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Abstract  
 

     Theoretical analysis of parameters related to the critical and optimum insulation models were carried out. Analytical and computational 

models were developed for one-dimensional steady state heat transfer units to be used in industries. Finite horizontal air plate element is 

idealized for the heating section and basic heat transfer analysis is applied in the rectangular and radial heating units. Critical and optimum 

insulation thicknesses were modeled for plane walls and radial systems. Graphics analysis showed the hyperbolic response of insulation 

thickness with heat loss and the infinite heat loss as the insulation decreased. The critical and optimum models developed for plane walls 

and cylinders show critical insulation thickness of heat transfer surfaces as a function of the convective heat transfer coefficient of fluid 

surrounding the external walls of insulation (ambient air) and the thermal conductivity of insulating material. While the optimum insulation 

thickness is a function of thermal conductivity of insulating material, the convective heat transfer coefficient of out side air as well as the 

thermal gradient ratio, dependent on the temperature difference between the walls of the insulation and the temperature gradient between 

the outer walls of insulation and the external air. Insulation models were developed for fiberglass and asbestos and the predictions of the 

models compared favourably with analytically derived data.  
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1. Introduction 

 

     Heat insulation applying to any coating of heat-delivery 

surface such as found in the inner surfaces of drying 

chambers, interior surface of baking ovens, furnaces, heat 

exchangers, cold rooms interior surfaces etc., constitute 

basic engineering problems. The need to economize heat 

energy losses in thermal structures for optimum 

performance of structure calls for a great attention. Heat 

insulation ensures minimal losses of heat energy generated 

for useful purposes (Erokhin et al., 1986) reported that any 

material whose thermal conductivity is less than 0.2W/(m.k) 

could be used as insulating material. Though 

(Holman,2004), (Erokhin,1986) and (Rajput, 2004) 

expressed the relation for the computation of critical 

insulation thickness of thermal structures in terms of 

convective heat transfer coefficient of ambient air and the 

thermal conductivity of insulating material, the issue of 

optimum insulation thickness has not been addressed. The 

optimum insulation model is expected to consider not only 

the convective heat transfer coefficient and the thickness of 

the insulating material but also the similarity criteria for 

predicting convective heat transfer coefficient of the heating 

air as film coefficient. 

 

1.1.   Factors influencing insulation models 

 

     The factors influencing insulation thickness can be 

identified with film coefficients (convective heat transfer 

coefficients of heating and cooling fluid) that are influenced 

by the physical properties of the fluids, quantity of heat 

transferred and geometry of heat transfer medium (Hollands 

et al., 1975). 

 

1.1.1. Film coefficients are the convective heat transfer 

coefficient of the heating and cooling fluids that are affected 

by the physical properties of the cooling and heating fluids. 

Such physical properties include thermal conductivity of 

fluids, viscosity of the fluids, specific heat, capacity of 

fluids, density of the fluids, coefficient of thermal 
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expansion, temperature difference between surface and 

fluid, gravitational acceleration. The film coefficient 

increases as the film temperature increases.  

 

1.1.2. Quantity of heat transferred: This is greatly 

influenced by the film properties such as film coefficient, 

film thermal conductivity, temperature, density etc. As the 

quantity of heat transfer increases with film temperature, the 

insulation thickness increases with increasing heat transfer. 

    

1.1.3. Geometry of heat transfer medium: The film 

coefficient in enclosed space increases as the characteristic 

length increases there by increasing the quantity of heat 

transfer. Also the increase in heat transfer surface increases 

the quantity of heat transfer. Increasing surface area and 

characteristic length means increasing insulation. Above all 

it is the physical properties of fluid film that determines the 

insulation. Analytical and computational models are 

developed for one-dimensional steady state heat transfer 

units to be used in industries.     

 

2. Theoretical analysis 

 

     This section discusses the parameters related to 

insulation as well as existing insulating models. 

 

2.1. Critical insulation model 

 

     The classical critical insulating models for radial surfaces 

is expressed in (Erokhin et al., 1986; Holman, 2004; Rajput, 

2004; Eugene and Theodore, 1996)  as  

 

r0  =  ki/h0                          (1)  

 

where 

r0 = outside radius of insulation, k  = thermal conductivity of 

insulating material, h0= convective heat transfer coefficient 

of ambient air usually taken as 3W/m
2
k for heat flowing 

horizontal  (Hollands et al., 1975).Critical insulation 

thickness is the thickness of insulation up to which heat 

flow increases and after which heat flow decreases. The 

addition of insulation always increases the conductive 

thermal resistance, which will normally decrease the heat 

flow.     

 

2.2. Convective heat transfer coefficient in enclosed space 

 

     The Grashof Number, Nuselt Number and the Prandtl 

numbers are important film parameters in the estimation of 

the convective heat transfer coefficient of enclosed air 

expressed classically as  

 

Nu  = hl/kf                     (2) 

 

The idealized horizontal air plate element in enclosed space 

is represented in Fig. 1. for this analysis 

 
Fig. 1. Idealized horizontal air plate element as convective 

environment. 

 

     Heat flow is assumed horizontal here. Before analysis of 

dynamic properties or the convective heat transfer 

coefficient of heating or cooling agent it is necessary to 

establish whether flow is laminar or turbulent. The 

parameter that is usually used in heat transfer is the 

Reynolds number or Raleigh number. 

For the figure above the film temperature is expressed as  

 

2

TT
T 21

f


                           (3) 

 

Nuf  = Average medium Nuselt Number at film temperature 

Grf    = Grashof number expressed by (MacGregor and 

Emery, 1969) as  
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where, g  = acceleration due to gravity, m/s
2
, B  =  

coefficient of cubic expansion of gas expressed as  

 

B  =  1/Tf,  K
-1

                          (5) 

 

T1,T2  =  up stream and down stream temperatures of fluid 

L = characteristic length, Vf = kinematic viscosity, m
2
/s, Prf  

=  prandtl number expressed as  

 

Prf  =  νf/f                        (6) 

 

f = thermal diffusivity of the heat transfer agent expressed 

as  F = kf / cpf  ρf, Kf  = thermal conductivity of heat transfer 

gent, cpf = specific heat capacity of heat transfer agent at 

constant pressure, ρf  = density of heat transfer agent.  

 

2.3. Raleigh number 

 

     Flow is laminar if 10
4
 < 10

9
< Ra and turbulent if Ra > 

10
9 

in free convection flow. The quantity (Grf Prf) is called 
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the Raleigh number and it establishes whether flow is 

laminar or turbulent. It can be expressed as  

 

Ra  =  Grf Prf                        (7) 

 

At very low Grashof numbers there are very minute free-

convection current and the heat transfer occurs mainly by 

conduction. As the Grashof number is increased, different 

flow regimes are encountered (Holman, 2004). (Evans and 

Stefany, 1965) had shown that transient natural convection 

heating and cooling in enclosed vertical or horizontal 

cylindrical enclosures may be calculated with 

  

Nuf  = 0.55 (Grf Prf)
1/4

                                                         (8) 

 

Experimental results for free convection in enclosures are 

not always in agreement, but (Erokhin et al, 1986) gave 

relation for Nuselt number of air in bound spaced as 

 

Nu = ke/k = 0.18 (Grf Prf) 0.25                                  (9) 

   

Holman (2) developed a correlation in the form, 

 

Ke/k = C (Gr Pr)
n
 (H/x)

m
                      (10) 

 

where x = characteristic length, Ke = apparent effective 

thermal conducting of air expressed as  

 

Nux = ke/k                       (11) 

 

m,n = dimensionless parameters. Holman (2004) listed 

values of the constants, c, n and m for a number of physical 

circumstances. The values are to be used for design 

purposes in the absence of specific data for geometry being 

studied. Once the Nuselt number is calculated the 

convective heat coefficient is evaluated with the classical 

equation. 

 

Nux = hlL/kf                       (12) 

 

L = characteristic length = diameter for a tube, length for a 

horizontal plate height for a vertical plate. So that Eq (12) 

 

Nux = hx/kf                       (13) 

 

And the convective heat transfer coefficient can be 

expressed as  

 

h1 = kf Nux/x                       (14) 

 

2.4. Enthalpy of enclosed air 

 

(a)  Heat Flux Across Wall 

The heat transfer by convection and conduction across air 

and walls of system can be expressed as  

 

q  =  hA (T1-T2)                   (15) 

 

And by applying Eq. (14) inEq(15) 

 

x

)T - (TNux  k

A

q 21f                                 (16) 

 

Both the Grashof number and the Nuselt numbers depend 

on the characteristic length and they greatly influence the 

estimates of medium parameters. 

 

3. Methodology 

 

     Analytical and computational methods were used on 

idealized horizontal air plate element within enclosed space 

to establish optimum and critical insulation thickness 

models for plane wall and radial systems. 

 

3.1. Establishment of heat transfer equations 

 

The idealized structural model is as shown in Fig. 2. 

 
Fig. 2. Idealized insulated heat transfer structural model. 

 

     The structural element is used to establish the thermal 

resistances of heat transfer elements. Four thermal 

resistances are encountered due to elements A,B,C,D 

respectively increasing the thermal resistance of a system 

decreases the heat loss or heat transfer. 

     The application of basic laws of heat transfer, the 

quantity of heat transferred or loss from the system of Fig. 2 

can be expressed as  
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By applying concept of overall heat transfer coefficient the 

thermal resistance Network is established, 
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Fig. 3. Thermal resistance network of idealized heat transfer system. 

 

But the overall heat transfer coefficient U is expressed as  
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                                   (18) 

 

 

Equation (17) expressed in terms of overall heat transfer 

coefficient is 

 

q  =  UAΔToverall                                                 (19) 

  

The overall heat transfer is therefore calculated as the ratio 

of the overall temperature difference to the sum of the 

thermal resistances and can be expressed as,  

 

 

Ah

1

Ak

t

Ak

t

Ah

1

T-T
q

oi

i

w

w

1

51



                                    (20) 

 

where, h1  =  convective heat transfer coefficient of heating 

air, A = heat transfer area, tw  =  wall thickness, ti =  

insulation thickness, kw  =  thermal conductivity of wall 

material, ki  =  thermal conductivity of insulating material, 

ho =  convective heat transfer coefficient of ambient air. 

Equation 20 shows that increasing the conductive 

resistances reduces the quantity of heat transferred and if the 

thickness of the wall to be insulated is neglected, increasing 

the thickness of insulation reduces the quantity of heat loss. 

 

3.2. Modeling insulation thickness of plane walls 

 

     From Fig. 2, Eq. (17) and assuming the thickness of wall 

is small compared to the insulation thickness so that the 

thermal resistance associated with the geometry is 

negligible, 

 

Ki A (T3- T4)∕ ti = h0 A (T4– T5), so that 
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t                                                             (21) 

 

Similarly from Eq. (17) 

 

i

43i

t

)T - A(T k
  q  , so that 

 

 

q

)T-(TA  k
  t 43i

i
                                                         (22) 

 

Difficulties arise in the application of Equations 21-22 when 

the interface temperatures  T2, T3 and T4 are unknown. 

Application of Eq. (22) requires the knowledge of the 

overall heat transferred out of the system. Using Eq. (17) the 

interface temperatures are evaluated as  
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                                                          (23) 

 

Equation 21 and Eq. (22) are the optimum insulation 

thickness for plane walls. 

 

3.2.1. Critical insulation model: plane wall 

     At critical insulation the heat transfer is maximized, a 

condition causing the interface temperatures T2, T3 and T4 to 

be equal and T5 tending to interface temperatures (T2 = T3 = 

T4 = T5), and Eq. (21) becomes  

 

tic = ki/ho                        (24) 

 

3.3. Modeling insulation thickness of radial system 

 

       The similar method of section (3.2) was followed. A 

cylindrical radial system is shown in Fig 4. 

 

r2 – r1 = ti                      (25) 

 

If the cylinder is split into two Fig. 5 similar to Fig. 2 is 

obtained 

 

T1                  T2                      T3                  T4                   T5 
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Fig. 4. Depiction of surface insulation of radial system 

(cylinder).   

 

 
 

Fig. 5. Depiction of insulation thickness of radial system 

(cylinder). 

 

For cylinder  

Area, A = 2 r2 L  

By Eq. (17), q = ki A (T3-T4)   = 

i

54o

t

)T-A(Th
  

so that 
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This is the same as Eq. (21) and this confirms that relations 

derived for plane walls apply to radial systems so that both 

the optimum and critical insulation thickness of radial 

systems can be expressed respectively as  
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 tic  =  ki/h0                                   (28) 

 

where, A  =  surface area of heat transfer surface. The 

optimum and critical radius of insulation are then specified 

respectively as  
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ro  =  r1  +  ki/ho                      (30) 

 

r2  =  outer insulation radus, r1  =  insulation radus  rc < r2 < 

ro 

 

3.4. Optimization of insulation thickness 

  

Employing Eq. (20) and assuming the conductive resistance 

of wall, 

 

tw ∕  kw     = 0 
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h1A (T1 – T5) = q – kiA 
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By gradient method of optimization and with respect to 

thermal potential difference (T1- T5) 
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ti  =   

o1

i

hh

k-


                            (36) 

 

 The insulation thickness decreases as the film 

coefficients, h1 and ho increases and correspondingly heat 

transfer increases as maximum heat transfer occurs at 

minimum insulation thickness as found in Eq. (36). 

 Equation 36 shows that as the film coefficients increase 

the there are maximum heat transfer and the optimum 

insulation thickness is increased.  

The absolute value of Eq. (36) is employed in the 

computation of the overall heat transfer. 

 

4. Computation of numerical data and analysis 

 

     This involves determination of similarity parameters of 

the convective heat transfer coefficients. The similarity 

parameters of the convective heat transfer coefficient are the 

Nuselt number given by Eq. (12) and the Grashof number 

given by Eq. (4). The Nuselt number is a function of 

Grashof number and Prandtl number, Nu = f (Grf, Prf) in free 

convection flow.The steps involved are: 

(a) Making basic assumptions 

 The heat flow is one dimensional 

 The film physical parameters are affected by increasing 

temperatures. 

 Horizontal plate element in enclosed space used. 

 Film temperature and temperature drop assumed 

(b) Idealizing horizontal air plate element in enclosed space 

and employing appropriate classical relation of section 2 

and models of section 3 

 

4.1. Computation of results 

 

      Film temperature, Tf = 300
oC 

and temperature drop of 

heating fluid,  T  =  T1 – T2  = 50
o
C. This is the temperature 

difference of the up steam and down stream of the heating 

fluid element. The fluid element is dimensioned as shown in 

fig where wall thickness is very small compared to the 

insulation. 

 

4.1.1 Computation of Heating medium Parameters. 

(a) Computation of temperatures, 

T1 and T2 .T1 and T2   are the stream temperatures of 

enclosed space see Fig 6 and Fig 7 ,Tf = 300
 o

C
 
= 573K. 

(assumed for analysis) 

 

Tf  =
2

TT
21


                    (37) 

T1 – T2 = 50
 o
C                  (38) 

 

T1 = 50 + T2                  (39) 

 
Fig. 6. Temperature variation across a four-layer plane wall. 

 

 
Fig. 7 Depiction of horizontal plate in enclosed space. 

 

Putting Eq. (39) in Eq. (37) 

 

Tf = 300 = 
2

T)T  50(
22


 

 

600 = 2T2 + 500, 2T2 = 500, T2 = 275
 o

C = 548k, Putting T2 

in Eq. (39), T1 = 50 + 548 = 598K. 

 

(b)  Computation of Similarity Parameters. 

(i)   Computation of Grashof number. Eq. (4) is used to 

evaluate the Grashof number, using the film temperature Tf 

= 573K. 

T5 
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B  = 1/Tf = 1.7542x10
-3

, g = 9.81m.s
2
, x = L = 0.4m 

 

      At the film temperature of Tf  = 573K, the values of the 

physical properties of heating fluid are evaluated as 

 

ρf =  0.6173kg/m
3
, νf = 47.56x10

-6
m

2
/s, Prf = 0.68, kf = 

0.04498W/mk. Putting the values of the above physical 

properties in Eq (4), Grf  = 2.422x10
7
 

 

 (c) Computation of Nuselt number, Nuf 

Putting the following values extracted from the work of 

(Hollands et al ,1975), c  =  0.061, n = 1/3 , m = 0 in Eq 

(10),Nuf = 15.52,also by using Eq. (9), ,Nuf = 11.47.   

Equation 12 shows that the convective heat transfer 

coefficient increases as Nuselt number increases, therefore 

we use Nuf = 15.52 in our analysis. 

 

(d) Transfer coefficient 

Equation 14 is used to evaluate the convective heat transfer 

coefficient by putting the values of kf, Nuf so far evaluated in 

previous sections and x = 400mm in Eq. (14) to obtain     

h1 = 1.7452w/m
2
K. (Erokhin et al., 1986) gave the range of 

values of convection transfer coefficient for heating or 

cooling air as 1.0 – 150w/m
2
k and for heating and cooling 

of water 200 – 12000 w/m
2
k, heating and cooling of oils 50 

– 1800 w/m
2
K. 

 

(e) Computation of heat transfer, q 

Equation 16 is used to compute the overall heat transferred, 

q , as 

 

q = 
x

)NT-A(T k
uf21f  

 

=  
4.0

15.52 548)-(598 0.06 x 04498.0
     =  5.3257W 

 

 

(f) Computation of interface temperatures, T2, T3 and T4 

If the thickness of wall to be insulated is small, then  

T2 = T3, T4 is evaluated with Eq. (23) as 

 

 T4 = 
Ah

q

o

    +  T5   =  
0.06 x 3

5.2357
  +  298  =  327.1K 

                   

where, T5  =  ambient temperature = 25
o
C 

, 
ho = convective 

heat transfer coefficient air = 3w/m
2
K as reported by 

(Markus and Morris,1980). 

 

(g) Computation of optimum insulation thickness 

Using Fibre glass insulation 

Putting q = 5.2357, A = 0.06, T3 = 548. T4 = 327.1,ki = 0.03 

in Eq. (22), ti = 75mm. Also putting k i = 0.03, T3 = 548, T4 

= 327.1 T5 = 298 and ho = 3 in Eq. (21), ti = 75.9mm. 

(h)  Computation of critical insulation thickness  

Putting ki = 0.03 and ho = 3 in Eq. (24),tic = 10mm,Now tic < 

ti ie 75.9mm > 10mm. The heat flow increases up to the 

thickness of insulation of 10mm but decreases after wards to 

attain optimum at insulation thickness of 75.9mm, when the 

heat flow is expected to be best minimum. Using asbestos 

insulation with ki = 0.17 and other values as in Eq. (22) and 

Eq. (21) ti = 430.3mm, tic = 56.67mm. 

 

5. Modeling and discussion of results 

 

 Excel graphics and curve fitting methods were employed. 

 

5.1. Graphical modeling. 

 

     Table 1 and Fig. 8a show that the optimum insulation 

thickness is greater than the critical insulation thickness and 

the heat flow decrease after the attainment of critical 

insulation. The graphics also show that the critical 

insulation model is influenced by physical properties of hot 

and cold fluids.  

      Table 2 and Fig. 8b for insulation using Asbestos 

material show that the insulation thickness is greatly 

influenced by the thermal conductivity of the insulating 

material. The insulating thickness increase with increasing 

thermal conductivity and the thermal equipment 

accommodates more space. The model graphics show that 

insulation increases heat loss up to critical point.  

 

5.2. Curve fitting and modeling 

 

     The graphics of Fig. 8 suggests that the Heat transfer – 

Insulation response of fibreglass insulation and Asbestos 

insulation have a hyperbolic response. A hyperbolic model 

thus fits data of Table 5.1. The equation of rectangular 

hyperbola for the curve fitting of data is expressed. 

 

xy  = c  

or 

y  =  c/x                       (40) 

 

where, c = parameter that estimates the dependent variable 

,y (heat transferred ) with the independent variable 

(insulation).The curve fitting method used is a least squares 

procedure achieved by minimization of sum of squares of 

residuals as follows: 

 

Error or residual  =  yi – y  =  yi – c/xi                   (41) 

 

SSr  = 


n

1i

2

ii )c/x-y(                      (42) 

                    

   

By minimizing sum of squares of residuals with respect to 

parameter , c   
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∂s/∂c      =    0 

 

 ∂s /∂c =-2 ∑(yi – c/xi)  / xi  =  0                                       (43)       

 

By expanding Eq.(43), 

 

 
 


n

i

n

i1 1

2

i 0)(1/xc-(yi/xi)                                          (44) 

 

Equation 44 is needed to evaluate the parameter c. Once c is 

evaluated the equation of the curve is established. We need 

to evaluate sums of yi/xi and sums of 1/xi
2
 for all data points.   

 

5.2.1  Modeling insulation for fibre glass 

 

     The summations of columns 4 and 5 of Table 2 are 

substituted in Eq (44) to estimate the parameter c, as 

25.45454741- 0.06402c = 0 ,  c = 424.2425 ,Putting c = 

424.2425 in Eq (40), the equation of rectangular hyperbola 

that fits fiberglass insulation data becomes  

 

y  =  424.2425/x 

              or 

xy  =  424.2425                      (45) 

 

The zeros of this function can be estimated by estimating 

the asymptotes – a straight line to which the curve 

approaches as the distance from the origin increases. It is 

also the tangent to the curve at infinity ie the curve touches 

the asymptote at two coincident points at infinity. 

 

Asymptote to a curve is established using the method of 

(Stroud, 1995) as follows: Asymptote parallel to x – axis 

can be found by substituting y = mx + c, in the equation of 

curve and evaluating m and c.  

 

Putting y = mx + c in Eq. (45) and equating the coefficient 

of highest powers of x to zero, x (mx + c)  = 424.2425 ,mx
2
 

+ xc = 424.2425  

 

Equating the coefficient of highest power of x to zero  

m  =  0 , c = (424.2425)/x  

Hence the asymptote to x – axis is , y = 424.2425/x 

 

For the asymptote of y – axis 

x  = ( y-c)/m         , Putting this in Eq. (45)  

(y-c/m)y = 424.2425 , y
2
-yc/m   = 424.2425 , y

2
 /m  – 

(yc)/m  = 424.2425    

Equating coefficient of highest power of y = 0 

1/m = 0 , so that equation of line becomes by dividing 

through equation of line. 

y = mx + c by m to obtain y/m = x + c/m 

  x = 0 is the equation of the asymptote to the y – axis 

This means that for no insulation putting the value x = 0 to 

the curve equation, the maximum heat transfer is infinite. 

5.2.3. Modeling insulation for asbestos. 

 

      Following similar procedures of section employing Eq. 

(43) and Table 3. 

9.2026136996 – 0.004006c = 0,  c = 22 97.2076, Putting c 

in Eq. (40)  

 

 y  =  2297.2076/x      

                              or 

                xy = 2297.2076                     (46) 

 

By similar procedures, 

 

Asymptote to x – axis is  

 

y  =  2297.2076/x                                                              (47) 

 

Asymptote to y – axis is  x  =  0 

 

5.2.4. Prediction with models 

The hyperbolic models were used to predict the response of 

the functions and presented in Table 4. 

 

6. Conclusion 

 

     Critical and optimum insulation models are developed 

for plane walls and radial systems found in Engineering and 

sciences. The critical insulation model of Eq. (24), ti  =  ki/ho 

is found to be conservative because it does not consider the 

film coefficient, h1 associated with hot fluid or heating 

chambers. The new model for critical insulation thickness is 

found in Eq. (44) and expressed as  

1o

i

ic
hh

k
t


  

The optimum insulation model to ensure minimal heat loss 

for comfort zone is developed as, 

q
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Insulation heat transfer of fiberglass and Asbestos are 

represented by hyperbolic model. The model has infinite 

response of heat transfer when the insulation is zero because 

the hyperbola meets the asymptotes at infinity. The 

analytical models gave the optimum insulation thickness of 

75.9 mm for fiberglass and 430.3mm for Asbestos. These 

gave optimum heat transfers for fiberglass and Asbestos as 

5.2357W. Both the analytical and Computational methods 

are applicable. These methods are recommended for heat 

transfer system that has heating chamber temperature not 

more than 300
o
C and heat loss not more than 5w, however 

the analytical procedures of this work can be adopted in the 

design of any heat transfer system in which insulation is 

provided using, xy  =  424.2425 and 2297.2076 for fibre 

glass and asbestos insulation, respectively. X = thickness of 

insulation, mm, and y = heat transferred, Watts. 
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Table 1  

Heat transfer with fiberglass and asbestos material insulations 

Fiber glass Ki = 0.03 W/mK Asbestos Ki = 0.17 W/mK 

tif(mm),x q(W),y tia(mm),x q(W),y 

5 79.52 20 112.66 

10 39.76 40 56.33 

15 26.51 60 37.55 

20 19.88 80 28.16 

25 15.9 100 22.53 

30 13.25 120 18.78 

35 11.36 140 16.09 

40 9.94 160 14.08 

45 8.84 180 12.52 

50 7.95 200 11.27 

55 7.23 220 10.24 

60 6.63 240 9.39 

65 6.12 260 8.67 

70 5.68 280 8.05 

75 5.3 300 7.51 

80 4.97 320 7.04 

85 4.68 340 6.63 

90 4.42 360 6.26 

95 4.19 380 5.93 

100 3.98 400 5.63 

105 3.79 420 5.36 

110 3.61 440 5.12 

    460 4.9 

 

Table 2 

Curve fitting computations for fibre glass insulation 

tif(mm) = x q(W ) = y   1/x       y/x   1/x^2 

5 79.52 0.2 15.904 0.04 

10 39.76 0.1 3.976 0.01 

15 26.51 0.066666667 1.767333333 0.004444 

20 19.88 0.05 0.994 0.0025 

25 15.9 0.04 0.636 0.0016 

30 13.25 0.033333333 0.441666667 0.001111 

35 11.36 0.028571429 0.324571429 0.000816 

40 9.94 0.025 0.2485 0.000625 

45 8.84 0.022222222 0.196444444 0.000494 

50 7.95 0.02 0.159 0.0004 

55 7.23 0.018181818 0.131454545 0.000331 

60 6.63 0.016666667 0.1105 0.000278 

65 6.12 0.015384615 0.094153846 0.000237 

70 5.68 0.014285714 0.081142857 0.000204 

75 5.3 0.013333333 0.070666667 0.000178 

80 4.97 0.0125 0.062125 0.000156 

85 4.68 0.011764706 0.055058824 0.000138 

90 4.42 0.011111111 0.049111111 0.000123 

95 4.19 0.010526316 0.044105263 0.000111 



 

C..C. Ihueze / Journal of Engineering and Applied Sciences 3 (2007) 76 -86 
 

85  85 

     

100 3.98 0.01 0.0398 0.0001 

105 3.79 0.00952381 0.036095238 9.07E-05 

110 3.61 0.009090909 0.032818182 8.26E-05 

 SUM 0.73816265 25.45454741 0.06402 

 

Table 3  

Curve fitting computations for asbestos insulation 

tia(mm) = x q(W) = y    1/x         y/x    1/x^2 

20 112.66 0.05 5.633 0.0025 

40 56.33 0.025 1.40825 0.000625 

60 37.55 0.016666667 0.625833333 0.000278 

80 28.16 0.0125 0.352 0.000156 

100 22.53 0.01 0.2253 0.0001 

120 18.78 0.008333333 0.1565 6.94E-05 

140 16.09 0.007142857 0.114928571 5.1E-05 

160 14.08 0.00625 0.088 3.91E-05 

180 12.52 0.005555556 0.069555556 3.09E-05 

200 11.27 0.005 0.05635 0.000025 

220 10.24 0.004545455 0.046545455 2.07E-05 

240 9.39 0.004166667 0.039125 1.74E-05 

260 8.67 0.003846154 0.033346154 1.48E-05 

280 8.05 0.003571429 0.02875 1.28E-05 

300 7.51 0.003333333 0.025033333 1.11E-05 

320 7.04 0.003125 0.022 9.77E-06 

340 6.63 0.002941176 0.0195 8.65E-06 

360 6.26 0.002777778 0.017388889 7.72E-06 

380 5.93 0.002631579 0.015605263 6.93E-06 

400 5.63 0.0025 0.014075 6.25E-06 

420 5.36 0.002380952 0.012761905 5.67E-06 

440 5.12 0.002272727 0.011636364 5.17E-06 

460 4.9 0.002173913 0.010652174 4.73E-06 

 SUM 0.186714576 9.026136996 0.004006 

 
Table 4 

Prediction with models 

                         Yp =  424.2425/x           Yp = 2297.2076/ x 

tif(mm)= x q(W ) = y    Yp tia(mm)= x q(W= y     Yp 

5 79.52 84.8485 20 112.66 114.8604 

10 39.76 42.42425 40 56.33 57.43019 

15 26.51 28.28283333 60 37.55 38.28679 

20 19.88 21.212125 80 28.16 28.7151 

25 15.9 16.9697 100 22.53 22.97208 

30 13.25 14.14141667 120 18.78 19.1434 

35 11.36 12.12121429 140 16.09 16.40863 

40 9.94 10.6060625 160 14.08 14.35755 

45 8.84 9.427611111 180 12.52 12.76226 

50 7.95 8.48485 200 11.27 11.48604 

55 7.23 7.7135 220 10.24 10.44185 

60 6.63 7.070708333 240 9.39 9.571698 

65 6.12 6.526807692 260 8.67 8.835414 
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70 5.68 6.060607143 280 8.05 8.204313 

75 5.3 5.656566667 300 7.51 7.657359 

80 4.97 5.30303125 320 7.04 7.178774 

85 4.68 4.991088235 340 6.63 6.756493 

90 4.42 4.713805556 360 6.26 6.381132 

95 4.19 4.465710526 380 5.93 6.045283 

100 3.98 4.242425 400 5.63 5.743019 

105 3.79 4.040404762 420 5.36 5.469542 

110 3.61 3.85675 440 5.12 5.220926 

      460 4.9 4.99393 
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Fig. 8. Fibreglass and asbestos material insulation graphics. 
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