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Abstract: In this paper, mechanical and elastic behaviour of anisotropic materials are
investigated in order to understand the optimum mechanical behaviour of them in selected
directions. For an anisotropic material with known elastic constants, it is possible to choose
the best set of elastic constants (effective elastic constants) which determine the optimum
mechanical and elastic properties of it. For this reason, bounds on the anisotropic elastic
constants have been constructed symbollicaly for all anisotropic elastic symmetries. As
illustrative examples, materials from different symmetries are selected and their elastic
constants are used to compute bounds on the anisotropic elastic constants. Finally, by
examining numerical results of bounds given in tables, it is seen that the materials selected
from the same symmetry type which have larger interval between the bounds, are more
anisotropic, whereas some materials which have smaller interval between the bounds, are
closer to isotropy. The construction of bounds on anisotropic elastic constants is a
significant and critical case in design of any engineering and structural materials.

Keywords: anisotropy, bounds, anisotropic elastic constants, anisotropic elastic
symmetries.

1 INTRODUCTION

Many materials are anisotropic and inhomogeneous due to the varying composition of their
constituents. For instance, polycrystalline materials generally show an elastic anisotropy
due to texture and the anisotropy of single crystallites. The polycrystalline and composite
materials which show high anisotropy are used in many applications in industry.
Anisotropic materials become the material of choice in a variety of engineering applications
in the last century and these materials exhibit various symmetry types which can be listed
from lower to higher symmetries as triclinic, monoclinic, tetragonal, trigonal, transversely
isotropic, cubic. However the type of material symmetry possessed by textured anisotropic
materials of geological and biological origin is often a little ambiguous. The ambiguity
stems from material variation in the degree of anisotropy in textured materials, from the
accuracy of the reported elastic constants and from the accuracy needed for an application.
So a person who applies anisotropic elasticity can encounter the following question: For an
anisotropic material with known elastic constants, what is the effective elastic constants to
represent the material in any specified material symmetry. The answer to that question is
presented here.
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According to Hill (1952; 1963); the material with triclinic or greater symmetry can be
either a polycrystalline material or a composite material or a single crystalline material. In
polycrystalline materials, the relation between the elastic properties of single crystals and of
“quasi-isotropic' bodies made up of a large number of small single crystallites disposed at
all possible orientations has been investigated by Reuss (1929) and Voigt (1928).

Voigt (1928) took the averages of stiffness tensor ( C;; ) of the crystallites while Reuss
(1929) took the averages of compliance tensor ( S;i ) of the crystallites. Anisotropic

Hooke's law is summarized and Kelvin inspired formulation of anisotropic Hooke's law is
presented in Dinckal (2011).

The effective anisotropic elastic constants, K., G,  Egop  Veys Of a triclinic

material must satisfy the following bounds:
kR <k, <k, Gt <G, <G, (1)

EFf<E, <EY, v <v, <vR @)
Where the superscript V stands for Voigt bound on K , Gy , Eg . Ve and R

stands for Reuss bound on K , Gy , E. , Vo . The Voigt bound is based on an

assumed uniform strain, in other words, Voigt assumes the same deformation in all the
grains (uniform deformation) and the Reuss bound is based on an assumed uniform stress
which means the same stress in all the grains (Hearmon, 1961; Nye, 1957)

The purpose of this work is to construct bounds on the anisotropic elastic constants for all
anisotropic elastic symmetries in terms of elasticity and compliance tensors.

In the present paper, bounds on the anisotropic elastic constants for each material symmetry
type have been constructed in section 2. In addition, numerical examples are given in
section 3. Finally, in the last section, the results of numerical implementations are discussed
and conclusions pertinent to this work are stated.

2 BOUNDS ON THE ANISOTROPIC ELASTIC CONSTANTS

Upper bounds are denoted by K" ( bulk modulus of Voigt ) G" ( shear modulus of
Voigt ) pR (Poisson's ratio of Reuss) EY ( 'Young's modulus of Voigt) Lower bounds
are kK®( bulk modulus of Reuss) G ®( shear modulus of Reuss ), v ( Poisson's

ratio of Voigt ), ER( Young's modulus of Reuss ). The effective anisotropic elastic
constants are K ( effective bulk modulus ), G, ( effective shear modulus ), v (

effective Poisson's ratio ) and E ( effective Young's modulus). For material
symmetry types, the bounds and effective elastic constants are denoted by adding the
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abbreviation of each symmetry name to the corresponding constants. For instance, for cubic

symmetry, upper bounds are denoted by KY'C ,GY:C*  pRCUPEV.CUD - hyey
bounds are kTP GRCUP - V.Cub ERCUD 444 effective anisotropic elastic constants
are denoted by K$°, GSY%  vSif and ES™. The effective anisotropic elastic
constants, kI°,  GJ'S vl and EL' of a triclinic material must satisfy the
following bounds:

kR,Tric < k;’f;ic < kV,Tric’ GR,Tric < G;;ic < GV,Tric' (3)
R,Tric Tric V,Tric V ,Tric Tric R,Tric
E <Eg4 <E , v SV Sv 4)
ki, Gl vi® | EX' are the best sets of elastic constants which should lie

between the above bounds. For a triclinic material, the Voigt bounds in terms of elasticity
tensors are

ATric | aTric | ATri ATric | ATric | ATri
e _ G+t 65" 2(65° 46" +65) )
9 9
ATric ATric ATric ATric ATric ATric aTric ATric ATric
GV,Tric — Cll + CZZ + C33 _ 012 + C23 + Cls + 3(044 + CSS + CGG ) (6)
15 15 15

where KY'™™ represents the bulk modulus of Voigt and G"'™™ represents the shear
modulus of Voigt. Young's modulus and Poisson ratio of VVoigt are obtained by substituting

V,Tri V,Tri -
the values of K"''™ and G"''" in

\AAY
EV,Tric — 276 k . (7)
3GY +9kY
e 1 3G"
VV,TI’IC — = 1_ - -, (8)
2 3k +G
where vV and EVTC represent the Poisson's ratio and Young's modulus of Voigt

respectively and they are also expressed in terms of elasticity tensors as

e _ L[ B(EIT" + 615"+ €71%) ~8(EIF" + 615" + 611%) ~ 2(C15 + €1 + 1) ©)
2| B+ e+ Cl) —O(EIT  El 6 + (Ghr - C
cvre _ (i+20)(— j+3K) (10)

6i+9j+3k
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ATric , ATric | ATric H AT

Whel’e i = Cll +022 +C33 1 J = CIZ _'[C23 + ;.r3i and
Kk = 617 + 610 4 6T

kV,Tric R,Tric

V . Tri i .. ..
, Gy . EY'T"® are upper bounds. In similar way, for a triclinic
material, Reuss bounds in terms of compliance tensors are

k R, Tric — 1 (11)
aTric aTric aTric aTric aTric aTricy ’
S11 + s22 + 533 + 2(812 + SZ3 + 513 )

G R,Tric __ 15 (12)
- aTric aTric aTric aTric aTric aTric aTric aTric aTricy ©
4(311 + S22 + S33 ) - 4(312 + SZ3 + s].3 ) + 3(544 + 355 + SGG )

Where KR represents the bulk modulus of Reuss and G™ ™ represents the shear
modulus of Reuss. Poisson ratio and Young's modulus of Reuss are obtained by substituting

R, Tri R,Tri -
the values of K™'™ and G™'" in

R
VR,Tric _ E 1 3G

2] 3kF+GF
R, R

ER,Tric — 27G k (14)

3G" +9k"
Where VR and ER™ represent the Poisson's ratio and Young's modulus of Reuss
respectively and they are also expressed in terms of compliance tensors as

aTric | aTric | aTri aTric | aTric | aTri aTric | aTric | aTri
pRTIiC _ 1|: 54:1|C + Ssélc + Seglc — Z(Sllm + szglc + 33£|C) _8(312rIC + Szglc + 51;6):| (15)
aTric | aTric | aTri aTric | aTric | &Tri aTric | aTric | aTric |
2 3(51{“3 + SZZIC + SBEIC) + 2(312”(3 + SZ;IC + Sl?:IC) + s4trllc + SSQC + SG(;IC

E R,Tric __ 15 (16)

- aTric aTric aTric aTric aTric aTric aTric aTric aTric *
3(Sll + SZZ + S33 ) + 2(812 + S23 + Sl3 ) + S44 + S55 + SGG

R, Tri R, Tri V,Tri R, Tri
ke gt v ERITC are Jower bounds.

2.1 Bounds for Cubic Symmetry

For cubic symmetry there are three independent Voigt ( €, *°,€,5", €},°*® ) and Reuss

AR,Cub aR,Cub
( S11 '512 1
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§f4’C”b ) elastic constants. These constants are used to construct bounds for cubic
symmetry. The upper bounds are denoted by k''¢**, ~GY.cub RcCub  pV.Cub
The lower bounds are denoted by k¢, GRCub —V.Cub ERCUb Tpe effective

. . . Cub Cub Cub Cub : :
anisotropic elastic constants, K, Gg s Vg and E" of acubic material must

satisfy the following bounds:

R,Cub Cub V,Cub R,Cub Cub V,Cub
kRO < S <V Cub, GRCP < GO < GV, (17)
R,Cub Cub V,Cub V,Cub Cub R,Cub
E <Egs <E , v Svg Svi (18)
kS, GSP vS™, ES™ are the best sets of elastic constants of a cubic material which

should lie between the above bounds. The bulk modulus of Voigt for cubic symmetry can
AaV,Cub aV,Cub

be obtained by substituting C;; ", C;, into the equation (5) and it becomes

AV,Cub AV,Cub

G, +2C,
The shear modulus of Voigt for cubic symmetry can be obtained by substituting Cl’l’C“b,
€5 6Y;°" into equation (6), then the equation takes the form

AV,Cub AV,Cub AV,Cub

¢, —C, " +3C,
GV,CUb — 11 12 44 (20)

5

Poisson ratio of VVoigt for cubic symmetry is obtained by substituting the values of KV-cub
and GY'"°* in

1 3GV,CUb
v =211 V.Cub V.Cub |’ (21)

2 3k +GT

where vV ¢ represents the Poisson's ratio of Voigt for cubic symmetry and it is also
expressed by putting the appropriate elastic constants of a cubic material

AV, Cub AV, Cub AV, Cub
VV,Cub:l|:15C11 ) _24C12 ) _6C44 ) } (22)

2| 186, ;<" — 2767, + 3¢, *°
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Young's modulus of Voigt for cubic symmetry is obtained by substituting the values of

kV,Cub and GV,Cub in

\ \%
v.Cub 27G ,Cubk ,Cub

- 3GV,Cub +9kV,Cub ) (23)

Where EY-C° represents the Young's modulus of Voigt for cubic symmetry and it is
also expressed by putting the appropriate elastic constants of a cubic material

(24)

EV,Cub 3 (él/l Cub + 2CV CUD)(C;_/l Cub AV Cub +3CV Cub)
66,7 +96);° +3cv Cub -

The bulk modulus of Reuss for cubic symmetry can be obtained by substituting

g SR into the equation (11), then it takes the form
1
k R,Cub __ (25)

3§1Rl Cub + 6§1R2 Cub *

The shear modulus of Reuss for cubic symmetry can be obtained by substituting
g gRCUP §RCW into equation (12), then this equation becomes

15

: : " (26)
1251Rl Cub —1281R2 Cub + 95E4CUb

GR Cub __

Poisson ratio of Reuss for cubic symmetry is obtained by substituting the values of K R.Cub

R,Cub .
and G in

. 1 3G R,Cub
e = E{l_ 3K RCb GR,Cub:|' @7)

Where v ¢° represents the Poisson's ratio of Reuss for cubic symmetry and it is also
expressed by putting the appropriate elastic constants of a cubic material
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AR,Cub AR,Cub AR,Cub
R,Cub:l Sas ) _24512 ) _6511 ) (28)
2 3§Z:CUb+9§lR1'CUb—6§lR2'CUb

Young's modulus of Reuss for cubic symmetry is obtained by substituting the values of

kR,Cub and GR,Cub in

R,Cubj, R,Cub
grow_ 216 TR 9
3G 4+ gk R

where ERCP represents the Young's modulus of Reuss for cubic symmetry and it is also
expressed in terms of compliance tensors as

5
ERCP = : (30)
aR,Cub aR,Cub |, aR,Cub
38+ 287+ 8,
2.2 Bounds for Isotropic Symmetry
For isotropic symmetry, there are two independent Voigt (

&R, 1 &R, 1 . . .
§7 0,8, ) elastic constants. These constants are used to construct bounds for isotropic

’ Sl?_
V, Iso V,lIso R,Iso V,lIso
symmetry. The upper bounds are denoted by k"' *°, G , v, E . The

lower bounds are denoted by KT, GR'se  yViIso ERISC The effective

AV,Iso AV, lIso
C;; 7 ,C, ) and Reuss (

. . . | | | | . . .
anisotropic elastic constants, Ky, G,y Verr and E  of an isotropic material

must satisfy the following bounds:

kR,Iso < kelf?fo < kV,Iso’ GR,Iso < Gelso < GV,lso, (31)
R, Iso Iso V, Iso V, Iso Iso R, Iso

E"" <Eg <E™, Vi Sy SvT T, (32)
ke, GEe v ELX® are the best sets of elastic constants of a isotropic material

which should lie between the above bounds. The bulk modulus of Voigt for isotropic

symmetry can be obtained by substituting  €);*°,  €);'®* into equation (5) so the

equation takes the form
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AV, Iso AV, Iso
kV, Iso — Cll -;2012 . (33)

The shear modulus of Voigt for isotropic symmetry can be obtained by substituting

AV, lIso AV, lIso AV, lso

C; + C,, C,  intoequation (6) then it becomes

(CV Iso AV Iso
AV,lso _ 11
(where €, = f )
AV, lIso AV, Iso
C,,  —C., "
GV,ISO — 11 12 CV ISO (34)

2

Poisson ratio of Voigt for isotropic symmetry is obtained by substituting the values of
kV,Iso and GV,Iso in

1 BGV, Iso
p == | (35)
2 3kV,ISO +GV,ISO
where V¥ represents the Poisson's ratio of Voigt for isotropic symmetry and it is also

expressed in terms of elasticity tensors as

VV, Iso — 1|:126]\./l = 216;./2 = } (36)

2| 136, —19¢/,"°

Young's modulus of Voigt for isotropic symmetry is obtained by substituting the values of
kV,Iso and GV,Iso in

27GV,IsokV,Iso

EV,lSO — )
3GV,Iso +9kv,lso

@37)
Where EY'° represents the Young's modulus of Voigt for isotropic symmetry and it is

also expressed in terms of elasticity tensors as
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EV,Iso _ (él/l Iso + 261/2 ISO)(SCI/:L, Iso —561/2 Iso
- AV, Iso AV, Iso
15¢,; ™ +15C;,
The bulk modulus of Reuss for isotropic symmetry can be obtained by substituting

§5"°, 855 into the equation (11), it becomes

(38)

1
KRbMO = (39)
3§1F§-,ISO +6§1R2,ISO
The shear modulus of Reuss for isotropic symmetry can be obtained by substituting

§%0, 85 8% into equation (12), then it takes the form

1
Gk = : 40
TCRERERD w

Poisson ratio of Reuss for isotropic symmetry is obtained by substituting the values of
kR,Iso and GR,Iso in

Riso _ 1 3GH*e
VTR | “

Where v’ represents the Poisson's ratio of Reuss for isotropic symmetry and it is also

expressed in terms of compliance tensors as

§R,ISO
Riso _ 12
4 T &R/so " (42)

S11

Young's modulus of Reuss for isotropic symmetry is obtained by substituting the values of
kR,Iso and GR,ISO in

. 27G R,|50kR,|SO
E Y = R, Iso R,Iso *
3G +9k

(43)

Where ER'° represents the Young's modulus of Reuss for isotropic symmetry and it is
also expressed in terms of compliance tensors
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ER,lSO _ 45

S, R (44)
36SlRl, Iso +9SlR2, Iso

2.3 Bounds for Tetragonal Symmetry
For tetragonal symmetry, there are six independent VVoigt and Reuss elastic constants.

- - . AV, Tet AV, Tet AV,Tet AV, Tet AV,Tet AV, Tet -

Voigt elastic constants: C;; .C, ,Cs .Ci ,Ch ,Cee .Reuss elastic
. AR, Tet aR,Tet aR,Tet aR,Tet gR,Tet aR,Tet

constants:  S;7 " ,S5  ,S3 1S3 1Ss ,Sge  -These constants are used to

construct bounds for tetragonal symmetry. The upper bounds are denoted by kV’TEt,

GV yRTEL BV The lower bounds are denoted by kT, GRTe!

V,Tet R, Tet . . . . Tet Tet Tet
v, ETT® . The effective anisotropic elastic constants, Ky, Gg, Ve and

EeTf?t of a tetragonal material must satisfy the following bounds:

kR,Tet < keTf(fet < kV,Tet, GR,Tet < GeTftfet < GV,Tet' (45)
ER,Tet < E;rf?t < EV,Tet, VV,Tet < V;rf?t < VR,Tet. (46)

Tet Tet Tet Tet .
kef? , Gef‘f9 , Vef}* and Eef? are the best sets of elastic constants of a tetragonal

material which should lie between the above bounds.

The bulk modulus of Voigt for tetragonal symmetry can be obtained by substituting
ET, ELT, 65™, 6™ into the equation (5), then it takes the form

AV Tet | AV, Tet AV Tet | naV,Tet
KV Tet _ 26, +Cy n 2(C; " +265 ) _
9 9

(47)

The shear modulus of Voigt for tetragonal symmetry can be obtained by substituting
ET, GG 6™, 6YTeNe"e  into equation (6), then this equation

becomes

Caq

15 15 15

AV, Tet AV, Tet AV, Tet AV, Tet AV, Tet AV, Tet
GV,Tet — 2C11 + C33 _ C12 + 2('.:13 + 3(2 + C66 )

(48)

Poisson ratio of Voigt for tetragonal symmetry is obtained by substituting the values of
kV,Tet and GV,Tet in
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. l 3GV,Tet
v = E[]‘_ 3KV T gVl }’ (49)

where vV represents the Poisson's ratio of Voigt for tetragonal symmetry and it is also
expressed in terms of elasticity tensors as

AV, Tet AV, Tet AV, Tet AV, Tet AV, Tet AV, Tet
vre 1 10¢;,; ™ +5C,;; ~ —8€C;, ~ —16C; ~ —4C,, ~ —2C4 (50)
2

Py AV Tet AV, Tet AV Tet AV Tet AV, Tet | AV, Tet
12¢, " +6C;; ~ —9C,, ~ —18C;; "~ +2C,,  +Cq

Young's modulus of Voigt for tetragonal symmetry is obtained by substituting the values of
kV,Tet and GV,Tet in

V,Tety, V,Tet
EV.Tet _ 27\/Cit k B 1)
3GV 4 9kV ™™

where EV'™ represents the Young's modulus of Voigt for tetragonal symmetry and in

terms of elasticity tensors, it is also expressed as

AV, Tet AV, Tet AV, Tet AV, Tet AV, Tet AV, Tet
EV,Tet — (I + 2012 + 4C13 )(I —Cp,  — 2013 + 6044 +3C66

,» (52)
AV, Tet AV, Tet AV, Tet AV, Tet
61 +9¢,, © +18C; © +6C,; © +3Cq
where | =26, +€Y;™. The bulk modulus of Reuss for tetragonal symmetry can be
obtained by substituting §7 7, 855, 8%, 85™  into the equation (11), then it takes
the form
R, Tet 1
k™' = (53)

2§1R1,Tet +§§éTet +2(§1R2,Tet +2§1|??;Tet )

The shear modulus of Reuss for tetragonal symmetry can be obtained by substituting

AR, Tet aR,Tet AaR,Tet aR,Tet AR, TetaRTe - . . -
Sit »Sis 1S3 1S3 Sia 1 Se into equation (12), then this equation
becomes

RTet _ 15

(54)

o aR,Tet | aR,Tet aR,Tet aR,Tet aR,Tet | aR,Tety *
42877 +S5 ) —AS; T 285 7)) +3(28,, 7 + S
Poisson ratio of Reuss for tetragonal symmetry is obtained by substituting the values of
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kR,Tet and GR,Tet in

R Tet 1 3G R, Tet
S e | 9
Where vR T represents the Poisson's ratio of Reuss for tetragonal symmetry and it is

also expressed by putting the appropriate elastic constants of a tetragonal material

aRTet | aR,Tet aR,Tet aR,Tet aR,Tet aR,Tet
R/Tet _ 1 Sag tSe6 4511 — 2533 — 8512 _16513 (56)
2 6§lRl,Tet +3§§31Tet + 2§1R2,Tet + 4§1R3,Tet + 2§f4,Tet + §§éTet

Young's modulus of Reuss for tetragonal symmetry is obtained by substituting the values of
k R, Tet and G R, Tet in

R Tet), R Tet
ERT = 27RC';I'I ‘ RTet * (57)
3GRT 49k

Where ERT™ represents the Young's modulus of Reuss for tetragonal symmetry and it is
also expressed by putting the appropriate elastic constants of a tetragonal material

ERTet _ 45

(188%™ + 985%™ 1+ 68T +1281 ™ + 68T +38%T)

(58)

2.4 Bounds for Transversely Isotropic Symmetry

For transversely isotropic symmetry, there are five independent Voigt and Reuss elastic
constants Voigt elastic constants: €}y ™", €)%, 65T, €Y7, €1, . Reuss

AR, Trans aR,Trans aR,Trans aR,Trans aR,Trans

elastic constants: S, °, S, ' Si3 +S3s 1S . These constants are used to
construct bounds for transversely isotropic symmetry. The upper bounds are denoted by
KV.Trans -~ @gV.Trans - RiTrans - pV.Trans 1o jower bounds are denoted by k™",

R,Trans V,Trans R,Trans
G , VvV E

. The effective anisotropic elastic constants, KJi*"

T T T . . . .
Gy Verr and Eg™™ of a transversely isotropic material must satisfy the
following bounds:

kR,Trans < kaFanS < kV,Trans, GR,Trans < G;I’f;ans < GV,Trans’ (59)
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R,Trans Trans V,Trans V,Trans Trans R,Trans
E <Eg4 <E , v Vg SV . (60)
Trans Trans Trans Trans
Kett ~ + Gett o Vet + Ee

isotropic material which should lie between the above bounds. The bulk modulus of Voigt

for transversely isotropic symmetry can be obtained by substituting €)™, €/;T",

;" €y into the equation (5), then it takes the form

are the best sets of elastic constants of a transversely

AV,Trans , AV,Trans AV, Trans AV, Trans
20, +Cs3 n 2(Cr; +265 )

kV,Trans — (61)

9 9
The shear modulus of Voigt for transversely isotropic symmetry can be obtained by
substituting €)™, €57, 657,65, €1LT™™ into equation (6) then this

equation becomes

AV, Trans AV, Trans AV,Trans _ HaV,Trans AV ,Trans
Gv,Trans — 7C11 _5012 + Ca3 2C13 2044

30 15 S)

(62)

Poisson ratio of Voigt for transversely isotropic symmetry is obtained by substituting the
values of K" and GY'™™" in

1 3GV,Trans
VV,Trans —=|1- ) 63
2 3kV,Trans + GV,Trans ( )

Where V""" represents the Poisson's ratio of Voigt for transversely isotropic symmetry

and it is also expressed by substituting the appropriate elastic constants of a transversely
isotropic material

AV, Trans AV, Trans AV, Trans AV, Trans AV, Trans
V. Trans _ 1 9Cll + 5033 — 7012 _16013 — 4C44 (64)
2 25 AV, Trans AV, Trans 19 AV, Trans AV, Trans AV, Trans .
7c11 +6C,; —?c12 -18¢,; """ +2¢,,

Young's modulus of Voigt for transversely isotropic symmetry is obtained by substituting
the values of kYT ang GV Trans i
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V,Trans), V,Trans
EV,Trans: 27G k (65)

3GV,Trans+9kV,Trans )
Where EY'T™"  represents the Young's modulus of Voigt for transversely isotropic
symmetry and it is also expressed by putting the appropriate elastic constants of a
transversely isotropic material

gV Trans _ MN

0

where m = Zél/l,Trans + é;/éTrans 4 Zéllz,Trans + 461/3’“6”5

(66)

7 . SIR A A A

n=— Clll,Trans v Cllz,Trans + C;/?;Trans _ zcl/?),Trans + GCXA:Trans and
2 2
27 . R 15 R A

0= ? Clll,Trans + 6C;/3,Trans + ? CIIZ,Trans + 18Cl/3,Trans + GCXiTrans

The bulk modulus of Reuss for transversely isotropic symmetry can be obtained by
substituting 37", 875", §X,T™ SR T into the equation (11), then it takes the

form

kR,Trans _ 1

~ AaR,Trans , aR,Trans aR,Trans aR,Transy
28 TSy T H2(8; T +255 )

(67)

The shear modulus of Reuss for transversely isotropic symmetry can be obtained by

o A A A A AR.T . .
substituting 87571, g Trane gRIAns g Irans - gXTIAT into equation (12), then

equation (12) takes the form

GR,Trans _ 15

= i (68)
AR, Trans AR, Trans AR, Trans AR, Trans AR, Trans
1487 +48;; —-10s;, —8S; +6$,,

Poisson ratio of Reuss for transversely isotropic symmetry is obtained by substituting the
values of K®™™" and GRT™"™ in

1 3G R,Trans
VR,Trans —=|1- ’ 69
2|: 3k R,Trans+GR,Trans:| ( )

where 1R TTans represents the Poisson's ratio of Reuss for transversely isotropic symmetry
and it is also expressed in terms of the appropriate elastic constants
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1 §R,Trans_2§R,Trans_10§R,Trans _16§R,Trans
VR,Trans _ = 44 33 12 13 (70)

AR, Trans AR, Trans AR, Trans AR, Trans
2| 88 +38;, T +48; T+ 28,

Young's modulus of Reuss for transversely isotropic symmetry is obtained by substituting

R, T R, T -
the values of k™' and G™'™"™ jn

R, T R, T
R Trans _ 27G ransk rans 71
- 3G R,Trans +9k R,Trans * ( )

Where E®T@™  represents the Young's modulus of Reuss for transversely isotropic
symmetry and it is also expressed in terms of the appropriate elastic constants of a
transversely isotropic material

E R,Trans __ 45

=— - - — . (72)
24SlRl,Trans + 9S3R31Trans 4 1281F€3,Trans 4 6SEATrans

2.5 Bounds for Trigonal Symmetry
For trigonal symmetry, there are six independent VVoigt and Reuss elastic constants.

Voigt elastic constants: €)™, 659,659, €Y, ™9, €59, 6Y ™. Reuss elastic
constants: §T"9, §5T19 gRTM9 gRTMG §RTMG §RTMO These constants are used to
construct bounds for trigonal symmetry. The upper bounds are denoted by kV'T”g,
GY:TMe  yRIMe EVATHC The ower bounds are denoted by K®™¢, GRTr'¢
y\' M9 ERTN9 The effective anisotropic elastic constants, K29, GlIH9 vl
and Eg" of atrigonal material must satisfy the following bounds:

kR,Trlg Sk;’f;lg SkV'Tng, GR,Trlg SGeTf;‘lg SGV’Tng, (73)

R, Trig Trig V,Trig V,Trig Trig R, Trig
E <Eg4 <E , 1% SV SV (74)

Ki9, Gi® , vii®, E&' are the best sets of elastic constants of a trigonal material
which should lie between the above bounds. The bulk modulus of Voigt for trigonal
symmetry can be obtained by substituting €™, €5™%, €5, €3 into the

equation (5), then it takes the form
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V,Trig AV, Trig AV, Trig AV, Trig
26, + €55 N 2(¢, ™ +2C5
9 9
The shear modulus of Voigt for trigonal symmetry can be obtained by substituting

AV, Trig AV,Trig AV,Trig AV,Trig VTrlg . .
Ci °,y C ".,C3 ",Cy °, C, into equation (6) so it becomes

(79)

kV,Trig —

7C¥1T“g 5C]V2Tr|g é;/éTrig _ Zéi/éTrig 2621/4Tr|g
+ + :

30 15 5

GV,Trig — (76)

Poisson ratio of Voigt for trigonal symmetry is obtained by substituting the values of

kV,Trig and GV,Trig in

vorig 1 3G" ™
v ’ _E 1- 3kV,Trig +GV,Trig : (77)

Where vV'T9 represents the Poisson’s ratio of Voigt for trigonal symmetry and it is also

expressed by putting the appropriate elastic constants of a trigonal material

V,Trig AV Trlg AV, Trig AV, Trig _ AV,Trig
9¢;; " +5€ -7¢, 16¢;; 4¢, _ (78)

25 129 él/z,Tng 186¥3T”g +2 V Tr|g

V,Trig __

_1
2

,Trig AV, Trig
=)™ 1+ 66Y,

Young's modulus of Voigt for trigonal symmetry is obtained by substituting the values of
kV,Trig and GV,Trig

V,Trig|,V,Trig
gvig __21G k 79)

3GV ,Trig +9kv ,Trig *

Where EY:T9 represents the Young's modulus of Voigt for trigonal symmetry and it is
also expressed in terms of the appropriate elastic constants of a trigonal material

i r
gvomria - P (80)
S
where p 2CV ,Trig + év ,Trig + ZCV ,Trig +4¢ V ,Trig

T o 1ria 9D A A
r= _CV,Trlg C¥2Tr|g + CV ,Trig 2C¥3Tng +66 V Tng

211
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27 v i v 15 . - i
and S:?Cl/l,Trlg +6C:\3/?;T“g +?Ci/2,Tr|g +18Cl/3,Tr|g +6CX4TH9.

The bulk modulus of Reuss for trigonal symmetry can be obtained by substituting
§5 119,859 R T §R T into the equation (11), and then it takes the form

k R, Trig __ 1
~ ~aR,Trig , aR,Trig aR,Trig AR, Trigy "
2870 4853 T +2(S; " +285)

(81)

The shear modulus of Reuss for trigonal symmetry can be obtained by substituting

gRTrig gRTrig gRTrig gRTr  gRTM9 jnto equation (12), then it becomes
GR,Trig _ 15 (82)
- AR, Trig AR, Trig AR, Trig AR, Trig aR,Trig *
1487 "% + 48,77 —10S; "™ —8S5 "7 +6S,,

Poisson ratio of Reuss for trigonal symmetry is obtained by substituting the values of
kR,Trig and GR,Trig in

RTrig 1 3G R,Trig
4 Y= E|:1_ 3k R,Trig +G R,Trig | * (83)

Where 1R represents the Poisson's ratio of Reuss for trigonal symmetry and it is also
expressed in terms of the appropriate elastic constants of a trigonal material

—— —— — — (84)
2| 8839 +385TM 44819 4 288

aR,Trig AR, Trig AR, Trig aR,Trig
pRTrig =l|:2344 —25; ~ —10s; " —165; }
Young's modulus of Reuss for trigonal symmetry is obtained by substituting the values of
kR,Trig and GR,Trig in

) R,Trig|, R, Trig
g _ 276" -
3G , r|g+9kR,Trlg

Where ERTMO represents the Young's modulus of Reuss for trigonal symmetry and it is
also expressed in terms of compliance tensors as
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ER,Trig _ 45
- AR, Tri AR, Tri AR, Tri aR,Trig *
248770 +98,, T +128, ™ + 65,

(86)

2.6 Bounds for Monoclinic Symmetry
For monoclinic symmetry, there are thirteen independent VVoigt and Reuss elastic constants.
Voigt elastic constants:

AV,Mon AV,Mon AV,Mon AaV,Mon AV,Mon AV,Mon AV,Mon AV,Mon AV,Mon AaV,Mon
Cll ' C12 ’ C13 ' C15 ' C22 ' C23 ! C25 ! C33 ' C35 ' C44 '

AV,Mon AaV,Mon AV, Mon
C46 ! C55 ! CG6

Reuss elastic constants:

&R,Mon aR,Mon aR,Mon aR,Mon gaR,Mon aR,Mon aR,Mon aR,Mon &aR,Mon aR,Mon
Sll ! 312 ! S13 ! S15 ! S22 ’ S23 ! SZS ! SB3 ! S35 ! S44 ’

&R,Mon aR,Mon aR,Mon
S46 ’SSS ’866

These constants are used to construct bounds for monoclinic symmetry. The upper bounds
are denoted by kV,Mon GV,Mon VR,Mon EV,Mon

i) )
by kR,Mon, GR,Mon’ VV,Mon ER,Mon

. The lower bounds are denoted

. The effective anisotropic elastic constants,

Mon Mon Mon Mon

off eff » Vet and Eg of a monoclinic material must satisfy the following
bounds:
kR,Mon S kel\fllfon S kV,MOH' GR,MOH S Gel\:fon S GV,MOH’ (87)

R,Mon Mon V,Mon V,Mon Mon R,Mon
E <Ey <E , 1% Vg SV : (88)

MM GET v and EN" are the best sets of elastic constants of a monoclinic

material which should lie between the above bounds. The bulk modulus of Voigt for
monoclinic symmetry can be obtained by substituting Yy, Z, Z into the equation (5),
this equation takes the form

kV,Mon _ X+£

= : 89
9t g (89)

__aV,Mon , AV,Mon , aV,Mon
Where y=C;; +C,, +Cy3

__ AV,Mon AV ,Mon AV ,Mon
2=C, 4G +C

. aV,Mon , AV,Mon , AV,Mon
y L=Cj,  +Cy +C5 and

The shear modulus of Voigt for monoclinic symmetry can be obtained by substituting Y,
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Z, 7 intoequation (6) then it becomes
y—-2+3z
15

GV,Mon _

(90)

Poisson ratio of Reuss for monoclinic symmetry is obtained by substituting the values of
kV,Mon and GV,Mon in

on 1 SGV,MOH
v :E|:1_3kV,Mon+GV,Mon:| J (91)

Where vV-Mo" represents the Poisson's ratio of Voigt for monoclinic symmetry and it is

also expressed by putting the appropriate elastic constants of a monoclinic material

VVvMon_l S5y-8z-2z ©2)
2| 6y-92+z |

Young's modulus of Voigt for monoclinic symmetry is obtained by substituting the values
of kY"M" and GV'M" in

V,M V,M
V.Mon 27GY onk ,Mon

= ) 93
SGV,Mon +9kV,Mon ( )

Where EY-M" represents the Young's modulus of Voigt for monoclinic symmetry and it
is also expressed in terms of elasticity tensors as

EV,Monz(y+22)(y_z+32). (94)
6y+972+3z

The bulk modulus of Reuss for monoclinic symmetry can be obtained by substituting Y,
W, U into the equation (11), and then it takes the form

1
KMo = ———, (95)
Y+ 2W
where  § =83 MM 4 gRMON 4 GRMON 1y = R Mon 4 gRMon L gRMon ang
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A _ aR,Mon |, aR,Mon , aR,Mon
G=8,,""+8:"" + 8

The shear modulus of Reuss for monoclinic symmetry can be obtained by substituting Y,
W, U into equation (12), then the equation becomes

GR,Mon :LA (96)

Poisson ratio of Reuss for monoclinic symmetry is obtained by substituting the values of
kR,Mon and GR,Mon in

on 1 3GR,MOH
vl :E{l_ 3kR,Mon+GR,Mon:| ' (97)

Where v7Mon represents the Poisson's ratio of Reuss for monoclinic symmetry and it is

also expressed in terms of the appropriate elastic constants as

Jron _ L {a—zy—wv}

= P (98)
3y+2w+U

2

Young's modulus of Reuss for monoclinic symmetry is obtained by substituting the values
of k¥M" and GRMM

RiMon 27GR,MonkR,Mon
- 3GR,M0n+9kR,Mon ’ (99)

Where ERMo represents the Young's modulus of Reuss for monoclinic symmetry and it
is also expressed by putting the appropriate elastic constants of a monoclinic material

ERMN = — 15A —. (100)
3y+2w+U

3 NUMERICAL EXAMPLES OF THE BOUNDS FOR VARIOUS TYPES OF
MATERIAL SYMMETRIES

Numerical examples of the bounds for cubic, isotropic, tetragonal, transversely isotropic,
trigonal, monoclinic, triclinic media are presented. Voigt elastic constants and Reuss elastic
constants of selected materials are given for each corresponding anisotropic symmetry type.
These data are used to compute the lower and upper bounds on the anisotropic elastic
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constants for all types of materials. Numerical bounds on the anisotropic elastic constants
are calculated by MATLAB for all types of material symmetries. The units of Voigt elastic

constantdataand GY, kY, EY, vV forall material symmetry types are GPa. The
units of Reuss elastic constant data and GR, kR, ER, vR for all material

symmetry types are (TPa) -
3.1 For Cubic Media

Table 3.1:Voigt elastic constant data of cubic media

Cubic Media gV.Cub | AV, Cub aV.Cub
11 12 44

Diamond,C (Grimsditch and Ramdas, 1975) 1040 |170 550
Platinum(Pt)(Macfarlane,Rayne and Jones, 1965) 347 251 76.5
Beryllium oxide(BeO) (Martin, 1972) 381 147 200
Rubidium silver iodide(RbAg , I 5 ) (Graham and Chang, 1975)[ 16.5 | 9.34 4.89
Thallium manganese chloride(TIMNnCI 5 ) 448 |28.3 16.1
(Aleksandrov, Anistratov, Krupnyi, et al. 1975).

Table 3.2: Reuss elastic constant data of cubic media

Cubic Media gR.Cub gR.Cub gR.Cub
11 12 44
Diamond,C (Grimsditch and Ramdas, 1975) 1.01 -0.14 1.83
Platinum(Pt) (Macfarlane,Rayne and Jones, 1965) 7.35 —3.08 13.1
Beryllium oxide(BeO) (Martin, 1972) 3.35 —-0.93 5.01
Rubidium silver iodide(RbAg , | ; ) (Graham and Chang, 103 -37 204
1975)
Thallium manganese chloride(TIMnCI ;) 43.7 -169 |62.1
(Aleksandrov, Anistratov, Krupnyi, et al. 1975).
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Table 3.3: Lower bounds on cubic elastic constants

Cubic Media G RoCub K R:Cub | ER.Cub VY cub
Diamond,C 495.5 456.6 |1091.7 |0.099
Platinum(Pt) 61.7 280.1 (1725 0.393
Beryllium oxide(BeO) 155.5 223.7 | 378.8 0.203
Rubidium silver iodide(RbAg , | 5 ) 4.30 115 |[114 0.334
Thallium manganese chloride (TIMnCI ;) |11.7 33.7 |314 0.330
Table3.4: Upper bounds on cubic elastic constants

Cubic Media GV Cub KV Cub EV.Cub || R.Cub
Diamond,C 504 460 1107.5| 0.102
Platinum(Pt) 65.1 283 181.4 |0.397
Beryllium oxide(BeO) 166.8 225 401.3 | 0.218
Rubidium silver iodide (RbAg , 1 ) 4.37 11.7 11.7 0.335
Thallium manganese chloride (TIMnCI , )  [12.96 33.8 345 |0.345

3.2 For Isotropic Media
For some materials, it is possible to make approaches from cubic symmetry to isotropic
symmetry. With cubic symmetry, three independent elastic constants are needed. If the

medium is elastically isotropic, the elastic properties are independent of direction and only

. . . ~ AV,lso , ~ AV, lso ,
two independent elastic constants are required. These constants are > €,; " "and * €/

The  relationship  between  the  cubic  and isotropic ~ symmetry  is

2% €y, =€), — ), . By this equality, we can get the anisotropy ratio which is

AV,Cub
2-C,,

demostrated by A and A= (m) A s unitless. The degree of anisotropy
Ci1 —C3

is measured by the deviation of A from the value A =1 , characteristic of an isotropic

medium. If the deviation from 1 is small, then we can say that the material is practically
isotropic. Voigt and Reuss elastic constants of some nearly isotropic materials are given in
Tables 3.5 and 3.6 respectively.

Table 3.5: Voigt elastic constant data of isotropic media

n . AV,Cub AV,Cub | AV,Cub

Isotropic Media ey e e | e A

/Aluminium (Robrock and Schilling, 1976). 108 62 28.3 [1.23

Alloy:  Aluminium-magnesium at %7.7 Mg 103 57 29 1.26
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(Gault,
Boch and Dauger, 1977)

(Gault,
Boch and Dauger, 1977)

Alloy: Aluminium-magnesium at %4.5 Mgl 104

58 28.8

1.25

1975).

Alloy: Titanium-Vanadium at %53 V (Fisher|177.3

114.7 | 41.3

1.32

Saunders, 1977)

Alloy:Lead-indium at %9 In (Madhava andl 59.70

33.70 |13.90|1.10

Table 3.6: Reuss elastic constant data of isotropic media

Isotropic Media gR.Cub | gR.Cub | &R,Cub
11 12 44
IAluminium (Robrock and Schilling, 1976). 16 -58 |35.3
Alloy: Aluminium-magnesium at %7.7 Mg (Gault, 16 —-57 |345
Boch and Dauger, 1977)
Alloy: Aluminium-magnesium at %4.5 Mg (Gault, 16 -57 347
Boch and Dauger, 1977)
Alloy: Titanium-Vanadium at %53 V (Fisher, 1975). 11.5 —45 242
Alloy:Lead-indium at %9 In (Madhava and Saunders, 1977)| 28.3 | —-10.2 | 71.9
Table 3.7: Lower bounds on isotropic elastic constants
Isotropic Media G RCub  R-Cub )V cub
E R,Cub
Aluminium 26 75.8 |69.8 |0.348
Alloy: Aluminium-magnesium at %7.7 Mg 26.3 72.3 70.3 |0.336
Alloy: Aluminium-magnesium at %4.5 Mg 26.2 72.5 70.1 |0.339
Alloy: Titanium-Vanadium at %53 V 36.6 133.3 [100.6 | 0.374
Alloy:Lead-indium at %9 In 13.5 422 136.7 |0.355
Table 3.8: Upper bounds on isotropic elastic constants
Isotropic Media GV /Cub | V.Cub | EV.Cub | R,Cub
Aluminium 26 77.3 |70.7 ]0.349
Alloy: Aluminium-magnesium at %7.7 Mg 26.6 725 711 0.338
Alloy: Aluminium-magnesium at %4.5 Mg 265 |73.3 709 1]0.339
Alloy: Titanium-Vanadium at %53 V 37.3 135.6 [102.5 |0.374
Alloy:Lead-indium at %69 In 1354 424 |36.7 0.355
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3.3 For Tetragonal Media

Table 3.9: Voigt elastic constant data of tetragonal media

Tetragonal Media gV Tet | aV.Tet | AV, Tet | aV Tet | aV,Tet | AV, Tet
11 12 13 33 44 66

Indium-cadmium alloy, In-3.42 at %Cd 44.8 | 41 405 1441 | 6.86 |11.25
(Madhava and Saunders, 1977).
Ammonium dihydrogen arsenate (piezoel.)| 62.2 |86 (184 |29.6 |6.69 |6.22
NH , H , ASO , (Haussii hl, 1964).
Zircon, ZrSi0 ,  (metamict) (Ozkan and 284 |73 |119 309 |77.5 |47.7
Cartz, 1973).
Table 3.10: Reuss elastic constant data of tetragonal media

i aR,Tet | aR,Tet | aR,T aR,Tet | aR,Tet | aR,T
Tetragonal Media sk et I et R et R et R et R et
Indium-cadmium alloy, In-3.42 at %Cd 174 | -86 |—-81 |172 |146 |89
(Madhava and Saunders, 1977).
Ammonium dihydrogen arsenate[ 19.8 |1.1 |—-13 |50 149 |161
(piezoel.), NH , H , ASO , (Haussl
hl, 1964).
Zircon, zrSiO , (metamict) (Ozkan| 4.26 145 1436|129 |21
and Cartz, 1973). —0.49
Table 3.11: Lower bounds on tetragonal elastic constants
Tetragonal Media GRTet | KRTet | gRTet ||V Tet
Indium-cadmium alloy, In-3.42 at %Cd 3.6 417 1104 |0.434
/Ammonium dihydrogen arsenate| 8.2 25.1 |22.1 |0.320
(piezoel.),NH , H , ASO ,
Zircon, ZrSiO , (metamict) 73 163.9 |190.6 | 0.297
Table 3.12: Upper bounds on tetragonal elastic constants
Tetragonal Media GV Tet [ KVoTet | gV.Tet | RTet
Indium-cadmium alloy, In-3.42 at %Cd 577 141.97(16.6 |0.459
Ammonium dihydrogen arsenate (piezoel.),NH|11.16 | 27.2 | 29.5 |0.353
s H, ASO ,
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Zircon, ZrSiO , (metamict)

78.3

166.6 | 203 | 0.306

3.4 For Transversely Isotropic Media

Table 3.13: Voigt elastic constant data of transversely isotropic media

Transversely Isotropic Media

AV, Trans

AV, Trans

AV,Trans | AV,Trans

Cll C12 ClS 033 AV Trans
44

Cobalt(Co) (Masumoto, Saito and| 295 159 111 335 71
Kikuchi, 1967)
Hafnium (Hf) (Fisher and Renken, 1964).| 181 77 66 197 55.7
zinc (zn) (Singh, Singh and Chendra,| 165 31.1 |50 61.8 |39.6
1977).
Bone(dried phalanx) (Bonfield and Grynpas,| 21.2 9.50 10.2 374 7.50
1977
Polygtyrene (Wright, Faraday and White et al.,| 5.20 2.75 2.75 5.70 1.30
2002).
Table 3.14: Reuss elastic constant data of transversely isotropic media
Transversely Isotropic Media gR/Trans | gR,Trans

aR,Trans | ~12 13 aR,Trans |aR,Trans

S11 33 S44
Cobalt(Co) (Masumoto, Saito and Kikuchi,1967) | 511 |—-2.37 |—-094 |3.69 |14.1
Hafnium (Hf) (Fisher and Renken, 1964). 716 | —-248 | -1.57 16.13 |18
Zinc(Zn) (Singh, Singh and Chendra, 1977) 8.22 10.60 -7 277 125.3
Bone(dried phalanx) (Bonfield and Grynpas, 63 -23 -11 33 133
1977
Polygtyrene (Wright, Faraday and White et al.,| 209 | —-109 | -91 264 | 770
2002).

Table 3.15: Lower bounds on transversely isotropic elastic constants

Transversely Isotropic Media G R,Trans k R,Trans E R,Trans VV ,Trans
Cobalt(Co) 74.2 1848 |196.4 |0.317
Hafnium(Hf) 55.4 108 142 0.280
Zinc(Zn) 35.1 57.7 87.5 0.236
Bone(dried phalanx) 7.04 145 18.2 0.290
Polystyrene 1.28 3.57 3.44 0.340

Table 3.16: Upper bounds on transversely isotropic elastic constants

Transversely Isotropic Media GV Trans

kV,Trans

EV,Trans

R,Trans
1%

Cobalt(Co) 78.3

187.4

206

0.323
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Hafnium(Hf) 56 108.6 143.4 0.281

Zinc(Zn) 46.6 72.7 115.2 0.247

Bone(dried phalanx) 7.50 155 194 0.290

Polystyrene 1.29 3.62 3.46 0.340

3.5 For Trigonal Media

Table 3.17: Voigt elastic constant data of trigonal media

Tr|gona| Media é\l/l,Tng é\llz,Tng é\lléT”g 6\1/4,Tr|g é\és,Trlg é\if”g

Antimony (Epstein and De Bretteville, 994 (309 |264 |21.6 |445 |395

1965).

Magnesite, MgCO , (Humbert and 259 |75.6 |[58.8 |-19 |156 |54.8

Plique, 1972).

Haematite, Fe , O , (Subrahmanyam,|242 |54.9 |15.7 228 |85.3

1958). —12.7

As-Sb at % As 255 (Akgoz, Isci,|106.7 |48.4 |28.5 |18.8 |48 40.8

Saunders, 1976)

Arsenic (Pace and Saunders, 1971). [130.2 |30.3 |64.3 58.7 225

-3.71

Table 3.18: Reuss elastic constant data of trigonal media

Trigonal Media §1F%iTrig §1R2,Trig §1R31Trig §1R4Trig - §§ATrig
S33

/Antimony (Epstein and De Bretteville,|16.2 | —6.1 | —5.9 29.5 | 38.6

1965). —12.2

Magnesite, MgCO , (Humbert and 4.67 2.04 |7.41 |19.7

o ~1.22 |-1.30

que, 1972).

Haematite, Fe , O , (Subrahmanyam, 4.41 0.79 1443|119

1958). -1.02 |-0.23

As-Sb at % As 255 (Akgdz, Isci|15.4 27 33.3

Saunders, 1976) —6.96 (—4.96 |—9.76

Arsenic (Pace and Saunders, 1971).30.3 |20.2 | —-552|1.67 |137.8|45

Table 3.19: Lower bounds on trigonal elastic constants

Trigonal Media GR,Trig kR,Trig ER,Trig VV,Trig

/Antimony 21.9 38.3 74.4 0.207

Magnesite, MgCO |, 63.6 109.8 159.9 0.245
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Haematite,Fe , O , 92.1 97.2 209.9 0.136
As-Sb at % As 25.5 23.7 41.6 59.8 0.243
/Arsenic 10.1 55.6 28.6 0.316

Table 3.20: Upper bounds on trigonal elastic constants

Trigonal Media GV Trig KV Trig gV Trig p R Trig
/Antimony 33.3 45.6 80.3 0.260
Magnesite, MgCO |, 72.3 117.8 180.1 0.257
Haematite,Fe , O , 945 98.3 214.8 0.140
As-Sb at % As 25.5 32.6 52.5 80.9 0.261
Arsenic 29.7 70.8 78.1 0.414

3.6 For Monoclinic Media
Table 3.21: Voigt elastic constant data of monoclinic media

Monoclinic Media Coesite,SiO, (Weidner | Diphenyl,C ,, H ;,
and Carleton, 1977).
& 161 5.95
v 82 4.05
& e 103 2.88
& e ~36 0.40
& o 230 6.97
gy or 36 6.11
&Y or 3 0.94
& e 232 146
& e 39 2.02
&Y on 67.8 1.83
& e 10 ~0.89
&Y e 733 2.26
& e 56.8 211
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Monoclinic Media

Coesite, SiO , (Weidner and Carleton,

Diphenyl,C ;, H 4,

1977).

élRl Mon 11.3 283

é?z Mon -3.50 -184

§R, Mon -3.90 19
13

§R' Mon 3.60 9
15

éR' Mon 5.30 346
22

§R,Mon 0.40 -107
23

§R,Mon -1.70 -16
25

§R' Mon 6.20 118
33

§R, Mon 1.40 -65
35

§R, Mon 15.1 611
44

gR.Mon -2.60 132
46

§R, Mon 16.2 509
55

§R, Mon 17.4 272
66

Table 3.23: Lower and upper bounds on monoclinic elastic constants

Monoclinic Media Coesite,SiO , Diphenyl,C , H
G R Mon 56.5 1.82
GV Mon 66.8 2.61
I R-Mon 113.6 4.93
V- Mon 118.3 5.96
R Mon 145.5 4.86
EV Mon 168.6 6.82
Mo 0.287 0.336
yV Mon 0.263 0.309
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3.6  For Triclinic Media

Table 3.24: Voigt elastic constant data of triclinic media

Triclinic Media |  Ammonium tetroxalate dehydrate Potassium tetroxalate
(Kuppers and Siegert, 1970). dehydrate
(Kippers and Siegert, 1970).

él’llT”C 219 254
él’zﬂ”c 12 11.8
él’svT”C 10.4 9.83
CYATHC 1.60 0.72
CI’E;T”C 6 6.12
él’e'T”c -1 -1.23
é\z’éT”C 45.9 47.8
é\z’éT”C 16.3 14
6\2’4”‘0 11.6 11.3
C\Z’S'T”C 2 1.46
é\z’éT”C -3.80 —2.70
¢y, 36.4 343
é;’fric 3.8 2.19
é;’é“ic 2 1.47
é;’éT”C -0.8 0.40
él’f”c 104 10.2
él’éT”c 0.10 -0.82
éXéTriC 0.10 0.53
ég’svT”C 5.40 5.69
é;’éT”C 0.10 0.70
égéT”C 4.44 4.99
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Table 3.25: Reuss elastic constant data of triclinic media

Triclinic Media| Ammonium tetroxalate dehydrate |Potassium tetroxalate dehydrate
(Kiippers and Siegert, 1970). (Klppers and Siegert, 1970).

§1R1vT”° 81.9 66.2
§1R2vT”° -15.2 -10.2
§1R3vT”° -13 -12.4
§1FZ Tric 9.80 2.8
§1R5vT”° —-80.7 —67.6
§1F§5’T“° 5.80 20.9
§2R?_vT”° 42 37.4
§2RéT”° -9.80 -9.80
gR.Tre —41.1 — 1404
§2RS’T”° 5.30 —4.80
§2R6vT”° 31.7 23.5
§3R3vT”° 35.2 36.1
§§4vT”° 0.20 5.50
§3RSvT”° 4.90 8.90
§§6T”° -5.40 -13.1
§fAT”° 140 146
§féT”° 1.60 32.2
§féTf‘° -375 —-41.6
§§5vT”° 271 259
§§6Tfi° -20.9 —-59.5
§6R6T”° 254 232
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Table 3.26: Lower and upper bounds on triclinic elastic constants

Triclinic Media Ammonium tetroxalate dihydrate |Potassium tetroxalate dihydrate
G R, Tric 5.39 5.77
GV,Tric 8.41 8.97
K R.Tric 12 13.4
kV,Tric 20.2 19.9
E R, Tric 14.1 15.1
gV Tric 22.2 234
yRTric 0.317 0.311
yV Tric 0.305 0.304

4 DISCUSSION OF RESULTS
Results of the tables illustrated in section 3 can be interpreted as follows:

For cubic symmetry:

According to bounds presented in Tables 3.3 and 3.4, it is obvious to see that Rubidium
silver iodide is close to isotropy more than the other cubic materials. Since the intervals
between Voigt and Reuss bounds on elastic constants of the material are very closer, the
effective elastic constants are selected from a narrow range. On the other hand, Beryllium
oxide is a kind of compound and exhibits the most anisotropy among the other cubic
materials. Since the elastic constants of it, especially the values of Young's modulus of
Voigt and Reuss for these materials are considerably different, it's mechanical and elastic
behavior are expected to be more anisotropic.

For tetragonal symmetry:

From Tables 3.11, 3.12, it is seen that Indium-cadmium alloy composed of % 3.42
Cadmium and % 96.58 Indium, is close to isotropy more than the others. As a result, the
interval between bounds on Reuss and Voigt bulk modulus for the alloy is very small.
Whereas Zircon shows the most anisotropy among the other materials.

For transversely isotropic symmetry:

According to calculated bounds in Tables 3.15 and 3.16, Hafnium, Bone (dried phalanx)
and Polystyrene are close to isotropy more than the other transversely isotropic materials.
Because Voigt and Reuss elastic constants of them for Voigt and Reuss notation are very
closer, Reuss and Voigt Poisson's ratio of these materials are the same.

On the other hand, Zinc exhibits the most anisotropy. Since the elastic constants, especially
the values of Young’s modulus of Voigt and Reuss for Zinc are considerably different, its
mechanical and elastic behavior are expected to be more anisotropic. As a result, the
effective elastic constants of Zinc are selected from a large range.
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For trigonal symmetry:

According to Tables 3.19 and 3.20, it is observed that Haematite is close to isotropy more
than the other trigonal materials. Since the intervals between the corresponding Voigt and
Reuss bounds on effective elastic constants for Haematite are smaller than the others,
effective elastic constants of Haematite can be selected from a smaller range than the other
trigonal materials. Moreover, Magnesite, Antimony, As-Sb alloy (which is composed of %
25.5 Arsenic and % 74.5 Antimony) show anisotropy due to the corresponding values of
Tables 3.19 and 3.20. While Arsenic has the greatest anisotropy among them because of the
large intervals between Reuss and Voigt bounds. It is seen that mechanical and elastic
behavior of Arsenic are more anisotropic than other trigonal materials.

For monoclinic symmetry:

The intervals between Reuss and Voigt bounds on effective elastic constants (given in
Table 3.23) for Diphenyl are closer than Coesite. As a result, it can be said that Diphenyl is
close to isotropy more than Coesite.

For triclinic symmetry:

If Table 3.26 is examined in detail, it is seen that the anisotropy is the highest for triclinic
materials. The intervals between the corresponding Reuss and Voigt bounds are very large.
So the effective anisotropic elastic constants are selected from a large range.

These results show that the materials selected from same anisotropic elastic symmetry,
depending upon the size of intervals between Reuss and Voigt bounds, except triclinic
symmetry can exhibit whether close to isotropy or anisotropy.

5 CONCLUSION

In this paper, it has been shown that it is possible to construct bounds on the anisotropic
elastic constants of any anisotropic elastic symmetry in terms of elasticity and compliance
tensors. Specific bounds have been presented for the anisotropic elastic constants of cubic,
isotropic, transversely isotropic, tetragonal, trigonal symmetries. It has been mainly
focussed on engineering elastic properties of selected materials and represented anisotropy
in terms of engineering properties: K , G ,and v , E in order to construct bounds.
Constructing bounds on the anisotropic elastic constants provides a deeper understanding
about mechanical behavior of anisotropic materials. It also has significant effects on many
applications in different fields such as:

1) design of textured (non-crystalline) materials,

2) examining the material symmetry types in detail,

3) determination of materials which are highly anisotropic or close to isotropic.
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