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Abstract: There has been growing need to characterize the turbulent flow through a 

simplified model. This paper reports the characterization of turbulent flow in two 

dimensions using discrete vortex modelling. The free surface flow in channel is 

considered as a case study. Appropriate flow charts and FORTRAN source codes were 

developed to solve the main governing equations of fluid flow. The Reynolds number 

which is the control parameter from 100,000 (experimental transition point) at an interval 

of 10,000 to 1,000,000 is used and the result is displayed using Microsoft Excel Graph. 

After the four stages of transition process due to Helmholtz instability, the turbulent 

region is reached, which is characterized by irregularity, low momentum diffusion, high 

momentum convection, and rapid variation of velocity. The result has shown that 

turbulent flow can be characterized with ease by using discrete vortex modelling.  

Key words: Turbulent flow, discrete vortex modeling, free surface flow in channel, 

Helmholtz instability, irregularity, high momentum convection.   

INTRODUCTION  

The two different types of real fluid flow 

are laminar flow and turbulent flow. The 

laminar flow is a flow over a smooth 

surface with vorticity that appear highly 

ordered. Turbulent flow is a flow regime 

characterized by chaotic, disordered and 

stochastic property changes. Fluid flow 

that is slow and has inertial effect tends to 

be laminar. As it speeds up, a transition 

takes place and its crinkles up into 

complicated random turbulent flow. 

Turbulence is the time dependent chaotic 

behaviour seen in many fluid flows. 

Turbulence is a different type of fluid flow 

to laminar flow, hence it is desirable to be 

able to quantity under what conditions it 

occurs.     The (dimensionless) Reynolds 

number gives quantitative indication of 

laminar to turbulent transition and 

characterizes whether the flow conditions 

lead to laminar or turbulent flow. 

Transition to turbulence can occur over a 

range of Reynolds numbers, depending on 

many factors such as level surface 

roughness, heat transfer, vibration, noise 
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and other disturbances. For flow in a pipe, 

the characteristic length is the pipe 

diameter while for flow over a flat plate, 

the characteristic length is usually the 

length of the plate and the characteristic 

velocity is the free stream velocity.  

Diffusion methods such as core-spreading 

techniques, hair pin-removal, particle 

strength, exchange, vorticity redistribution 

method and random walk method have 

been developed to characterize fluid flow. 

The random walk method was introduced 

by Chorin (1978) to study slightly viscous 

flow. Morchore and Pulvient (1982), 

Goodman (1987) and Long (1988) have 

shown that for flow in free-space, the 

random walk solution converges to that of 

the Navier-Stokes equations as the number 

of vorticies is increased. Gagnon and 

Mercader (1996) used the random walk 

method to compute the starting flow 

behind a two-dimensional step. A two-

dimensional random vortex method is used 

by Gagnon (1993) to simulate the flow 

over a single back-facing step and a double 

symmetrical backward-facing step. Cheer 

(1989) has implemented the random walk 

method for flows over a cylinder. Lewis 

(1990) has used the random walk method 

for flow over airfoil cascades. 

Abdolhosseini (1996) studies the turbulent 

statistics in a uniformly sheared flow with 

a two-dimensional using random walk 

method. Chui (1993) used the random 

walk method to study thermal boundary 

layers. Adegbola and Salau (2011) has 

implemented the random walk method to 

characterize the fluid flow into laminar, 

transition and turbulent region.  

The random walk method has several 

advantages. It requires simple algorithms 

and it can easily handle flows around 

complicated boundaries. The method also 

conserves the total circulation. The free 

surface flow in channel is used as a case 

study in this paper. The objective of the 

work is to develop a simplified model for 

turbulent flow through the use of discrete 

vortex method. The study intends to 

discover the unique features of the 

turbulent flow. Turbulence has been 

described as “the most important unsolved 

problem of classical physics, hence there 

has been growing need to develop a 

simplified model which can be used to 

predict the fluid flow that moves in an 

erratic or random motion (turbulent flow). 

This paper reports a “random walk model” 

for predicting turbulent flow in two 

dimensions through the use of “discrete 

vortex modelling”.  

MODEL FORMULATION  

The boundary layer flow can be 

approximated by placing at appropriate 

locations some vortices in a parallel flow. 

This forms the basis of the vortex element 

method. The principle involved is to 

subject the entire free vortex elements to 

small random displacements, which 

produce a scatter equivalent to the 

diffusion of vorticity in the continuum, 

which we are seeking to represent.  
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Turbulent flow is always three-

dimensional. However, when the equations 

are time aver-aged, it can be treated as 

two-dimensional.  

Diffusion of a point vortex in two-

dimensional flow 

The motion of a diffusing vortex of initial 

strength (𝚪) centered on the origin of the 

(r,) plane is described by the diffusion 

equations. 

𝑑𝜔

𝑑𝑡
= 𝑣 ⊽2 𝜔                              (1)   

from which we may obtain the wall 

solution in space and time.  

𝜔 𝑟, 𝑡 =  
𝛤

4𝜋𝑣𝑡
 𝑒 −𝑟2

4𝑣𝑡                        (2)  

Vorticity strength is a function of radius r 

and time t, where π is the ratio of the 

circumference of a circle to its diameter 

and v is the kinematic viscosity.  

For a vortex of unit strength split in N 

elements, let us assume that n vortex 

elements are scattered into the small area 

r∆𝜃∆r after time t. The total amount of 

vorticity in the element of area is:  

𝑃𝑣 =  
𝑛

𝑁
=   

1

4𝜋𝑣𝑡
𝑒 −𝑟2

4𝑣𝑡   𝑟∆𝜃∆𝑟        (3)  

It is obvious from symmetry that scattering 

in the 𝜃 direction ought to be done with 

equal probability. Hence 𝜃i values may be 

defined independently of ri values by the 

equations:  

𝜃𝑖 = 2𝜋𝑄𝑖                                                    (4)  

Where 𝜃i
 
is a random number within the 

range 0 < 𝜃i < 1. The probability P that on 

element will lie within a circle of radius r 

is given by the equation:  

𝑃 = 1 − 𝑒 −𝑟2

4𝑣𝑡                                     (5)  

Hence for the vortex element (5) becomes  

𝑃𝑖 = 1 − 𝑒
 
−𝑟1

2

4𝑣𝑡
  

                                  (6)  

From which we may obtain it radial shift 

𝑟𝑖 =   4𝑣𝑡 𝐼𝑛  
1

1− 𝑃𝑖
  

1
2 

                         (7)  

Random Number Generation  

Algorithms were developed to produce 

long sequences of apparently random 

results which are fact completely 

determined by a shorted initial value 

known as a seed.  

Diffusion over a series of Time steps  

The displacements of element i during time 

∆t for diffusion over a succession of small 

time increments is given by:  

∆𝜃𝑖 = 2𝜋𝑄𝑖                                                   (8) 

  

∆𝑟𝑖 =   4𝑣∆𝑡𝑙𝑛  
1

1− 𝑃𝑖
  

1
2 

                      (9)  

After the increment ∆t, the new co-

ordinate location (xi,
’
yi

’
) of the ith element 

will become:  
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𝑥1
′ =  𝑥1 + ∆𝑟𝑖 cos ∆𝜃𝑖                             10    

𝑦1
′ =  𝑦1 +  ∆𝑟𝑖 sin ∆𝜃𝑖                            (11)  

where xi and yi are the old x –coordinate 

the ith element and old y - coordinate of 

the ith element respectively. The 

displacement of the ith element from the 

origin is given by the equation.  

𝐷𝑖 =    𝑥1
′ − 𝑥0 

2
+  𝑦1

′ − 𝑦0 
2

        (12)  

Where xo and yo are the origin.  

Boundary layers by discrete vortex 

modelling                                                                       

Convective motions were completely 

ignored for the diffusing point which we 

have just considered, an assumption which 

is permissible in view of symmetry in 

these special cases and justified for very 

low Reynolds number. Boundary layer 

flows on the other hand are more complex 

involving two additional features:  

i. Externally imposed convention 

due to the main stream U, the 

significance of which is 

determined by the body scale 

Reynolds number (UL/v).  

ii. Continuous creation of vorticity 

at the contact surface between 

fluid and wall, replacing the 

vorticity removed by diffusion 

and convection. 

 

 

Vorticity Creation  

The treatment of viscous boundaries in a 

vortex method is done by defining at the 

boundary, special sheets of vorticity which 

stay at the boundary and diffuse their 

vorticity to free elements.  

Random walk method  

Application of the random walk will result 

in the loss of half of the newly created 

vorticity due to diffusion across the wall 

and therefore out of the active flow 

domains. Since vorticity creation, diffusion 

and convection are being considered 

independently and in sequence in the 

computational scheme, vorticity must be 

considered. A single strength sheet is used 

by making sure that vortices which attempt 

to cross the wall are bounced back by 

assigning the value yi = abs (yi).  

Selection of element size and time step  

A reasonable approach to the selection of 

an appropriate time step ∆t is to focus 

attention on the average displacements of 

the discrete vortices due to convection and 

diffusion.  

The average convective displacement may 

be approximated by:  

𝛿𝑐 =  
1

2
𝑈∆𝑡                                                (13) 

  

The average diffusive displacement is  

𝛿𝐷 =   4𝑣∆𝑡 𝐼𝑛2                                  (14)  
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In order to maintain equal discretisation of 

the fluid motion due to convection and 

diffusion, we equate δc and δD resulting in 

the expression:  

∆𝑡 =  
16𝐿𝐼𝑛2

𝑈𝑅𝑒
                                               (15)  

Where Re = UL/v is the plate Reynolds 

number.  

It is more reasonable to select the surface 

element size at twice δc leading to:   

∆𝑠 = 𝑈∆𝑡 =  
16𝐿𝐼𝑛2

𝑅𝑒
                                 (16)

  

The required number of surface elements 

for satisfactory discretisation of the plate is 

given by:  

𝑀 =  
𝐿

∆𝑠
=

𝑅𝑒

16 𝐼𝑛  2
                                    (17)  

 

It is obvious that enforcing equal 

discretisation scales δo and δD for 

convection and diffusion will lead to 

computational difficulties at large 

Reynolds number. The large Reynolds 

number will impose severe pressure upon 

computational requirements. Hence 

practical computational limitation will rule 

out vortex modelling for typical 

engineering system Reynolds numbers if 

we attempt to impose the constraint δD = δc 

 

 

Some considerations for high Reynolds 

numbers  

The difficulties for high Reynolds numbers 

can be eased by selecting different time 

steps for diffusion (∆tD) and convection 

(∆tc). Since convection now dominates the 

flow, it is better to select the scale of 

convection displacements through:  

𝐾 =  
𝛿𝑐

∆𝑠
                                                      (18)  

where previously K has been set to 0.5. 

The convective time step then follows 

from (13) 

∆𝑡𝑐 =
2𝐾∆𝑠

𝜇
=

2𝐾

𝑀
 

𝜄

𝜇
                               (19)  

The average random walk diffusive 

displacement over the same interval 

follows from (14), namely  

𝛿𝐷

∆𝑠
=    

8 𝑀𝐾  𝐼𝑛2

𝑅𝑒
                                    (20)  

Although, it would be perfectly to perform 

both the convection and random walk 

processes over the same time step ∆tc, a 

saving in computational effort could be 

achieved by undertaking only one random 

walk for every Nt convection steps with:  

∆𝑡𝐷 =  𝑁𝑡∆𝑡𝑐                                              (21)  

Calculation of Velocity Profile  

The relationship between average 

displacements of the ith element from the 

origin to the number of time steps is given 

by:  
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𝐷𝑎𝑣 ∝ 𝑡𝐻
 

 

∴  𝐷𝑎𝑣 = 𝐾𝑡𝐻                                            (22)     

K and H are diffusion constant and Index 

respectively. From (23), taking the log of 

both sides  

log 𝐷𝑎𝑣 = 𝐻𝑙𝑜𝑔𝑡 + 𝐿𝑜𝑔 𝐾                    (23)  

Equation on a straight line is given as:  

𝑦 = 𝑚𝑥 + 𝑐                                              (24)  

Comparing (23) and (24) 

y = log Dav, c = log K, x = log t and m = N  

Having developed the governing equations 

for the fluid flow using the Reynolds 

number as the tuning parameter, the 

algorithms is formulated for the model 

which is illustrated by the flow chart. The 

Reynolds number of 100,000 

(Experimental transition points) at an 

interval of 10,000 to 1,000,000 is used. 

The flow chart is used in writing the 

FORTRAN program, the program is then 

run to generate the desired output. The 

result obtained was used to plot the graphs 

through the use of Microsoft Excel.  

RESULTS AND DISCUSSION 

Table 1 shows the Reynolds number, Time 

increment, number of time steps, number 

of elements or trials, log of average 

distance against log of time steps and 

index (velocity). The index is the slope 

obtained from the graph of log of average 

distance against log of time steps. There is 

fluctuation of index (velocity) from 

the transition region to turbulent region.  

 

Figure 3:  Depiction of Index (Velocity) against Reynolds Number for Turbulent 

Region 
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Figure 4: Depiction of Index (Velocity) against number of time steps for Turbulent 

Region 

 

Figure 5: Depiction of Index (velocity) against Number of elements for Turbulent 

Region 
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The initial stage of the natural transition 

process (receptive phase) consist of the 

transformation of external disturbances 

in the outer free stream flow over the 

boundary layer into internal instability 

oscillations within the boundary layer 

from the Reynolds number of 100,000. 

The second stage of the process is the 

exponential growth of the few unstable 

disturbances from Reynolds number of 

180,000. In the third stage from 

Reynolds number of 290,000, the 

amplitude of the disturbances now large 

enough to introduce non-linearlity 

effects. Due to the distortion of the 

boundary layer, inflexional mean 

profiles develop and a fourth stage is 

reached from Reynolds number of 

420,000 where the boundary layer 

becomes unstable to high frequency 

disturbances. Finally, an explosive 

growth of these high frequency 

disturbances initiate the fifth and final 

phase from Reynolds number of 500,000 

(the breakdown into turbulence). Hence 

it can be perceived how transition of a 

boundary layer from laminar to turbulent 

motion take place at very high Reynolds 

number, bearing in mind the Kelvin-

Helmholtz instability. The graphs (fig 3, 

fig 4 and fig 5) show distinct region of 

turbulent flow which have the following 

features.  

 Irregularity: Turbulent flow is 

highly irregular and chaotic.  

 Diffusion and convection: 

Turbulent flow has low 

momentum diffusion and high 

momentum convection  

 Unsteady and Non uniform:  

There is rapid variation of 

velocity in space and time.  

 Energy Cascade: It is made up 

of super position of a spectrum of 

velocity fluctuation and eddies an 

over mean flow. Their hierarchy 

can be described by energy 

spectrum that measures the 

energy in velocity fluctuations of 

wave number.  

 

CONCLUSION    

The study has explored discrete vortex 

model to characterize the turbulent flow 

in two dimensions. The transition to 

turbulent motion takes place at high 

Reynolds number at the fifth stage due 

to Helmholtz instability. The turbulent 

region is characterized by irregularity, 

low momentum diffusion, high 

momentum convection and rapid 

variation of velocity. 
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Table 1: Parameters Estimation for Transition and Turbulent Regions  

S/N Reynolds 

number 

(Re) 

Time 

Increment 

(t) 

Number 

of time 

steps (N) 

Number 

of 

elements 

or trials 

(M) 

Log of average distance 

against log of time 

steps      (y = mx + c) 

Index (m) 

1 100,000 0.01109 90 90 y = 0.4681x + 0.01918 0.4681 

2 110,000 0.01008 99 99 y = 0.4542 x + 0.2166 0.4542 

3 120,000 0.00924 108 108 y = 0.4906 x +0.1595 0.4906 

4 130,000 0.00853 117 117 y =0.4423 x + 0.0.2401 0.4423 
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5. 140,000 0.00792 126 126 y = 0.4773 x +0.177 0.4773 

6 150,000 0.00739 135 135 y = 0.4655 x + 0.182 0.4655 

7 160,000 0.00693 144 144 y = 0.4821 x +0.1588 0.4821 

8 170,000 0.00652 153 153 y =0.4755 x + 0.1779 0.4755 

9 180,000 0.00616 162 162 y = 0.5054 x + 0.1389 0.5054 

10 190,000 0.00584 171 171 y = 0.4808 x + 0.1572 0.4808 

11 200,000 0.00555 180 180 y = 0.4925 x + 0.1122 0.4925 

12 210,000 0.00528 189 189 y = 0.4936 x + 0.1423 0.4936 

13 220,000 0.00504 198 198 y = 0.4993 x + 0.155 0.4993 

14 230,000 0.00482 207 207 y = 0.5036 x + 0.1315 05036 

15 240,000 0.00462 216 216 y = 0.5332 x + 1896 0.5332 

16 250,000 0.00444 225 225 y = 0.5146 x + 0.125 0.5146 

17 260,000 0.00427 234 234 y = 0.5306 x + 0.097 0.5306 

18 270,000 0.00411 243 243 y = 0.5295 x + 0.1165 0.5295 

19 280,000 0.00396 252 252 y = 0.551 x + 0.655 0.551 

20 290,000 0.00382 261 261 y = 0.5348 x + 0.1018 0.5348 

21 300,000 0.00370 271 271 y = 0.5275 x + 0.0882 0.5275 

22 310,000 0.00358 280 280 y = 0.565 x + 0.051 0.565 

23 320,000 0.00347 289 289 y = 0.5459 x + 0.0544 0.5459 

24 330,000 0.00336 298 298 y = 0.5262 x + 0.189 0.5262 

25 340,000 0.00326 307 307 y = 0.5642 x + 0.0405 0.5642 

26 350,000 0.00317 316 316 y = 0.5384 x + 0.0661 0.5484 
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36 450,000 0.00246 406 406 y = 0.5847 x + 0.0133 0.58 

 

 

37 460,000 0.00241 415 415 y = 5696 x + 0.0332 0.5696 

38 470,000 0.00236 424 424 y = 0.5663 x + 0.0354 0.5663 

39 480,000 0.00231 433 433 y = 0.5797 x – 0.0231 0.5797 

40 490,000 0.00226 441 441 y = 0.5927 x – 0.017 0.5927 

41 500,000 0.00222 451 451 y = 0.5796 x + 0.0211 0.5796 

42 510,000 0.00217 460 460 y = 0.5874 x + 0.0086 0.5874 

43 520,000 0.00213 469 469 y = 0.5862 x – 0.0027 0.5862 

44 530,000 0.00209 478 478 y = 0.5905 x + 0.0202 0.5905 

45 540,000 0.00205 487 487 y = 0.602 x – 0.0287 0.602 

46 550,000 0.00202 496 496 y = 0.5874 x + 0.0153 0.5874 

47 560,000 0.00198 505 505 y = 0.5893 x + 0.0085 0.5893 

27 360,000 0.00308 325 325 y = 0.548 x + 0. 0661 0.548 

28 370,000 0.00300 334 334 y = 0.5633 x +0.0507 0.5633 

29 380,000 0.00292 343 343 y = 0.562 x + 0.0609 0.562 

30 390,000 0.00284 352 352 y = 0.584 x + 0.0132 0.584 

31 400,000 0.00277 361 361 y = 0.5674 x + 0.0685 0.5674 

32 410,000 0.00270 370 370 y = 0.5549 x + 0.0514 0.5549 

33 420,000 0.00264 379 379 y = 0.5632 x + 0.0438 0.5632 

34 430,000 0.00258 388 388 y = 0.5628 x + 0.0454 0.5628 

35 440,000 0.00252 397 397 y =0.5522 x + 0.0641 0.5522 
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48 570,000 0.00195 514 514 y = 0.598 x – 0.0155 0.598 

49 580,000 0.00191 523 523 y = 0.604 x – 0.0226 0.604 

50 590,000 0.00188 532 532 y = 0.6113 x – 0.0326 0.6113 

51 600,000 0.00185 541 541 y = 0.6132 x – 0.0434 0.6132 

52 610,000 0.00182 550 550 y = 0.6108 x – 0.0307 0.6108 

53 620,000 0.00179 559 559 y = 0.6062 x – 0.0253 0.6062 

 

54 630,000 0.00176 568 568 y = 0.5954 x – 0.007 0.5954 

55 640,000 0.00173 577 577 0.6203 x – 0.073 0.6203 

56 650,000 0.00171 586 586 y = 0.6307 x – 0.0713 0.6307 

57 660,000 0.00168 595 595 y = 0.6131 x – 0.0494 0.6131 

58 670,000 0.00166 604 604 y = 0.6179 x – 0.042 0.6179 

59 680,000 0.00163 613 613 y = 0.6113 x – 0.0362 0.6113 

60 690,000 0.00161 622 622 y = 0.6246 x – 0.0687 0.6246 

61 700,000 0.00158 631 631 y = 0.6086 x – 0.0407 0.6086 

62 710,000 0.00156 640 640 y = 0.6146x – 0.0582 0.6146 

63 720,000 0.00154 649 649 y = 0.6238x – 0.0637 0.6238 

64 730,000 0.00152 658 658 y = 0.6296 x – 0.0665 0.6296 

65 740,000 0.00150 667 667 y = 0.6322 x – 0.0563 0.6322 

66 750,000 0.00148 676 676 y = 0.6345 x – 0.0827 0.6345 

67 760,000 0.00146 685 685 y = 0.6165 x – 0.0471 0.6165 

68 770,000 0.00144 694 694 y = 0.6264 x – 0.0756 0.6264 

69 780,000 0.00142 703 703 y = 0.637 x – 0.0898 0.637 
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70 790,000 0.00140 712 712 y = 0.6373 x – 0.0768 0.6373 

71 800,000 0.00139 721 721 y = 0.6374 x – 0.0848 0.6374 

72 810,000 0.00137 730 730 y = 0.647 x – 0.1019 0.647 

 

73 820,000 0.00135 739 739 y = 0.6302 x – 0.0814 0.6302 

74 830,000 0.00134 748 748 y = 0.6389 x – 0.1007 0.6389 

75 840,000 0.00132 757 757 y = 0.6527 x – 0.1166 0.6527 

76 850,000 0.00130 766 766 y = 0.6407 x – 0.1038 0.6407 

77 860,000 0.00129 775 775 y = 0.6567 x – 0.1206 0.6567 

78 870,000 0.00127 784 784 y = 0.6523 x – 0.1211 0.6523 

79 880,000 0.00126 793 793 y = 0.6432 x – 0.1078 0.6432 

80 890,000 0.00125 802 802 y = 0.6475 x – 0.1076 0.6475 

81 900,000 0.00123 812 812 y = 0.6528 x – 0.1325 0.6528 

82 910,000 0.00122 821 821 y = 0.6626 x – 0.466 0.6626 

83 920,000 0.00121 830 830 y = 0.663 x – 0.1417 0.663 

84 930,000 0.00119 839 839 y = 0.6533 x – 0.1233 0.6533 

85 940,000 0.00118 848 848 y = 0.6616 x – 0.1317 0.6616 

86 950,000 0.00117 857 857 y = 0.662 x – 0.384 0.662 

87 960,000 0.00116 866 866 y = 0.6543x – 0.114 0.6543 

88 970,000 0.00114 875 875 y = 0.6654 x – 0.1337 0.6654 

89 980,000 0.00113 884 884 y = 0.6767 x – 0.0417 0.6767 

90 990,000 0.00112 893 893 y = 0.6705 x – 0.1579 0.6705 

91 1,000,000 0.00111 902 902 y = 0.6721 x – 0.1612 0.6721 
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 APPENDIX A 

START 

Set the values of ,L,u,v 

, L, u, v 

Read initial values of y0 

Step NRE = 0 Reo=100,000 

 

Re0 = 100,000 NRE = NRE + 1 Re (NRE)=Reo  

Re (NRE) = Re0 Re0 = Re0 + 100,000 

Yes  
Re (NRE) < 10

6
 

                          J = 1  Initial THETA=0, K=0.5, t=1 

Initial+ HETA = 0, k = 0.5, t =1   

No  

Determination of element size     S (J)=(16. * LLoge
2
)/Re(J) 

s (J) = (16. *Lloge2)/Re(J) 

Determination of time increment T (J) = 2*K*L/ (U*M (J)) 

Determination of Number of steps N (J) = INT (1/T (J) 

Determination of Number of elements M (J) = L/(s* 100) 

Determination of strength of each element ∆T = (1/M (J)) 

A 
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B 

Ik = 1 

I = 1 

Generation of Random Number RAN 

Q (I) = RAN (I) 

THETA = 2.* π*Q (I)                             X(0,IK)=X0                                               

Y(0,IK)=YO 

 

 

 

P = Q(I) 

X (0, Ik) = X0 

Y (0, Ik) = Y0 

 

Determination of Radial shift 

Dr (I, Ik) = (4.*v*t*ln (1/1-P))
 
½  

Change in the co-ordinate 

X (I, Ik) = X(I-1, Ik) + Dr(I, Ik)*COS(THETA(I))                                           

Y(I,K)=ABS(Y(I-1,IK)+DR(I,K) *SIN THETA(I)) 

Y (I, Ik) = ABS (Y(I-1, Ik) + Dr(I, Ik)* SIN(THETA(I)* 

SIN(PSI(I)) 
Determination of Distance from the origin  

DOR (I, Ik) = SQRT ((X(I, Ik) - X0)**2 + (ABS(Y(I, Ik)) – Y0 )**2 

    I<N(J) 

X0 = X0 + (1/M(J) 
YES  

No   

Ik<N(J) 
YES  

No   

Ik = Ik+1 

I = I+1 

A 
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Figure1: Discrete Vortex Model Flow Chart  

 

 

 

 

B 

Determination of sum of distance from the 

Origin SDOR 

Determination of Average distance from 

the Origin AVDOR 

J<NRE 

Write All Value of Time Increment (∆t), Number of 

Time steps (N), Number of Element (M), Loge 

(time) and Loge (AVDOR) 

J = J + 1 C 

STOP 

YES  

NO  
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