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Abstract 

 
This Paper presents finite difference method and method of separation of variables as computational approaches for optimization 

of compressive failure response of Glass fibre reinforced polyester (GRP). A two dimensional multiple linear regression model 

obtained by subjecting replicated samples of GRP composites to compressive failure was found to be a two dimensional Laplace 

function , through transformation to partial differential equation(PDE). By passing the Finite difference model of the function 

through nine interior grid or mesh points of a composite region a system of nine by nine linear equations was developed and 

solved by Leibman method (Gauss-Seidel iteration). The Leibman method algorithms result was optimized by Visual Basic (VB) 

language Programme. The separation of variables method was employed to obtain three product solution models that solve the 

approximate 2-D PDE (Laplace) function. While both the finite difference method and method 0f separation of variables gave the 

ultimate compressive strength as 154 MPa, the method of separation of variables gave the minimum strength as 100MPa.Both the 

finite difference method and method of separation of variables showed that the compressive failure response of GRP composites 

could be represented by either elliptical model or exponential model. 
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1. Introduction 
 

     Composites with their high strength to weight ratio 

have become very important in many technological 

applications such as in aerospace, automobile and 

medical  industries. One of the key factors which make 

composites attractive for engineering applications is the 

possibility of property enhancement through fibre 

reinforcement. Composites are widely used today in 

aerospace and automobile industries. Currently in the 

USA industries utilize over 100,000 tonnes of 

reinforced plastics out of a total consumption of over 

one million tones, Crawford (1998).  

     However Christensen and DeTeresa (1997) reported 

the compressive  failure of fibre composite materials as 

the most limiting property, also reported is the fact that 

the compressive failure in the fibre direction is much 

less in  magnitude than the corresponding tensile 

stress at failure. The objective of  this work is to 

model the optimum compressive failure parameter as 

strength. Kyriakides etal (1998) consistently reported 

the compressive strength of typical fibre reinforced 

matrix composites to be only 50 to 60 percent of their 

tensile strength. The importance of complete 

knowledge of composites  properties is reported by 

Shati etal  (1991). 

     Black and Adams.(1981) reported need for ensuring 

that the design stress be less than yield stress for ductile 

material and less than the ultimate stress for brittle 

material. The design properties of composite elements 

are very important because of increasing demand for 

design of light weight structures. In the study of 

compression members, buckling which is the 

compressive failure of slender or thin section subjected 

to axial compression is important because it occurs 

before the elastic limit  of the material. Koshal 

(1998) reported the tensile strength of GRP composites 

as 303  MPa while Benhan and Warknock (1981) 

reported 300 MPa. Budiansky (1994), Chung and 

Weitzsman (1994), Kyriakides(1994)and Hsu et al 

(1998) used idealized macro-buckling mechanical 

models of fibre reinforced  composites to establish that 

the compressive strengths of fibre composites subjected 
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to compressive loads are only about 50% to 60% of 

their ultimate strength intension, while this paper 

attempts to use finite difference method to optimize 

compressive failure response of GRP composites 

working under normal conditions using Ihueze (2005) 

multiple regression model which was transformed to 

two-dimensional Laplace  equation to enable analysis  

by Finite difference methods. 

     The Finite Difference Method and Method of 

Separation of Variables were used to model 

compressive failure response of GRP composite 

material while the Leibman method, Visual Basic 

iterative programme and method of separation of 

variables product solution models were used to obtain 

solution for the compressive failure response model of 

GRP composite material. Elliptical and exponential 

functions are found to fairly represent the compressive 

failure behaviour of GRP. 

 
2.   Theoretical analysis and review 

 
2.1. Some engineering phenomena. 

 

     Sundaram etal (2003) reported that engineering 

phenomena can be broadly be grouped into three kinds, 

namely wave phenomenon, diffusion phenomenon and 

potential phenomenon. However some complex 

engineering phenomenon may be a  combination of 

these, so that a second order (Linear or quasi linear) 

partial differential equation in two independent 

variables may be classified as hyperbolic, parabolic and 

elliptic equations respectively. By following Zill and 

Cullen (1989) method in  classifying partial 

differential equation using the relation of linear second 

order PDE as 

 

A ∂
2
u∕∂x

2 
+ B

  
∂

2
u∕∂x∂y + C ∂

2
u∕ ∂y

2
 + D ∂u∕∂x + E ∂u∕ 

∂y + Fu  = G                                                               (1) 

 

Where A, B, C, D, E, F, G are functions of x and y 

If G(x, y) = 0, the equation is Homogeneous .If G(x, y) 

≠ 0, the equation is Non-homogeneous. The 

homogeneous equation can further be analyzed if  

 

 B
2
 – 4AC > 0,      as Hyperbolic: 

 B
2
 – 4AC = 0,  as Parabolic 

 B
2
 – 4AC < 0,      as Elliptic 

 

This means that the multiple dimensional compression 

equation of Ihueze (2005) is an elliptic homogeneous 

equation since B
2
 – 4AC = -4 (B = 0, A = 1, C = 0)  

 

 

2.1.1. Possible functions for approximation 

Laplace equation 

 
     Elliptical function of simple wave function 

classically has been expressed as 
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     This is a laplace equation in two variables and 

homogeneous linear partial differential equation with 

constant coefficient which could be solved analytically 

or by Numerical methods. 

 

Poisson’s equation 
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     This is a nonhomogeneous linear equation which 

may be a combination of a wave  phenomenon and 

diffusion phenomenon. 

 

2.2. IHUEZE (2005) Compressive model and 

transformations. 

 

      Ihueze (2005) multiple linear regression model was 

transformed to two-dimensional Laplace equation to 

enable analysis by Finite difference method and method 

of separation of variables. The model was expressed as:  

 

S = 154.0432 – 2.6797 x11 –11.5726x22               (4) 

 

Where, S = critical stress,x11 = slenderness ratio,x22 = 

height or thickness of section 

 

Compressive failure as a homogeneous function 

 

By expressing (4) as 

 

u  = 154.0432 – 2.6797x – 11.5726y              (5) 

 

and by partial differentiation of function with respect to 

variables,   

 

∂u/∂x = -2.6797                (6) 

 

∂
2
u/∂x

2
    =   0                 (7) 

 

∂u/∂y    = -11.5726                (8) 

 

∂
2
u/∂x22

2
 = 0                 (9) 

 

By adding (7) and (9) 
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∂
2
u/∂x

2
  + ∂

2
u /∂y

2
   = 0               (10) 

 

      This represents a Laplacian function, u in two 

variables x11 and x22. 

     Other compressive responses of GRP composites are 

found in the work of Argon  (1972), Cains etal 

(1994), Ihueze and Enetanya (2004), Poulsen etal 

(1997),Volger  and Kyriakides (1997) and Zang and 

Latour (1993). 

 

3. Methodology and modelling 

 

     Ihueze (2005) compressive failure response model 

of GRP composites was approximated to two- 

dimensional Laplace equation by transformation. The 

Finite Difference Method and Method of Separation of 

Variables were used to model compressive failure 

response of GRP composite material, while the 

Leibman method, Visual Basic iterative programme and 

method of separation of variables product solution 

models were used to obtain solution for the 

compressive failure response model of GRP composite 

material. The Flowchart for finite difference modelling 

and solution is presented in Fig 1.  

  

3.1. Finite difference approximation of function 

 

     The approximation function for single valued 

function y(x) is established following Taylor’s 

approximation method as follows: 

 

y(x + h) = y(x) + y1(x)h + y11(x) h2/2 + y111 h3/3! + ….. (11) 

 

also  

 

y(x - h) = y(x) –y1(x)h + y11(x) h2/2 – y111(x) h3/3! + ….(12) 

 

When h, step size is small, higher powers of h ie h
2
, h

3
, 

h
4
 …. could be neglected so that  

 

y
1
(x)  = 1/h [y(x + h) – y(x)]             (13) 

 

y
1
 (x) = 1/h [y(x) – y (x - h)]                          (14) 

 

By subtracting (11) and (12), 

 

y
1
 (x) = 1/2h [y (x + h) – y (x - h)]             (15) 

 

By adding (11) and (12), 

 

y
11

 (x) = 1/h
2
 [y (x + h) – 2y(x) + y (x - h)]            (16) 

 

The right sides of (13), (14), (15), and (16) are called 

different quotients and the  bracketed expressions in 

(13), (14), (15), and (16) are called finite differences 

(16) and (15) (14), (13), from sdifference Finite

h)-y(x2y(x)-h)y(x

h)-y(x-h)y(x

h)-y(x - y(x)

y(x)-h)y(x
















 
 

     The first finite difference above is called the forward 

difference and the second is called the backward 

difference while both third and fourth finite differences 

are central difference approximations for the derivatives 

y
1
 and y

11
 respectively. By considering a meshed 

rectangular region of mesh size h shown in Fig1 and 

employing Taylors expansion approximation, the 

difference quotients derived for the  single valued 

function y(x) is employed for Laplacian equation of (2), 
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      If u is the function of two variables, x and y the 

central differences can be expressed following Taylor’s 

expansion approximation  as 

 

u(x+ h, y) –2u (x y) + u (x – h, y) and 

u(x, y + h) –2u (x,y) + u (x, y - h) 

 

So that following (16) we can write 

∂2u/ ∂x2  =   1/ h2  [u (x + h, y) –2u (x, y) + u (x – h, y)]  (17)

  

∂2u/ ∂y2  =  1 /  h2 [u (x, y + h) –2u (x, y) + u (x, y - h)]     (18) 

   

By adding (17) and (18) 

 

[u (x + h, y) + u (x, y + h) + u (x,y - h) – 4 u (x,y)] 

 

∂
2
u / ∂x

2
 +  ∂

2
u / ∂y

2
  =  1/ h

2
    = 0 

 

u(x + h,y) + u (x,y + h) + u (x – h, y) + u (x, y- h) – 4 

(x, y) = 0                                                       (19) 

 

(19) can be simplified by using in (19) 

 

u(x, y) = uij, u(x + h,y) = ui + 1, j, u(x,y + h) ui, j+1, u(x, y 

- h) = ui, j-1 to obtain 

 

ui + 1, j + ui, j + 1 + ui - 1, j + ui, j - 1 – 4uij = 0            (20) 

 

If the points of inter sections of mesh points are 

expressed as  

 

Pij = P (ih, jh) 

 

Where 

i, j = integers of the lines designating horizontal and 

vertical mesh points. (20) could be rearranged to read 
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uij   =  1/4 (ui+1, j + ui, j+1 + ui-1, j + ui, j-1)            (21) 

 

(21), means that the value of four neighboring points 

must be evaluated to give the five-point approximation 

of Laplace equation. 

 

3.1.1. Derivation of equations of function. 

 

Problem Statement 

 

Obtain the finite difference solution of the Laplacian 

function, 

 

∂
2
u / ∂x

2
 + ∂

2
u / ∂y

2
  =   0, subject to 0 < x < 2, 0 < y < 

2 

 

Procedures for solving systems of equations of function. 

 

 Apply the finite difference function, uij at the nine 

interior mesh points. 

 Apply boundary or Dirichlet condition to the nine 

nodes equations.  

 Establish matrix equation of the nine equations above  

 Solve the system of equations if diagonal dominance 

prevails by Gauss-seidel iteration  

 Optimize solution by VB Language programme for 

Gauss –Seidel algorithms 

 Compare result with any known classical report. This 

procedure is as presented in Fig1  

 The boundary conditions specified a square region of 

length 2 

By choosing the number of interval, n =  4 

Mesh size, h = L/n = 2/4 = 1/2  

Interior mesh points = (n- 1)
2
 = (4 - 1)

2
 = 9 

The problem is solved with Dirichlet conditions as 

shown in Fig.3 

 Evaluation of uij at Interior Mesh Points. 

The interior mesh points are by Fig 3, P11, P12, P13, P21, 

P22, P23, P31, P32, and P33, 

So that the five points equation for function at 9 interior 

points are by (21) and considering the coordinates of 

P11, P12, P13, P21, P22, P23, P31, P32, and P33 

 

u11 = 1∕4 (u21 + u12 + u01 + u10) = 1∕4 (u21 + u12 + 308.0864) (22) 

 

u12 = 1∕4 (u22 + u13 + u02 + u11) = 1∕4 (u22 + u13 + u11 + 

154.0432)                   (23) 

 

 u13 = 
1
∕4 (u23 + u14 + u03 + u12) = 

1
∕4 (u23 + u12 + 

308.0864)                (24)  

 

u21 = 
1
∕4 (u31 + u22 + u11 + u20) = 

1
∕4 (u31 + u22 + u11 + 

154.0432)                (25) 

 

u22 = 
1
∕4 (u32 + u23 + u12 + u21)             (26) 

u23 = 
1
∕4 (u33 + u24 + u13 + u22) = 

1
∕4 (u33 + u13 + u22 + 

154.0432)                (27) 

u31 = 
1
∕4 (u14 + u32 + u21 + u30) = 

1
∕4 (u32 + u21 + 

308.0864)                 (28) 

 

u32 = 
1
∕4 (u42 + u33 + u22 + u31) = 

1
∕4 (u33 + u22 + u31 + 

154.0432)                (29) 

 

u33 = 
1
∕4 (u33 + u34 + u22 + u32) = 

1
∕4 (u22 + u32 + 

308.0864)                (30) 

 

By setting x1 = u11, x2 = u12, x3 = u13, x4 = u21, x5 = u22, 

x6 = u23, x7 = u31, x8 = u32,  x9 = u33.  

 

The following 9 x 9 System of equations is obtained 

 

x1 = 1∕4  (x4 + x2 + 308.0864)             (31) 

 

x2 = 1∕4  (x5 + x3 + x1 + 154.0432)             (32) 

 

x3 = 1∕4 (x6 + x2 + 308.0864)             (33) 

 

x4 = 1∕4 (x7 + x5 + x1 + 154.0432)             (34) 

 

x5 = 1∕4  (x8 + x6 + x2 + x4)              (35) 

 

x6 = 1∕4  (x9 + x3 + x5 + 154.0432)             (36) 

 

x7 = 1∕4 (x8 + x4 + 308.0864)             (37) 

 

x8 = 1∕4  (x9 + x5 + x7 + 154.0432)             (38) 

 

x9 = 1∕4  (x6 + x8 + 308.0432)             (39) 

 

To establish the diagonal dominance necessary for the 

application of Gauss-Seideliteration method the 

following matrix equation is established for (31) – (39) 

as  
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(40) 

 

This is an example of sparse and banded matrix. The 

absolute values of all the  diagonal elements are 

respectively not less than the sum of the absolute values 

of the  remaining elements of their rows; so that we 

have diagonal dominance of the coefficient matrix 

hence Gauss-Seidel iteration could be applied. 
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4. Computations and analysis 

 

4.1. Numerical solution of FD model 

 

     Gauss-Seidel iteration and VB iterative programme 

were used to obtain solution for the system of linear 

equations of (31) – (39). 

 

 Gauss-Seidel Iteration. 

By taking the initial guesses as: 

 

x1 = x2 = x3 = x4 = x5 = x6 = x7 = x8 = x9 = 0 

 

1
st
 Iteration 

By putting values in (31) – (39) 

 

x1`= 1∕4  (0 + 0 + 308.0864) = 77.0216 

x2 = 1∕4  (0 + 0 + 77.0216 + 154.0432) = 57.7662 

x3 = 1∕4 (0 + 577662 + 308.0864) = 91.4632 

x4 = 1∕4  (0 + 0 + 77.0216 + 154.0432) = 57.7662 

x5 = 1∕4  (0 + 0 + 57.7662 + 57.7662) = 28.8831 

x6 = 1∕4  (0 + 91.4632 + 28.8831 + 154.0432) = 68.5974 

x7 = 1∕4  (0 + 57.7662 + 308.0864) = 91.4632 

x8 = 1∕4 (0 + 28.8831 + 91.4632 + 154.0432) = 68.5974 

x9 = 1∕4 (68.5974 + 68.5974 + 308.0864) = 111.3203    

 

2
nd

 Iteration 

x1`= 1∕4  (57.7662 + 57.7662 + 308.0864) = 105.9047 

x2 = 1∕4 (28.8831 + 91.4632 + 105.9047 + 154.0432) = 

95.0730 

x3 = 1∕4  (68.5974 + 95.0736 + 308.0864) = 117.9394 

x4 = 1∕4  (91.4632 + 28.8831 + 105.9047 + 154.0432) = 

72.5736 

x5 = 1∕4 (68.5974 + 68.5974 + 57.7662 + 57.7662) = 

63.1818  

x6 = 1∕4 (111.3203 + 117.9394 + 63.1818 + 154.0432) = 

111.6212  

x7 = 1∕4 (68.5974 + 72.5736 + 308.0864) = 112.3144 

x8 = 1∕4 (111.3203 + 63.1818 + 111.3149 + 154.0432) = 

109.6950 

x9 = 1∕4  (111.6212 + 109.9650 + 308.0864) = 132.4182 

 

By similar procedures as above, 9 iterations that led to 

convergence are presented in Table1. 

  

 VB Iterative Programme listing.  

       To still optimize FD results, VB Programme was 

developed as listed in Fig 6. The result of this 

programme is found in Table3. This programme solves 

the system (31)–(39) by iteration as listed in Fig.6. 

 

4.2. Analytical solution of PDE model 

 
 Separation of Variables Method. 

     Ihueze (2005) multiple regression model was 

transformed to PDE as in (10) as 

 

∂
2
u/∂x

2
    +  ∂

2
u/∂y

2
      =    0   

 

     The method of separation of variables is well 

developed in Straud (2004) Sundaram etal (2003) and 

in Zill and Cullen (1989). 

       By considering the function of two variables u(x, y) 

and assuming the product  solution of (1) in the form 

 

u(x, y) = X(x) Y(y)               (41) 

 

Where X is the function of x alone and Y is a function 

of y alone. 

By substituting (41)in (10) and separating variables 

 

X
11

Y   +     XY
11  

 =  0              (42) 

 

X
11

/X  =    Y
11

/Y               (43) 

 

L.H.S is a function of x and R.H.S is a function of y 

and for the equality to hold each  must be a constant 

say p, so that (43)can be expressed as 

 

X
11

/X  =   Y
11

/Y   =   p              (44) 

 

Three possibilities of p: positive, zero or negative 

 

Case 1: p = ٨
2
, being real 

From (5)  

X
11

  -  X ٨
2
   =  0, Y

11
  + Y ٨

2 
  =  0 

 

By solving the homogeneous equations 

X  =  A1 e
٨x

  + A2e
- ٨x

, Y  =  A3 cos ٨y  +  A4  sin ٨y 

A1- A4 are arbitrary constant 

 

u(x, y) = X(x) Y(y) = (A1e
٨x

 + A2e
-٨x

)(A3 cos ٨y + A4 

sin ٨y)                  (45) 

 

Case 2: p = 0 

From (45) 

 

X
11

 = 0 and  Y
11 

= 0 

By solving for x and y 

 

x = B1x + B2, y = B3y + B4 

Where B1, B2, B3 and B4 are arbitrary constants. 

 

u(x, y) = X(x) Y(y) = (B1x + B2)(B3y+ B4)            (46) 

 

 

Case 3: p = - ٨
2
, being real 

From (44) 
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X
11

 +  ٨
2
X = 0, Y

11
 -  ٨

2
Y = 0 

By solving the equations for x and y 

 

X = c1 cos ٨x + c2 sin ٨x,  Y = c3e
٨y

 + c4e
-٨y

 

Where c1 , c2, c3, and c4 are arbitrary constants. 

 

u(x, y) = (c1 cos ٨x + c2 sin ٨x)(c3e
٨y

 + c4e
-٨y

)          (47) 

  

      As the equation uxx + uyy = 0 describes a potential 

phenomenon, any of the product solutions of (45)– 

(47)may suit the physical phenomenon. So one has to 

understand the physical problem and select the solution 

accordingly. 

 Simulation with Equations (45), (46) and (47) 

       This requires that appropriate boundary conditions 

of the physical problem must be chosen to evaluate the 

constants of (45)– (47). 

       Boundary conditions: By considering a square 

region of composite structure subjected to buckling, the 

following boundary conditions are used to solve the 

boundary value problem 

≤ x ≤ 2, 0 ≤ y ≤ 2 

u(0, 0) = 154 MPa, u(0, 2) = 154 MPa, 

u(2, 0) = 154 MPa, u(2, 2) = 154 MPa 

 

 Evaluation with Boundary Conditions. 

 Case 1 

u(x, y) = (A1e
٨x

 + A2e
-٨x

) (A3 cos  ٨y + A4 sin  ٨y) 

   

 By expanding the R.H.S of (45)and assuming  ٨ = 1 

 

u(x, y) = A1 A3e
x
 cos y + A1 A4 e

x
 sin y + A2 A3 e

-x
 cos 

y + A2 A4 e
-x

 sin y              (48) 

 

By putting the boundary conditions u(0,0) = 154, u(0,2) 

= 154, u(2,0) = 154, u(2,2) = 154 in (45)respectively to 

solve for the constants, systems of equations are 

obtained from equations as 

 

A1A3 + 0A1A4 + A2A3 + 0A2A4 = 154            (49) 

 

0.9994A1A3 + 0.0349A1A4 + 0.9994A2A3 + 0.0349A2A4 

= 154                  (50) 

 

7.3890A1A3 + 0A1A4 + 0.1353A2A3 + 0.0047A2A4 = 

154                  (51) 

 

7.385A1A3 + 0.2579A1A4 + A2A3 + 0.0047A2A4 = 154     (52) 
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0047.00000.12579.0385.7

0000.01353.00000.03891.7

0349.09994.00349.09994.0

0000.00000.10000.00000.1

42

32

41

31

    (53) 

 

(53)is solved by L U – decomposition to obtain 

 

A1A3  = 18.3578, A1A4  = -462.9818, A2A3  = 135.6422, 

A2A4  = 465.6294 

So that (45) or (47)can be expressed as  

u(x, y) = 18.3578 e
x
 cos y – 462.9818 e

x
 sin y + 

135.6422 e
-x

 cos y + 465.6294 e
-x 

sin y              (54) 

 

 Case 2 

By expanding (46) 

u(x, y) = B1B3xy + B1B4x + B2B3y + B2B4            (55)  

 

     By putting the boundary conditions u(0, 0) = 154, 

u(0, 2) = 154, u(2, 0) = 154, u(2, 2)  = 154 in (55) 

respectively to solve for the constants, systems of 

equations are obtained as 

 

B2B4 = 154               (56) 

 

2B2B3 + B2B4 = 154              (57) 

 

2B1B4 + B2B4 = 154              (58) 

 

4B1B3 + 2B1B4 + 2B2B3 + B2B4 = 154             (59) 
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0000.10000.00000.00000.0

42

32
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31

(60) 

 

Similarly L U – Decomposition or triangulation method 

is used to obtain the value of the constants as: 

 

B1B3  =  0, B1B4  =  0, B2B3  =  0, B2B4  =  154 

 

When values of these constants are replaced in (55) 

u(x, y) = 154 

 

 Case 3 

By expanding  (47) 

and using ٨ = 1 

u(x, y) = c1c3 cos xe
-y

 + c1c4 cos xe
y
 + c2c3 sin xe

-y 

 + c2c4 sin xe
y
               (61) 

 

By substituting the boundary conditions, 

u(0, 0) = 154, u(0, 2) = 154, u(2, 0) = 154 and u(2, 2) = 

154 in turn into (61) ,the  following system of linear 

algebraic equation is obtained. 

 

c1c3 + c1c4 = 154               (62) 

 

0.1353c1c3 + 7.3891c1c4 = 154             (63) 

 

0.9994c1c3 + 0.9994c1c4 = 154             (64) 
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0.1352c1c3 + 7.385c1c4 + 0.0047c2c3 + 0.2579c2c4 = 154   (65) 
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2579.00047.03850.71353.0

0349.00349.09994.09994.0

0000.00000.03891.71353.0

0000.00000.00000.10000.1
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 (66) 

 

By employing LU – decomposition 

c1c3 = 135.6422, c1c4 = 18.3578,c2c3 = 2.3994, c2c4 = 

0.2481  

 

so that (61)becomes 

u(x, y) = 135.6422 cos xe
-y

 + 18.3578 cosx e
y 

+ 2.3994 

sinx e
-y

 + 0.2481 sin xe
y   

           (67) 

 

4.2.1. Numerical analysis with the 3 cases analytical 

models 

 

    The computations using the three cases equations of 

(54), (55) and (67) are presented in Table3. 

 

4.3. 3-D graphics 

 

     The 3-D Graphics were produced with excel spread 

sheet package using Table 4 ,Table 5 and Table 6 and 

presented in figures 7 , 8 and 9 for analysis. 3-D 

Graphics of case1 using Table 6 is presented in 

Fig.9.Fig.7and 8 represents elliptical function while 

Fig. 9 represents exponential function. Tables 4, 5 and 6 

are predictions of three  product solution models at 

interior and regional points. 

 

5.   Discussion of results 

 

      Both finite difference method and method of 

separation of variables showed that the compressive 

failure response may be approximated by potential 

phenomenon or elliptical function SUCH as the two 

dimensional Laplace function. 

     Though solution of PDE may lead to infinite number 

of solutions but physical problems need unique 

solutions however, the method of separation of 

variables yields three product solutions whose unique 

solution is established by understanding the physical 

problem. Inclusion of geometric terms may indicate 

potential problem solution so that the product solution 

model containing geometric terms may be selected as a 

solution of u(x,y). 

     The optimum compressive and buckling strengths of 

GRP composites have been evaluated as 154MPa and 

100MPa respectively. While Table 1 and Table 2 of 

Guass-seidel iterations for finite difference solution 

gave the approximate compressive strength of GRP as 

154MPa, Table 4 of analytical solution gave 154MPa 

and 100MPa representing ultimate and buckling 

strengths of GRP. 

      The 3 -D plots of Fig.7 also showed that stress 

distribution in composites is described by mixed 

phenomena which could be approximated by an 

elliptical function, the centre of the GRP composite 

having the lowest strength. The 3-D plots Fig.8 of 

analytical solution also while showing the composite 

response function as elliptical portrayed the fact that the 

composite under compression is weaker at the centre. 

The strength of GRP composite at the centre or along 

its neutral axis is lower than its compressive strength of 

154MPa. This means that composites under 

compressive loading could fail within loading less than 

its elastic limit stress, estimated as 100MPa.This study 

also indicates that the elastic limit of GRP is more than 

100MPa. 

     The 3-D graphics of Fig.7-9 also show the maximum 

and minimum compressive strengths as 154MPa. and 

100MPa.respectively. 

 

6. Conclusions 

 

      The finite difference method and method of 

separation of variables with approximating function as 

Laplace function representing compressive failure 

response of GRP composite strength has been 

successfully applied with the following deductions:  

 

 The compressive failure response of GRP composites 

can be represented by a Laplacian homogeneous 

function. 

  The finite difference grid or meshing method enables 

evaluation of function at interior nodes when the values 

of at least four neighbouring nodes are known.  

 Gauss-Seidel iteration method provides a converging 

algorithm for evaluation of a Laplacian function 

 For a homogeneous GRP composite the value of the 

function at any interior point is the same 

 Given the coordinate of an interior point of FDM 

(mesh), (i,j) as in Fig. 7  ,of Laplacian function, ui,j of 

two dimension and other four surrounding boundary 

points coordinates, (i+1,j), (i-1,j), (i,j+1) and (i,j-1) the 

value of the function, ui,j at the interior node is 

estimated as 

uij   =  1/4 (ui+1, j + ui, j+1 + ui-1, j + ui, j-1) 

 

 Elliptical and exponential functions are found to 

fairly represent the compressive failure behaviour of 

GRP 

 The method of separation of variables showed that 

given the coordinates of points,(x,y) the compressive 

strength could be estimated with the models, 
 

ELLIPTICAL 
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u(x, y) = 135.6422 cos xe
-y

 + 18.3578 cosx e
y 

+ 2.3994 

sinx e
-y

 + 0.2481 sin xe
y
   of  (54) 

 

EXPONENTIAL 

 u(x, y) = 18.3578 e
x
 cos y – 462.9818 e

x
 sin y + 

135.6422 e
-x

cosy + 465.6294 e
-x

sin y of  (67) 

      The compressive strengths of GRP composites are 

about 154 MPa and 100 MPa.for maxima and minima 

(buckling strength) respectively. 

 

Table 1 

Finite difference solution results by traditional gauss -seidel iteration 

 

variable 

 

iteration 

x1 x2 x3 x4 x5 x6 x7 x8 x9 

1 77.0216 57.7662 91.4632 57.7662 28.8831 68.5974 91.4632 68.5974 111.3203 

2 105.9047 95.0736 117.9394 72.5736 63.1818 111.6212 112.3144 109.9650 132.4182 

3 118.9334 113.5245 133.3080 112.1182 111.8072 132.8942 132.5424 132.7028 143.4209 

4 108.4323 126.8977 141.9696 126.7063 129.8002 142.3085 141.8739 142.2845 148.1699 

5 140.4226 141.5589 147.9884 141.5350 141.9217 148.0308 147.9765 148.0278 151.0363 

6 147.7951 147.9371 151.0136 147.9341 147.9825 151.0188 151.0121 151.0185 152.5309 

7 150.9894 151.0072 152.5281 151.0068 151.0128 152.5288 152.5279 152.5287 153.2860 

8 152.2251 152.5273 152.5273 151.0068 152.5280 153.2857 153.2856 153.2857 153.6645 

9 153.2853 153.2855 153.6644 153.6644 153.2856 153.5697 153.6644 153.6644 153.8301 

 

Table2  

Visual basic programme output 

 iteration 

 

 

Variable 

1 2 3 4 5 6 7 8 

x1 77.0216 105.9047 124.5584 136.8186 145.1207 149.5431 151.7883 152.9152 

x2 154.0410 154.0421 154.0426 154.0429 154.0431 154.0431 154.0432 154.0432 

x3 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x4 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x5 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x6 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x7 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x8 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x9 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

Iteration 

 

 

Variable 

9 10 11 12 13 14 15 16 

x1 153.4791 153.7611 153.9022 153.9727 154.0079 154.0256 154.0344 154.0388 

x2 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x3 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x4 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x5 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x6 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x7 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x8 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 

x9 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 154.0432 
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Table 3  

Analysis of separation of variables models 

Coordinates Case 1(uij) Case 2 (uij) Case 3 (uij) 

x y 

0.5 0.5 108.3370 154.0000 112.5510 

0.5 1.0 104.1330 154.0000 99.8114 

0.5 1.5 99.9107 154.0000 112.5510 

1.0 0.5 90.3102 154.0000 112.5510 

1.0 1.0 80.8119 154.0000 99.8114 

1.0 1.5 71.3074 154.0000 112.5510 

1.5 0.5 95.3391 154.0000 112.5510 

1.5 1.0 78.1219 154.0000 99.8114 

1.5 1.5 60.90528 154.0000 112.5510 

0.0 0.0 154.0000 154.0000 153.9853 

0.0 2.0 153.9985 154.0000 153.9853 

2.0 0.0 153.8001 154.0000 153.9853 

2.0 2.0 36.7384 154.0000 153.9853 

 

Table 4  

Gauss-Seidel iteration result and 3-D analysis 

154.0432 154.0432 154.0432 154.0432 154.0432 

154.0432 153.6644 153.5697 153.8301 154.0432 

154.0432 153.2855 153.2856 153.6644 154.0432 

154.0432 153.2853 153.2855 153.6644 154.0432 

154.0432 154.0432 154.0432 154.0432 154.0432 

 

Table 5  

Separation of variable case 3 and 3-D analysis 

153.9853 153.9853 153.9853 153.9853 153.9853 

153.9853 112.2694 112.5513 112.5443 153.9853 

153.9853 99.8114 99.8136 99.8008 153.9853 

153.9853 112.5510 112.5533 112.5513 153.9853 

153.9853 153.9853 153.9853 153.9853 153.9853 

 

Table 6  

Separation of variable case 1 and 3-D analysis 

153.9985 95.7833 61.9128 43.7654 36.7384 

154.3944 99.9107 90.3102 95.3391 148.7999 

154.4226 104.1330 80.8119 78.1219 95.1145 

154.3954 108.3370 71.3074 60.90528 127.0669 

154.0000 112.5983 99.8021 112.3599 153.8001 

 

 

 

 

 

 

 



71 C.C. Ihueze, A.N. Enetanya / Journal of Engineering and Applied Sciences 4 (2008) 62 - 74                  71 

 

 

 

      1       2       3       4        5        6       7        8        9       

9 

1 

4 

x 

y 

(m+1, n+1) 

(m+1, 0) 

(0, n+1) 

 
Fig. 1. Flowchart for FD modeling and solution. 

 
 

Begin 

1) Generate grid of composite 

2) Generate grid of interior points of    

 region   
 

1) Assume approximation function by 

transformation of empirical model ,  

 u  = 154.0432 – 2.6797x11 – 11.5726x22  

 to PDE to obtain  

 ?
2
u / ?x

2
 +  ?

2
u / ?y

2
 = 0  

2)    Establish interior points of region, Pij                

 

a) Establish the boundary or Dirichlet conditions 

b) Use (20) to set up nine equations for nine interior grid or mesh points, P12, P13, P21, 

P22, P23, P31, P32, and P33 

   Establish the finite differences for Laplace function as  

  u(x + h,y) + u (x,y + h) + u (x – h, z) + u (x, y- h) – 4 (x, y) = 0   

    or  

  ui + 1, j + ui, j + 1 + ui - 1, j + ui, j - 1 – 4uij = 0      (20)  

  

 

           

Solve system of equations by Gauss-Seidel iteration   

uij   =  1/4 (ui+1, j + ui, j+1 + ui-1, j + ui, j-1)  (21) 

 

Optimize solution by Visual Basic Language Programme 

of system of equations formed by (21) for nine interior 

mess points. 

End 

 
 

Fig. 2. Typical grid system for FD solution of functions of two variables. 
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a) Regional mesh,     b) Interior and boundary points.  

 

Fig. 3. Finite Difference Model (FDM): 

m = number of intervals for coordinating x variable, 

n = number of intervals for coordinating y variable. 

 

 

 

154.0432 

154.0432 154.0432 

154.0432 

 

Fig. 4. Dirichlet boundary conditions. 

 

  

153.6644 153.5697 153.8301 

 

153.2855 153.2856 153.6644 

 

153.2853 153.2855 153.6644 

 

Fig..5. Compressive stress distribution in 9 interior meshes predicted by Gauss – Seidel algorithm. 
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a) 3-D Plot                                                         b) surface plot 

 

Fig.7. 3-D Graphics of Gauss-Seidel iteration function results. 
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a) 3-D plot                                                         b) surface plot 

Fig. 8. 3-D Graphics of separation of variables case3, showing elliptical model. 
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Fig. 9. 3-D Graphics of separation of variables case1, showing exponential model. 
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Visual Basic Programme Listing 

 

Private Sub Command1_Click () 

Rem ITERATION 

Dim a(20, 20) 'declaring a table to hold iteration values 

Dim x(1 To 9) 

Rem initializing 9 variables as zero 

For i = 1 To 9 

 x(i) = 0 

Next i 

Form1.Print 

"======================================" 

Form1.Print “ITERATION" 

 Form1.Print 

For t = 1 To 9    'controls number of variables 

For u = 1 To 16     'controls number of iterations 

x(1) = 0.25 * (x(4) + x(2) + 308.0864) 

x(2) = 0.25 * (x(5) + x(3) + x(1) + 154.0432) 

x(3) = 0.25 * (x(6) + x(2) + 308.0864) 

x(4) = 0.25 * (x(7) + x(5) + x(1) + 154.0432) 

x(5) = 0.25 * (x(8) + x(6) + x(2) + x(4)) 

x(6) = 0.25 * (x(9) + x(3) + x(5) + 154.0432) 

x(7) = 0.25 * (x(8) + x(4) + 308.0864) 

x(8) = 0.25 * (x(9) + x(5) + x(7) + 154.0432) 

x(9) = 0.25 * (x(6) + x(8) + 308.0864) 

 a(t, u) = x(t) 

  Form1.Print Format$(a(t, u), "#000.0000"); "    "; 

 Next u 

Form1.Print 

 Next t 

End Sub 

 

Fig. 6. Visual basic programme listing. 
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