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Abstract: In this study, the deflection behaviour of structural elements was reviewed in detail in 

order to ascertain the possible failure behaviour of structures in erosion prone regions of 

Anambra State. The study was approached using isogeometric and finite element analysis using 

MATLAB and C++ programming language. The study focused more on deflection sensitive 

structural components such as plates and cantilevers. Using isogeometric analysis (IGA), the 

small deflection of a 6m x 6m clamped plate subjected to a serviceability pressure load was found 

to be 0.0627% more than the exact solution. IGA gave better result than finite element analysis 

carried out using StaadPro software (matrix size: 20 x 20) which was 1.1173% higher than the 

exact solution. Using Mindlin plate theory (incorporating shear deformation), IGA results were 

0.1856% higher than finite element analysis result. On considering the large deformation of the 

square plate element at serviceability limit state at 100 iteration steps, the results show that the 

maximum deflection was 1.613mm, exactly the same with small deflection theory. At ultimate 

limit state (failure load), the result from large deflection analysis increased to 2.375mm 

(32.084% increase) at 100 iteration steps. However, a little consideration will show that the 

deflection at ultimate load was still small, since it was less than 
𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠 𝑠 𝑜𝑓  𝑝𝑙𝑎𝑡𝑒

5
  (150/5 = 

30mm). Also, considering the behaviour of cantilevers, the same behaviour was observed, the 

displacement from large deflection theory at ultimate load was observed to be within the small 

deflection limit (3.115mm). Therefore, we can conclude that the use of small deflection theory is 

sufficient for the analysis of buildings in erosion prone regions. From the study also, geometric 

non-linearity cannot likely be the major cause of failure of buildings in such areas but issues like 

loss of equilibrium, mass wasting, and loss of bearing capacity of foundations can be seen to be 

more prominent in causing failure of buildings at erosion sites. 
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1.0 INTRODUCTION 

One of the basic necessities of life is 

shelter, and civil/structural engineers have 

always been determined to find many ways of 

solving complex problems they encounter in 

practice, in order to provide adequate and safe 

housing and infrastructure for mankind. Since 

the development of classical beam theories in 

the 19
th
 century (Truesdell, 1960), the 

processes and ways at which complex 

structures are analysed have improved in a 

very encouraging way. Structural members 

such as beams and plates deform under the 

action of externally applied loads, and 

engineers often ensure that such deflections are 
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controlled so that the aesthetics and 

functionality of such buildings are not 

compromised. This is generally identified as a 

serviceability requirement in the design of 

structures using limit state theory. 

Soil erosion generally is caused by 

several factors working simultaneously or 

individually to detach, transport, and deposit 

soil particles in a different place other than 

where they were formed (Igwe, 2012). As a 

result of this, the foundations of buildings in 

erosion prone zones may be scoured away, and 

loss of bearing capacity will ensue. More often 

than not, not all parts of a foundation will be 

affected, and differential movement of 

building supports may become the case. Large 

magnitude of internal stresses is induced in 

statically indeterminate structures when 

subjected to differential support movement. As 

a result of this, large deformation may occur in 

some structural members, before final failure 

will occur. Large deformation of building 

structural members usually occurs at the non-

linear stage. It is this phenomenon that this 

project explores, using isogeometric analysis 

(IGA) and finite element analysis to analyse 

the common structural members in a 

residential building (slabs, beams) subjected to 

small and large deformation due to external 

actions. 

When beams and plates are deflected 

beyond a certain magnitude, the linear theory 

loses its validity and produces incorrect results. 

Linear theory can predict that the deflection of 

the member may exceed the length of the 

member, which is unrealistic. In order for an 

accurate large deflection solution, one needs to 

include the coupling between axial and 

transverse motion, which is geometric 

nonlinearity (Nishawala, 2011). If the edges 

are allowed to move freely within the plane of 

the undeformed member, this boundary 

condition is called ‘stress-free’. If the edges 

are restricted from moving, the edges require 

an equivalent axial load to prevent motion, 

which is called ‘immovable’ boundary 

conditions. There are several sources of 

nonlinear behaviour. One source is geometric 

nonlinearity. This characteristic is important to 

systems with large deformations, or systems 

that may fail due to buckling. In beams and 

plates, the nonlinearity is from the nonlinear 

strain equations, where the transverse 

displacement is coupled to the axial strains 

(Nishawala, 2011). As a result, mid-plane 

stretching of the beam or plate may occur. The 

von Karman, or large deformation, theory of 

plates uses geometric nonlinearity in its 

derivation. 

 

1.1 Isogeometric Analysis 

Isogeometric Analysis (IGA) is a 

computational approach that integrates Finite 

Element Analysis (FEA) and Computer Aided 

Design (CAD). It was introduced by Hughes 

and co-workers to bridge the gap between 

Computer Aided Design (CAD) and Finite 

Element Analysis (FEA) (Hughes et al 2005). 

Isogeometric Analysis is developed in the 

purpose of utilizing the same data set in both 

design and analysis (Raknes, 2011). In today’s 

CAD and FEA packages one have to convert 

the data generated in design to a data set 

suitable for FEA. Converting the data is not 

trivial, as the computational geometric 

approach is different in CAD and FEA. IGA 

makes it possible to utilize the NURBS 

geometry, which is the most used basis in 

CAD packages, in FEA directly. Isogeometric 

analysis is thus a great tool for optimizing 

models, as one easily can make refinements 

and perform testing and analysis during design 
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and development. The core idea of the method 

is to use the same basis functions for the 

representation of geometry in CAD and the 

approximation of solutions fields in FEA. This 

strategy bypasses the mesh generation process 

required for standard FEA and supports a 

tightly connected interaction between CAD 

and FEA tools which could potentially reduce 

the time required for the analysis of complex 

engineering designs by up to 80%.  In addition, 

it has been shown that the use of a smooth, 

higher-order geometric basis is superior to 

standard discretizations (Evans et al, 2009). 

This has been demonstrated for a variety of 

application areas such as structural vibrations, 

incompressibility, shells, fluid-structure 

interaction, turbulence, phase fields, contact, 

fracture, and optimization. 

According to Raknes (2011), 

isoparametric analysis involves using the same 

basis functions to represent design as well as to 

perform analysis, whereas isogeometric 

analysis also implies letting the geometry be 

the deciding factor on exactly what kind of 

basis functions to use. The main idea in 

isogeometric analysis is to use Non Uniform 

Rational B-Splines (NURBS) as basis 

functions in both design and in the finite 

element method (Raknes, 2011). NURBS are, 

as the name indicate, built from B-splines.  

According to Kiendl (2011), B-Spline 

curves are defined by a linear combination of 

control points and basis functions over a 

parametric space. The basis functions are 

called B-Splines (short for Basis-Splines). The 

parametric space is divided into intervals and 

the B-Splines are defined piecewise on these 

intervals, with certain continuity requirements 

between the intervals. Since the number of 

intervals is arbitrary, the polynomial degree 

can be chosen independently of the number of 

control points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parametric space is defined by the so 

called knot vector; 

Ξ= [𝜉1, 𝜉2 , . . . , 𝜉𝑛+p+1]                              (1) 

It is a set of parametric coordinates 𝜉𝑖  in non-

descending order which divide the parametric 

space into sections. If all knots are equally 

spaced, the knot vector is called uniform. A B-

Spline basis function is C∞  continuous inside a 

knot span, i.e. between two distinct knots, and 

C
p-1 

continuous at a single knot. A knot value 

can appear more than once and is then called a 

multiple knot. At a knot of multiplicity k the 

continuity is C
p-k

, i.e. by increasing the 

multiplicity of a knot the continuity can be 

decreased. If the first and the last knot have the 

multiplicity p + 1, the knot vector is called 

open, clamped, or non-periodic. 

The B-spline basis functions are 

defined recursively by (Hughes, 2005); 

 

Ni,p(𝜉) = 
𝜉− 𝜉𝑖

𝜉𝑖+𝑝  −  𝜉𝑖
 Ni,p-1(𝜉) + 

𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1  −  𝜉𝑖+1
 Ni+1,p-

1(𝜉)       (2) 

 

Figure 1: Example and nature of B-

spline curves (Lovadina et al, 2014) 
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For p = 1,2,3,...  

For p = 0, we have that; 

Ni,0 (𝜉) =  
1 𝑖𝑓 𝜉𝑖  ≤ 𝜉 <  𝜉𝑖+1  
0 otherwise

          (3) 

If the denominators in the factor we 

multiply the basis functions by are zero we 

define the factor to be zero. That is; 

 
𝜉− 𝜉𝑖

𝜉𝑖+𝑝  −  𝜉𝑖
≡ 0 if  𝜉𝑖+𝑝  −   𝜉𝑖  = 0,                 (4) 

 
𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1  −  𝜉𝑖+1
 ≡ 0  if  𝜉𝑖+𝑝+1  −   𝜉𝑖+1 = 0  (5) 

This formula is also known as the Cox-

de Boor recursion formula (Hughes, 2005). 

Dynamic programming is recommended to 

improve the running time of this recursively 

formula. Else wise the same values will be 

calculated several times. We have n basis 

functions, with Ni,p being the i
th 

basis function 

of order p, i ∈ [1, n]. The number of basis 

functions is determined by the order and the 

number of knots; we have n + p + 1 knots 

resulting in n basis functions. Increasing the 

number of knots will consequently also 

increase the number of basis function. It is 

worth noticing that the basis functions are non-

negative and that they form a partition of unity, 

i.e.  

 

Ni,p(𝜉) ≥ 0 ∀𝜉, 

  𝑁𝑖, 𝑝(𝜉)𝑛
𝑖=1  = 1.0                       (6) 

 

Two other properties of the basis 

functions are that they have local support and 

local knots. The properties are stated in 

Lemma 2.6 in (Lyche and Morken, 2008) and 

involve the following; Assume that we have 

the knot vector  Ξ= [𝜉1, 𝜉2 , . . . , 𝜉𝑛+p+1]. Then 

𝑁𝑖
𝑝

(𝜉)  = 0 if  𝜉 is outside the interval 

[𝜉𝑖 , 𝜉𝑛 +p+1]. Thus, the i
th
 B-spline 𝑁𝑖

𝑝
(𝜉)  

depends only on the knots [𝜉𝑖 , 𝜉𝑛 +p+1]. 

 

Table 1: Comparison between IGA and 

FEA (Raknes, 2011) 

Isogeometric 

Analysis 

Finite Element 

Analysis 

Control Points Nodal Points 

Control Variables Nodal Variables 

Knots Mesh 

Exact geometry 
Approximated 

geometry 

NURBS basis 

functions 

Lagrange basis 

functions 

Basis not 

interpolating 

control points 

Basis interpolating 

nodes 

Patches Subdomains 

The comparison between the classical 

Finite Element Analysis (FEA) and 

Isogeometric Analysis (IGA) is shown in 

Table 1. This is what this project explores; 

employing the classical method of FEA, and 

comparing the results obtained using IGA. 

This can give us a good idea on the efficiency 

of the two methods based on accuracy, and 

also comparison of small and large deflection 

results. 

1.2 Aims 

The aim of the paper is to access the 

impact of erosion on building in the vicinity of 

erosion prone area with the centre pointed on 

its large deformation using Isogeomentric 

analysis tools 

1.3 Objective  

1. To examine the effect of erosion on  

buildings in a erosion prone area 

(Ekwulobia and Oko, Community) 
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2. To investigate the effects of structural 

deformation due to erosion with study 

area. 

3. to reveal Isogeomentric analysis in its 

simplest form an a r4cent approach 

compared with the already existing 

finite element and classical method 

through the analysis of the common 

structure members (i.e) slab, beam and 

cantilever using Isogeomentric 

analysis with computer program 

written in MATLAB which will be 

developed for each element. 

1.4 Scope of Work 

This work was approved through 

Isogeomentric analysis with erosion in 

Ekwulobia/Oko community at Aguta L.G.A 

Anambra State on the case of study. 

2.0 RESEARCH METHODOLOGY 

In this paper, a residential building is 

modelled and subjected to serviceability and 

ultimate limit state load for the investigation of 

small and large deflection analysis. Large 

deflection analysis has been carried on the 

basis on geometric non-linearity after the field 

inspection carried out in the buildings at Oko 

and Ekwulobia erosion regions. They are label 

EB and OB respectively. 

 

2.1 Structural Defects due to erosion 

The pictures below shows the nature 

of some buildings at Ekwulobia/Oko study 

area due to erosion problems. 

  
EB 1 EB2 

 
 

OB1 OB2 

  
EB3 OB3 

 
 

EB4 OB4 

  
EB5 OB5 

  
OB6 EB6 

Figure 2: the nature of some buildings at 

Ekwulobia/Oko study area due to erosion 

problems 

 

Table 4 shows summary of the field 

inspection carried out, the buildings under 

consideration have been surveyed by visual 
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inspection. In order to make the analysis more 

simplified, the buildings were modified and 

assembled into a single building that will 

represent the major structural elements that are 

often encountered in structural engineering 

practice in Nigeria. This structural element is 

shown in Figure 3; 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this the section, the methods 

employed in formulation of the MATLAB and 

C++ programs for the application of the 

isogeometric analysis for the linear elastic 

deflection of structural members are presented. 

Here, we consider the domain Ω with 

boundary Γ in the physical spa 

 

 𝐑𝑒𝑇  𝜉 𝜉𝑖  , 𝜂 𝜂 =
𝑛𝑔𝑝
𝑖=1

𝑏𝐭 𝐉 𝑥, 𝜉𝑒𝜉𝑖,𝜂=𝑏𝜌𝑖.                            (6) 

 

for the part of the boundary we 𝜂 is constant. 

After assembling all contributions to K and f 

we can solve with respect to d and further 

calculate strain and stresses. Recall that ∈𝑒= 

B
e
d

e
 and 𝜎e 

= D
e∈e

 = D
e
B

e
d

e
. This can be 

comfortably programmed in MATLAB. 

 

 

 

 

 

3.0 RESULTS 

Consider the general arrangement of a 

floor plan as shown below in Figure 5. The 

panels have been idealised as thin plates 

clamped at all edges. 

3.1 Analysis of the plates at serviceability 

limit state 

Load Analysis 

Self weight of concrete = 25 × 0.15 = 3.6 

KN/m
2
 

Finishes (say) = 1.2 KN/m
2
 

Total dead load (gk) = 3.6 + 1.2 = 4.8 KN/m
2
 

Imposed load (residential apartment) (qk) = 

1.5 KN/m
2
 

At serviceability limit state = 1.0gk + 1.0qk = 

1.0(4.8) + 1.0(1.5)   = 6.2 KN/m
2 

We will be treating the slab as a square plate 

that is clamped at all edges, subjected to a 

uniform pressure of 6.2 KN/m
2
. 

Material Data; 

Modulus of Elasticity E = 21.7 KN/mm
2
 = 

2.17 × 10
7
 KN/m

2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: 2D view of the frame of the 

model showing section sizes (cm) 

 

 

Figure 4: Computational domain 

 

 

Figure 5: Plan view of the floor plan 

general arrangement 
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Panel 1: All edges clamped 

Poisson ratio v = 0.2 

Plate dimensions = a = b = 6.0m 

Solution 

 

(a) By Kirchoff’s small deflection thin plate 

theory; 

Maximum deflection at mid span =  − 

0.001593681267073 m 

 

Wmax = 1.59368 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result obtained using isogeometric 

analysis has been compared with classical 

solution and result from finite element analysis 

using Staad Pro Software. 

 

Table 2: Comparison of results from 

present study with other known methods 

From present 

study 

(isogeometric 

analysis) 

Classical 

Method 

(Timoshenko, 

1959) 

Staad Pro 

(Finite Element 

Analysis) 20 x 

20 

W = 1.594 mm W = 1.593 mm W = 1.611 mm 

 

Figure 6: 2-way square plate clamped at 

all edges for deflection analysis 

 

 

Figure 7: Meshing of the plate (IGA) 

 

 
Figure 8: Enforcement of boundary 

conditions 

 

Figure 9: Deflection profile of the plate under 

consideration using isogeometric analysis 
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(b) By Midlin plate theory (incorporating shear 

deformation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results from the analysis are 

compared in Table 3. 

 

Table 3: Comparison of results from 

present study with other known methods 

From present 

study 

(isogeometric 

analysis) 

 (Finite Element 

Analysis ) 20 x 20 

W = 1.616 mm W = 1.613 mm 

 

3.2 Large deformation analysis using finite 

element analysis 

No of iteration steps = 100; Maximum load = 

6.2 KN/m
2
 (Service load) 

 

 

 

 

 

 

 

 

 

 

Maximum deflection at serviceability limit 

state = 1.6137 mm 

At ultimate limit state 

n = 1.4gk + 1.6qk  =  1.4(4.8) + 1.6(1.5) = 9.12 

KN/m
2 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum deflection at the centre 

of the plate is 2.375mm. 

3.3 Cantilever Plate Element (isogeometric 

analysis) subjected to concentrated load 

Unit weight of block work = 3.47 KN/m
2 

 

Figure 10: Deflection profile of the thin 

plate using Mindlin plate theory (IGA) 

 

 

Figure 11: Deflection profile of the 

thin plate using Mindlin plate 

theory (FEM) 

 

 

Figure 12: SLS Large deflection profile 

of the plate (FEM) 

 

 

Figure 13: ULS Large deflection profile 

of the plate (FEM) 
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Height of wall = 3m 

Concentrated load on cantilever = 3.47 × 3 = 

10.41 KN/m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum deflection at the free end 

(isogeometric analysis) = 1.2667 mm 

By finite element analysis using Staad Pro 

 

 

 

 

 

 

 

 

 

Maximum deflection at the free end 

(finite element analysis) = 1.262 mm 

Exact solution = 
𝑃𝐿3

3𝐸𝐼
 = 1.2928 mm 

Large deflection results using finite element 

analysis 

Number of iterations = 10 

P = 10.41 KN (SLS) 

Maximum deflection at the free end = 

2.243mm 

P at ultimate limit state = 1.4 × 10.41 = 

14.547 KN (ULS) 

Maximum deflection at the free end = 

3.115mm 

4.0 DISCUSSION OF RESULTS 

Using isogeometric analysis (IGA), the 

small deflection of a 6m x 6m clamped plate 

subjected to a serviceability pressure load of 

6.2 KN/m
2
 was found to be 1.59368mm. This 

result was 0.0627% more than the exact 

solution at 1.593mm. IGA gave better result 

than finite element analysis carried out using 

StaadPro software. Employing a matrix size of 

20 x 20, the deflection was observed to be 

1.611mm, which was 1.1173% higher than the 

exact solution. Using Mindlin plate theory 

(incorporating shear deformation), the 

maximum deflection at the centre of the plate 

was observed to be 1.616mm. This was 

1.423% higher than the result from Kirchoff’s 

plate theory. The result obtained using finite 

element analysis was 1.613 mm, this shows 

that the result for IGA was 0.1856% higher 

than finite element analysis result.  

On considering the large deformation 

of the square plate element at serviceability 

limit state at 100 iteration steps, the results 

show that the maximum deflection was 

1.613mm, exactly the same with small 

deflection theory. At ultimate limit state 

(failure load), the result from large deflection 

analysis increased to 2.375mm (32.084% 

 

Figure 14: Cantilever plate subjected to 

block work load at the free end 

 

 

Figure 15: Elastic deflection profile of 

cantilever plate subjected to point load 

(IGA) 

 

 

Figure 16: Elastic deflection profile of 

cantilever plate subjected to point load 

(FEM) 
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increase) at 100 iteration steps. However, a 

little consideration will show that the 

deflection at ultimate load was still small, 

since it was less than 
𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠  𝑜𝑓  𝑝𝑙𝑎𝑡𝑒

5
  (150/5 

= 30mm). Therefore, it is not a surprise that the 

results from linear and nonlinear theory are 

very similar. These deflections are so small 

that the membrane forces cannot develop in the 

plate, and as a result, for the analysis of such 

structures at ultimate limit state, small 

deflection plate theory can be conveniently 

employed. 

Also, considering the behaviour of 

cantilever members in the structure, the same 

behaviour was observed. For the cantilever 

subjected to a block work load of 10.41KN at 

the free end,a deflection of 1.2667mm was 

observed at the free end. This result was 

actually less than the exact solution 

(1.2928mm) by -2.060%. The displacement 

from large deflection analysis at 10 iteration 

steps was found to be 2.243mm for the service 

load. This was 42.36% higher than the exact 

solution. The displacement from large 

deflection theory at ultimate load was observed 

to be 3.115mm. This was found to be 27.99% 

higher than the result from the service load. 

However, a little consideration will show that 

that this is still very consistent with results 

from small deflection theory.  

5.0 CONCLUSION 

From the above results, we can 

conclude that the method of isogeometric 

analysis is very efficient for the analysis of 

structures, and presents very interesting 

concepts when compared with the famous 

finite element analysis method. Also, the use 

of small deflection theory has been shown to 

be sufficient for the analysis of buildings in 

erosion prone regions, especially in Nigeria. 

This is so because the normally used thickness 

for slabs in Nigeria is 150mm, and for slabs 

with small and moderate spans, this is quite 

satisfactory for most ultimate and 

serviceability limit state requirements.  From 

the study, geometric non-linearity cannot be 

the major cause of failure of structures but 

issues like loss of equilibrium, mass wasting, 

and loss of bearing capacity of foundations can 

be seen to be more prominent in causing 

failure of buildings at erosion sites. 
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Table 4: Summary of the Field Inspection 

BUILDI

NGS 

IDENTIFICATION CRACKS DEFORMA

TION 

OBSERVATIONS/COM

MENTS. 

EB1 Fence and draining structures 

caving into gullies at Ekwulobia 

Yes Yes A large cracks and large 

deformation was observed 

EB2 Building curving into gully at 

Ekwulobia 

 

 

    _ 

Yes Deformation about to 

enhance crack wasn’t 

observed due to access 

OB1 Building near erosion threatened 

gully at Oko 

No No Gradually washing away of 

the building surrounding by 

flood was observed. 

OB2 Erosion threatened building at 

Oko 

No No The building is under treat 

Although No crack or 

deformation was observed. 

OB3 Building which measures about 

50m away from gully 

Yes No Cracks measuring about 5m 

in length negligible width 

was observed but no 

deformation. 

EB3 Student Hostel which is about 

250m away from the erosion site 

No NO No cracks and deformation 

was observed. 
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EB4 A 3 bed room flat captioned at 

Oko near erosion prone region 

No No This building near a flood 

way but no crack and 

deformation which may be 

as a result of quality 

construction. 

OB4 A hall Oko near an erosion 

threatened region 

Yes No A negligible crack was 

observed but No 

deformation. 

EB5 Floor of compound near a gully Yes No A crack was encountered  

L=2m 

W=0.5mm 

Measured with the help of a 

tape & a broom stick 

OB5 Hostel built beside a gully No No No cracking and 

deformation due to the 

presence of a retaining wall. 

OB6 A residential building built 

beside a swamp at Oko 

No No No crack and deformation 

due to the presence of pile 

foundation and retaining 

wall. 

EB6 Fence of an incomplete building 

built along a moving flood 

No No No cracks was observed 

because they made use of a 

retaining wall with a good 

concrete mixture. 
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