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Abstract 

 
     Larson-Miller, Sherby-Dorn and Manson-Hefered had used parametric methods to analyze creep in metals. This study used 

experimental and numerical methods with parametric method as mixed method. Multiple linear regression and the general Power law 

equations were employed to model the Raffia fibre composites creep limit responses. The creep limit estimated with numerical methods 

correlated with the experimental data and results of parametric methods, so that multiple linear regression model and power law model are 

good fits for creep limit of Raffia fibre composites working within temperature ranges of 30 oC to100oC.The values 0.0062, 0.96926 and 

0.9845   evaluated for standard error, coefficient of determination and correlation coefficient respectively support the conclusion that 

multiple linear regression model represents an excellent fit of creep function of raffia fibre composites. This paper therefore successfully 

presented two numerical models and parametric charts for raffia fibre reinforced plastic composites creep limit design. 

 

 

 

1. Introduction 
 

     Viscoelastic materials show a time dependent response to 

applied stress. The creep limit of plastics needs to be 

established because of involvement of plastics in most 

recent designs such as in multi-layer moldings, design of 

snap fits, design of ribbed sections and in design of light 

weight structures, in every day use.  

     One of the major objectives of this paper is to establish 

whether some of the models established for metal creeps can 

be applied for plastics creep. Study also aims at obtaining 

the creep limit for Raffia fibre reinforced polyester matrix 

composites.  

     The influence of high temperature on tensile strength, 

yield strength and elongation of materials was reported by 

(Black and Adams, 1981). The maximum temperature in 

steam and gas turbine castings is limited to about 538
O
C, 

although experimental value is in the range of 760
 O

C to 871
 

O
C (Belyaev, 1979).  

     In addition to loss of strength at high temperature, steel 

and other metals exhibit the phenomenon of creep, which is 

the gradual elongation of the entire member at high 

temperatures over a long period of time .High temperature 

and high stresses increase the creep rate so that at high 

temperatures the part will not elongate (Shigley and 

Mischke.,1989) reported that a part may fail with a load that 

induces stresses though the load may lie between the yield 

strength and the tensile strength of the material. Classical 

reports show that creep can occur at low temperature in 

aluminum and polymeric composites (Crawford, 1998). 

     This study used experimental and numerical methods of 

multiple linear regression approach and the general power 

law modeling method in conjunction with parametric 

methods to model the Raffia fibre composites creep limit 

response. 

 

2. Theoretical background 

 

     Andrade in 1910 was the first to establish relationships 

between creep strain and time as in (Benham and 

Warnock,1981).Though,Larson-Miller,Sherby-Dorn and 

Manson-Hefered had used parametric methods to analyze 

creep in metals no such indebt analysis had analysed creep 

in polymeric composites (local fibre composites) (Muben, 

2003). Creep-strain equations for plastics were reported in 

(Crawford, 1998).  

 

2.1. Creep-strain equations 

 

      Creep-strain equations for plastics were reported in 

(Crawford, 1998) as 

ε =  a + bt
c
 (parabolic)          (1) 
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ε =  a + bt
1/3

 + ct (power)          (2) 

 

ε =  at/1+bt (Hyperbolic)                                                  (3) 

 

ε  =  1/1+at
b
 (Hyperbolic)                                       (4) 

 
where, ε = Creep strain, t = Creep time 

 

2.2. Multiple linear regression model for modeling 

 

     The Multiple Linear Regression Model for modeling of 

nonlinear responses is expressed in (Canale and Chapra, 

1998; Zill and Cullen, 1996; Ihueze, 2005; 2007;2008) 

 

Pm (x)   =      a0    +   a1x1i    +   a2x2i                       (5) 

 

Following minimization of sum of squares of residuals as 

applied in polynomial  regression. 

 

Ei      =    pm (x) -  yi   =   Residual                       (6) 

 

Sr     =        i2i21i10 y - )xa      xa      (a         (7)

  

By differentiating with respect to polynomial coefficients, 

a0, a1 and a2 

∂sr     =     2      i2i21i10 y - )xa      xa      (a         (8) 

        ∂a0            

 

∂sr = 2∑x1  i2i21i10 y - )xa      xa      (a                   (9) 

           ∂a1            

 

∂sr  = 2  ∑x2i    i2i21i10 y - )xa      xa      (a             (10) 

 ∂a2            

 

By setting (8) - (10) to zero, the following system of linear 

equations was obtained.  

 

na0 + a1  ∑x1i   +  a2  ∑x2i      =     ∑  yi                     (11) 

 

             

a0 x1i +   a1  ∑  x1i 
2
  +  a2  ∑x1ix2i         =      ∑x1iyi                       (12) 

                                                                                  

a0 ∑x2i +  a1  ∑  x2i  +  a2  ∑x1ix2i
      

=      ∑ x2i
 
 yi       (13)    

                    

Putting (Eqs. 11 – 13)  in matrix form 
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    Where x1 = temperature, x2 = time,t 

 

2.3. General power law-multiple regression model 

     The general power law-multiple regression model for the 

modeling of nonlinear responses is expressed in (Canale and 

Chapra, 1998) as  

Y = a0x1i
a1

x2i
a2

x3i
a3

………xmi
am

                                        (15)                                                                                                                              

 

By linear transformation of Eq(15)                                                                                                                              

 

logy = loga0 +
 
a1logx1i +a2logx2i…….amlogxmi               (16)                                                                                                                                     

 

By comparing Eq(5) and Eq(16)                                                                                                                                     

 

loga0 =a0,l ogx1i = x1i,  logx2i = x2i                                    (17)        

                                                                                                                              

so that the constants ao and a1, a2 can be solved with matrix 

 



























































i2i

i1i

i

2

1

0

2

2i2i1i2i

2i1i

2

1i1i

2i1i

logy logx

logy xlog

logy

a

a

loga

x 

 

)(logxlogx logx xlog
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   (18) 

          

2.4. Classical parametric methods 

 

     Sherby-Dorn, Larson-Miller and Manson-Herfered had 

developed master curves for the prediction of creep 

following the linearization of the rate equation (Muben, 

2003). 

 

t = c exp (E/RT)                                                                (19) 

   

By linearization of Eq. (19), 

 

lnt = c + E/RT                      (20) 

 

where   

 E = activation energy 

 R = gas constant 

 T = absolute temperature 

c= a constant and is a function of stress. 

Two possibilities may occur with the graphics of (1/T, lnt)  

 

 
lnt 

1/T 

 

lnt 

1/T 

 
Fig. 1. E/R is the slope of the line. 
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2.5. Sherby-Dorm parameter 

 

     By employing Eq. (20) and Fig.1 in which E is a 

constant, c a function of, f1().f1 () is known as the 

Sherby-Dorn parameter and is expressed as: 

 

c = f1 () = lnt – E/RT = lnt – m/T                                   (21) 

 

where 

m = E/R = a constant ,c is determined by performing quick 

creep tests at several stress levels, the lnt vs 1/T lines are 

plotted, their slopes determined and ,master curve prepared 

by plotting ln as  function of f1(). 

 

2.6. Larson-Miller Parameter 

 

     When Eq. (20) is used and ln  is plotted as function of 

f2 () 

 

c = lnt – m/T                                                 (22) 

 

T(lnt - c) = E/R = m                                   (23) 

 

m    = E/R, a constant                                                       (24) 

 

where f2 () is the larson-Miller parameter taken to be equal 

to m ie m = f2 (). The Larson-Miller master curve is 

obtained after short experiments to obtain 1/T for several 

stress levels for determination of f2 () and m = f2 ().  

 

3. Methodology 

 
     The mixed-methodology of this work consists of three 

parts, Hand-lay up method to form Raffia fibre composites, 

Testing or Experimentation to obtain creep failure data and 

Analytical or computational method to model and analyse 

creep data. 

 

3.1. Hand-lay up method 

      

     Raffia fibre composites are formed. The full details of 

the processes involved are found in (Ihueze, 2005). 

Replicated samples of composites are formed for creep tests 

following standard procedures. 

 

 
3.2. Experimentation and method 

 

     Creep testing equipment was used on replicated samples 

of Raffia composite considering temperatures of 30
o
C, 50

o
C 

and 100
o
C and deformation response data recorded as 

presented in Table1. The full details of the equipment and 

procedures used are found in Anambra State University 

mechanical engineering laboratory, (Enendu et al., 2006) 

and (Oreko et al., 2006). 

Table 1 

 True stress responses at elevated temperatures 

  30
o
C 50

 o
C 100

 o
C 

Time 

(minutes) 
30 (MPa) 50 (MPa) 100 (MPa) 

5 0 0 8.506 

10 9.1163 0 8.5086 

15 9.1191 0 8.5113 

20 9.122 0 8.5139 

    

25 9.1248 8.7848 8.5165 

30 9.1276 8.7862 8.5178 

35 9.1304 8.7916 8.5178 

40 9.1346 8.797 8.5178 

45 9.1388 8.8011 8.5178 

50 9.1416 8.8011   

55 9.1416 8.8011   

60 9.155 8.8011   

65 9.1416     

Source: (Enendu, 2006) 

 

Table 2 

Creep deformation response of raffia composites 

Time 

(minutes) 

nR30 

(mm/mm) 

nR50 

(mm/mm) 

nR100 

(mm/mm) 

5 0.0002  0.0003 

10 0.0005  0.0006 

15 0.0008  0.0009 

20 0.0011  0.0012 

25 0.0014 0.0002 0.0015 

30 0.0017 0.0003 0.0017 

35 0.0022 0.0009 0.0017 

40 0.0026 0.0015 0.0017 

45 0.0029 0.002 0.0017 

50 0.0029 0.002  

55 0.0029 0.002  

60 0.0029 0.002  

65 0.0029   

Source: (Enendu, 2006) 

 

Creep deformation Response of raffia composites
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Fig. 2. Creep deformation response of raffia composites. 
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4. Computational modeling of creep data 

 

     Creep limit and strain are time dependent responses and 

are functions of two variables, temperature and time. This 

work considered three temperature levels, 30
o
C, 50

o
C and 

100
o
C. Table 1 shows that at 30

o
C, the creep limit was 

9.1416 MPa at time 65mins and at 50
o
C, creep limit is 

8.8011 MPa at time 60 mins and that at 100
o
C creep limit 

was 8.5178 MPa at time 45 mins.These information were 

correlated with multiple linear regression and general power 

law models as well as with parametric methods using Table 

3. 

 

Table 3  

Creep strengths extracted from Table 1 

x1(
o
C) x2(mins) y (MPa) 

30 65 9.1416 

50 60 8.8011 

100 45 8.5178 

  

4.1. Multiple linear regression modeling 

 

     By evaluating terms of Eq (14) as 

 

n=3,∑ x1i  =180,  ∑  x2i  =170, ∑ yi     = 26.4649, 

 

∑  x1i
2 
= 13400,   ∑ xi x2i =9450,  ∑ x1i yi=1566.215, 

 

∑ x2i =170, ∑ x2i
2  

=9850,  ∑ x2 i yi =1505.857 and 

substituting in Eq(14)  a system of 3x3 matrix equations is 

obtained as 
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98509450170

945013400180

1701803

2

1

0

            (25) 

 

     The variable parameters a0, a1, a2 were obtained by direct 

method of solving system of linear equations of Crout 

method (LU – decomposition) as a0 = 26.4529, a1 = -

0.07514, a2 = -0.23158. These parameters were substituted 

in Eq. (5) to obtain multiple linear regression creep model as 

 

 y = 26.4529 – 0.07514 x1 – 0.23158 x2                           (26) 

 

4.2. Power law modeling 

 

     By evaluating terms of Eq.(18) as 

n   =  3.0000 , ∑ logx1i  = 5.1761,  ∑logx2i =5.2443 ,    

 

∑ Logyi =2.8361,∑(logx1i)
2
 9.0684 ,  

 

∑ logx1i logx2i  = 9.0053,  ∑ logx1i Logyi   4.8853,   
 

∑ ( logx2i )
2  

= 9.181, 

 ∑logx2i logyi  =4.960187 857and substituting in Eq.(18) 

system of 3x3 matrix equations is obtained as 
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9.18169.00535.2443

9.00539.06845.1761

5.24435.17613.0000

2

1

0

                      (27) 

 

     Similarly this equation is solved by LU – decomposition 

to obtain log a0 = 1.446765, a0  = Antilog 1.446765 =  

10 
1.446765

  = 27.97467. a1 = -0.112965,a2 = -0.1753288. 

When these constant coefficients were substituted in Eq.(15) 

the following power law model is obtained  

 

y = 27.97467 x1 
– 0.112965

 x2 
– 0.17533

                     (28)  

 

4.3. Comparison and validation of models.  

 

4.3.1. Comparison of models.  

     The constants of Eqs. (26) and (28) appear 

approximately equal supposing that predictions  of the 

two equations may be similar. The validity of the two 

predictive models can be  assessed by using x1 = 30 mins 

and x2 = 65 mins from Table 1 in Eqs. (26) and (28) 

respectively to obtain, y =   9.146 MPa and 9.16295 MPa. , 

for Eqs. (26) and (28). 

      Both estimates approximate experimental data, so that 

multiple linear regression model and power law model are 

good fits for creep limit of Raffia fibre composites working 

within temperature ranges of 30
 o
C  to 100

 o
C. 

 

 

 

4.3.2. Computation for error analysis of regression models. 

      By using  y
1
   =∑ y ∕ 3 =8.8202, ao  =26.4529  , a1  = – 

0.07514  , a2   = – 0.23158 in Table7 the following were 

evaluated:    

 

 

 

Standard error, 

 

sy.∕,x  = √sr ∕ [n –(m+1)] =0.0062                     (29) 

         

Coefficient of determination, 

 

r
2
 = [∑ (y-y

1
)

2
 -∑ sr] ∕ [∑ (y-y

1
)

2
  =0.96926      (30) 

     

Correlation coefficient, 

 

r =√ r
2
 =0.9845. 

 

     The values 0.0062, 0.96926 and 0.9845 evaluated for 

standard error, coefficient of determination and correlation 

coefficient respectively support the conclusion that Multiple 

Linear Regression Model represents an excellent fit of creep 

function of raffia fibre composites. 
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Table7 

Computation for error analysis of multiple linear regression 

model 

x1 x2 Y (y-y
1
)

2
 [y-(ao+a1x1 +a2x2) ]

2
 

30 65 9.1416 0.1o34 0.000019 

50 60 8.8011 0.0004 0.000004 

100 45 8.5178 0.0914 0.000016 

         ∑       26. 4605 0.1952 0.000039 

 

4.4. Parametric modeling of creep data. 

 

      The creep limits at various temperatures were presented 

with time for the creep event to occur in Table 4. Creep 

parameters were determined following Sherby-Dorn and 

Larson-Miller methods as followings: 

 

Table 4  

Parametric analysis data evaluated from Table 1 

T(k) t (hrs) y (MPa) 1/T lnt 

303 1.0833 9.1416 0.0033 0.08 

323 1 8.8011 0.0031 0 

373 o.7500 8.5178 0.0027 -0.288 

 

The graphics of Table 4 to show relationship of data before 

analysis is in Fig. 3. 

-0.4

-0.3

-0.2

-0.1

0

0.1

0 0.002 0.004

1/T

ln
t

 
 Fig. 3. lnt vs 1∕T for different stress levels. 

 

4.4.1. Sherby-Dorn analysis  

     For material to follow the Sherby-Dorn, the curve of lnt 

– 1/T must be straight.  By employing Eq.(16) and Table 4, 

Sherby-Dorn parameter, c was estimated as: 

 

lnt = c + m/T 

 

ln 1.0833 = c + m/303                  (31) 

 

ln 1  = c + m/323                  (32) 

 

By solving Eqs. (27) and (28). 

1.21218-  c                  

m  c 323           1ln  323

m c 303  1.0833ln  303







        (33) 

 

c is the Sherby-Dorn parameter. For value of m, substitute  

c = - 1.2118 in Eq. (28), m = 323* 1.2118, = 391.4114, 

Since f1 (1) = c, f1 (2) = c, f1 (3) = c 

So that by Eq. (29 ), 

 

f1 (9.146)  = ln (1.0833) – (391.4114)∕ 303    =  -1.2118 

 

f1 (8.8011) = ln1 – (391.4114)∕ 323  = 0-1.2118 

 

f1 (8.5178) = ln 0.75 –( 391.4114)∕ 373 = -0.2877 – 1.0494 = 

-1.3371 

    

The Sherby-Dorn parameters are presented in Table 5 while 

the excel graphics of Table 5 is in Fig. 4   

 

Table 5  

Sherby-Dorn master curve data   

Y f1(y) lny 

9.1416 -1.2118 2.2133 

8.8011 -1.2118 2.2133 

8.5178 -1.3371 2.142 

 

Sherby-Dorn Master Curve

2.12

2.14

2.16

2.18

2.2

2.22

-1.35 -1.3 -1.25 -1.2f1(y)

ln
y

 
Fig. 4.  Sherby-Dorn master curve. 

 

4.4.2. Larson-Miller master analysis. 

      The Larson-Miller Parameters were also determined for 

the three true stress levels using Eq.(20) for evaluation of m 

as: lnt = c + m/T 

From three stresses of Table 4, 

 

ln 1.0833 =   c + m1/303                           (34) 

         

ln 1.0000 = c + m1/323                                                 (35)        

 

By solving Eqs. (34) and (35) as usual 
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c = -1.2118, m = 391.4114, but Larson-Miller parameter, is  

 

expressed as 

f2() = m = T (lnt - c) ,so that for three stress levels, 

 

f2 (9.146) = 303 (ln 1.0833 + 1.2118), = 391.4192 

 

f2 (8.8011) = 323 (ln 1 + 1.2118) = 391.4114 

 

f2 (8.5178) = 373 (ln 0.75 + 1.2118) = 344.69599 

 

The Larson-Miller parameters are presented in Table 6 

while the excel graphics of Table 6 is in Fig.5. 

 

Table 6 

Larson-Miller master curve data 

y f2(y) lny 

9.1416 391.4192 2.2133 

8.8011 391.4114 2.2133 

8.5178 344.69599 2.142 

 

Larson-Miller Master Curve

2.12
2.14
2.16
2.18

2.2
2.22

340 360 380 400

f2(y)

ln
y

 
Fig. 5. Larson-Miller master curve. 

 

 4.3.2. Use of master curve 

     Once the creep time and temperature are known the 

creep parameter, f(y) =f (σ) is  evaluated using either 

Sherby-Dorn or Larson-Miller equation to estimate the 

parameter. The parameter is then used in master curve Fig. 4 

or Fig. 5, to estimate the creep limit, lny = ln σ. 

  
5. Discussion of results 

 

      Table 1 and Table 2 describe the time dependence 

response of gradual deformation  of Raffia fibre 

composite (creep) with time and temperature. Creep limits 

of Raffia fibre at temperatures of 30
0
C, 50

0
C and 100

0
C 

were recorded in Table I as 9.1416MPa, 8.8011 MPa and 

8.5178MPa. 

       Multiple linear regression model and power law model 

were used to establish models for design and manufacture of 

Raffia fibre composites serving within temperature up 

 to 100
0
C. The regression models were compared 

and the predictions of models gave creep limit as 9.146MPa 

and 9.16295MPa respectively.  

      Graphics were also established in the form of master 

curves. These curves follow the usual Sherby-Dorn and 

Larson-Miller master curves as shown in Figure 5 and 

Figure 6 respectively. These curves are applied when the 

relationship lnt vs 1/T is linear as shown in Figure4. Further 

comparison with Sherby-Dorn and Larson-Miller master 

 curves gave similar results. 

     The master curve application involves estimation of 

parameters f(σ) and extrapolation  of creep limit from the 

master curves. The major objective of this study which is to 

obtain appropriate creep models for design and manufacture 

of Raffia fibre composite  parts and to ascertain whether 

some existing models could be applicable were met with 

Eqs. (22) and (24) . 

     The values 0.0062, 0.96926 and 0.9845 evaluated for 

standard error, coefficient of determination and correlation 

coefficient respectively support the conclusion that Multiple 

Linear Regression Model represents an excellent fit of creep 

function of raffia fibre composites. 

 

6. Conclusions 

 

      Creep occurs in raffia fibre composites subjected to 

constant stresses with time and could be modeled by 

multiple linear regression equation and General power law 

equation. These models compared favourably with Sherby-

Dorn and Larson-Miller parametric methods predictions and 

therefore could be used in structural and component design 

for economic manufacture. The values, 0.0062, 0.96926 and 

0.9845 evaluated for standard error, coefficient of 

determination and correlation coefficient respectively 

support the conclusion that Multiple Linear Regression 

Model represents an excellent fit of creep function of raffia 

fibre composites. This paper therefore successfully 

presented two numerical models and parametric charts for 

raffia fibre reinforced plastic composites creep limit design. 
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