | 0.830 | 2.765 | 0.395 | 2.036 | 1.023 | 4.904 0.297 | 0.204 | 0.675 | 67.5
Spruce 0.534 | 2.157 | 0.296 | 1.669 | 0.750 | 3.979 0.266 | 0.193 | 0.699 | 69.9
Pine 0.726 | 2.527 | 0.364 | 2.139 | 0.935 | 5.006 0.285 | 0.170 | 0.709 | 70.9

Effective elastic constants

corresponding values found in Tables 7 and 8 respectively.

for hardwood and softwood can be

5 DISCUSSION AND CONCLUDING REMARKS
Results of the Tables illustrated in section 4 can be interpreted as follows: According to
Table 7; Maple exhibits the most anisotropy among the other hardwoods' species since it

selected between the

has the greatest degree of elastic anisotropy with 54.8%. Whereas Ash is close to isotropy

more than both hardwoods' and softwoods' species because of

anisotropy with 28.7%.
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From Table 8; it is seen that Pine shows the most anisotropy among all wood species with
the degree of elastic anisotropy 70.9% . So it's mechanical and elastic behavior are
expected to be more anisotropic. These results prove that different wood types selected
from same anisotropic elastic symmetry (orthorhombic symmetry), depending upon the
degree of elastic anisotropy, can exhibit whether close to isotropy or anisotropy.

In this paper, it has been also shown that it is possible to construct bounds on the wood
elastic constants in terms of elasticity and compliance tensors. It has been mainly focussed
on engineering elastic properties of selected materials and represented anisotropy in terms
of engineering properties: x , G ,and VvV , E in order to construct bounds.
Constructing bounds on the anisotropic elastic constants provides a deeper understanding
about mechanical behavior of anisotropic materials. Besides, the degree of elastic
anisotropy also has significant effects on many applications in different fields such as:

1) design of wood-based composite materials,

2) determination of wood types which are highly anisotropic or close to isotropic,

3) understanding the mechanical and elastic behaviour of natural composites such as wood

types.
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