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Abstract 

 

Simple technique of constructing the Green’s function that is associated with the Hamiltonian, (x)HoH   is presented. 

The result was applied in a case where Ho is the Hamiltonian of a free particle in given R dimensions. The theoretical concepts of 

field such as regularization and renomalization was introduced in order to handle the case at infinity which characterized the 

formal Green’s function for R  2. A comparison was also made with alternative derivation using time –independent Schrodinger 

equation for a particle in potential, (x)  V(x)  . 

 

1. Introduction 

 

     Green’s functions play a vital role in the solution of 

concepts involving linear ordinary and partial 

differential equations. Also, it is employed in the study 

of electromagnetic waves, wave propagating in a 

spatially inhomogenous medium (Ugwu et al., 2005). In 

quantum electrodynamics just like most quantum field 

theories is plagued with infinities of which the 

meaningful information can only be extracted from it 

no matter the nature of such infinities if the Green’s 

function is employed. Such infinities can be dealt with 

in two stages; by 

a. Introducing a cut-off which gives rise to finite 

answers and  

b. Redefining the parameters of the theory in order to 

absorb the divergences, which may appear when the 

cut-off is ignored. The steps that are involved are 

regularization and renormalization of the theory. In 

non-relativistic quantum mechanics, this sort of 

infinities occur if the potential is singular for 

instance the Dirac delta-function potential in two, or 

more dimensions (Albeverio et al., 1988; Jackiw, 

1991; Goldzinky et al., 1991; Abaronov-Bohrn 

potential in Manual et al., 1994; Park, 1995). This 

provides a unique framework in which the important 

concept of renorma-lization can be explained free 

from the technical complication and approach as 

normally obtained in quantum field theory. 

In this case, we solve the Dirac delta-function 

potential using Green’s function. This concept has been 

studied using some other techniques such as exact 

solution of the Schrodinger equation  (Goldzinky et al., 

1991; Fernando et al., 1991) or integral version, the 

Lippmann-Scwinger equation in Mead et al, self-adjoint 

extension method of Albeverio et al (1998) and Jackiw 

(1991); Green’s function technique of Park, (1995) and 

Cavalcantic et al., (1998). We are employing the latter, 

which have a closer resemblance with the techniques 

usually used in quantum field theory. Apart from this, it 

is more convenience to find the Green’s function 

associated with unpertur-bed Hamlitonian, of the form 

δ(x)KHH oo   when the Green’s function 

associated with Ho is known. The result is applied to the 

case in which Ho is the Hamiltonian of a free particle in 

one, two and three dimensions. In some cases, infinity 

appears in the formal expression of the Green’s 

function, although in two and three-dimensional cases, 

this infinity can be removed in consistent way by 

application of regularization and renormalization. 

 

2. Green’s functions  

 

For delta-function potential 

 

     The Green’s functional, G(E; x, x’) associated with 

the Hamiltonian H is a solution to the differential 

equation given as 

 

(E –H) G(E; x, x’) =(x – x’)                (1) 

 

and satisfies the boundary condition. 
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here x and x’ are points in Euclidean space with the 

corresponding (x –x’) Dirac delta-function. 

     Using the completeness of the eigen functions of H 

to write the solution of equation 1 as 
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(Butkov, 1968) where En and n are the eigenvalues and 

eigen-functions of H, respectively. If the Hamiltonian is 

written as the sum of two terms, 

  

( )oH H x                    (4) 

 

and Green’s function associated with the Ho is known, 

then it can be shown that there is a simple way to 

writing G in terms of the Go. To achieve this, equation 

1 is written in an integral form, Economou, (1979) 

neglecting the dependence of G on E as 
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Considering x =0 in the expression, we solve it for 

G(0,x
’
) and then inserting the result in (5) the explicit 

expression for the Green’s function associated with H, 

is expressed as; 
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              (6) 

 

it can be observed that the successive applications of 

this technique allows one to obtain the Green’s 

functions for a potential with an arbitrary number of 

delta-functions. 

 

3. Regularization and renormalization 

 

     To investigate the bound states of the Hamiltonian 

written in (4) where Ho is the Hamiltonian of a free 

particle in given dimensions, we assume that h=2m =1 

and  

 
2 2

2

2 2
1 1

R R

o

i i j

H
x x 

 
    

 
                              (7) 

 

Cavacantic et al (1998). 

 

Considering from (3) that the energy levels of the states 

are poles of the Green’s function. As there are in the 

problem, such poles can only appear as zero of the 

denominator of the second (6). Fourier transform was 

applied in (1) to enable us obtain Go(Ei x, x’) where H 

was replaced with Ho. 
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Where I
2
 = -Ec is the bound energy which leads to 
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can be analyzed for different values of R. 

 

Case 1, R =1, the integral in (9) becomes 
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     An important point here is that  must be considered 

negative for K to be positive since positive K means 

that the potential must be attractive in order to create a 

bound state. 

      Also time-independent Sch-rodinger equation for a 

particle in the potential V(x) = (x) is given as  

 
2

2
( ) ( ) ( )

d
x x x

dx
                 (13) 

 

And can be used to make alternative comparison. For x 

0, (3) is of free particle which can be solved for E –K
2
 

< 0 that if continuity at the origin is assumed, 

 

( ) exp ( )x A K x                            (14)  

 

Integrating (13) from - to  letting   0 with 

restriction on the possible values of K; 

 

'(0 ) '(0 ) (0) 0                   (15) 

 

Which gives 
2

k


  

 

This expression is the same as that in (12) which 

expresses an indication that alternative method, which 

is more elementary in nature can be used in this 

problem. 

 

Case 2 

     In this case, Go (E; 0,0) is divergent and this has to 

be dealt with by introducing a cut-off in the integral of 
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equation and absorbing the dependence on the cut-off 

by redefining the parameters in the theory (the 

“coupling constant” ). This procedure is called 

regularization and renormalization. The first step is to 

regularize the integral: 
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Another step to redefine the coupling constant  as c in 

order to absorb the divergent part as 
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Where m is arbitrary parameter to keep the argument of 

the logarithm dimensionless. As L  , the varying 

bare coupling constant  is presented in a such away 

that the renormalized one c remains finite and then 

(18) becomes 
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and the energy of the bound state becomes 
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from (20) we observe that the Hamiltonian contains one 

parameter , but the energy obtained depended on two 

poarameters, c and . 

     Regularizing (6) enable us to obtain the expression  
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which shows that the Green’s function depends on a 

just one prameter apart from E, x and x
1
. Similarly from 

(16) to (18), 
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and substituting (22) in (21) and taking the limit L ,  
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this process is referred to as dimensional transmutation. 

It is observed that having started with a Hamiltonian 

with dimensionless parameters (the coupling constant, 

), theory containing dimensionful parameter (Ec) is 

arrived at. This was because in the process of 

renormalization, the dimensionful parameter  was 

introduced to break the invariance scale of the theory. 

 

4. Conclusion 

 

     Dirac delta-function potential had been studied using 

Green’s function technique and renormalization, during 

which it was observed that the successive applications 

of the technique allows one to find the Green’s function 

for a potential with an arbitrary number of delta-

function. The technique agreed with that obtained using 

time-independent Schrodinger equation in the potential 

V(x)= (x). The problem of divergence in G0 (E; 0, 0) 

when R  2   was eliminated by introduction of cut-off 

in the integral and the use of regularization and 

renormalization as tools for absorbing the dependence 

on the cut-off. 
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