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Abstract 

 
The pseudopotential form factors developed by Ezenwaka (2007) were used to calculate the liquid metal resistivity for Lithium 

Sodium, Potassium, Calcium, and Zinc. In addition, the linear coefficients parameter Ai were calculated by the use of data of  
Bachelet et al (1982) as well as the prescription of Pattnaik et al (1979) which eliminated the numerical instability problems. The 
liquid resistivity is evaluated using Simpson’s rule. The results obtained theoretically were compared with experimentally observed 
results of Faber (1977) and 88% good agreements were obtained within the framework of the calculations. 
Keywords: Pseudopotential, Form factors, Resistivity, Matrix element, Linear coefficients, 
 
 

1. Introduction  
 

     Pseudopotentials were originally introduced to 

simplify electronic structure calculations by eliminating 

the need to include atomic core states and the strong 

potentials responsible for building them. Considerable 

success was achieved in describing the band structure of 

semi conductors and simple metals with the use of the 

empirical pseudopotential method (Philips and kleiman, 

1959) 

 
Mott and Jones (1985) adjusted the potential coefficients 

to agree with some experimentally determined features of 

the energy band. In this approach, the total effective 

potential acting on the electrons including coulomb and 

exchange correlation contributions as well as ionic parts 

were represented by just a few terms in a Fourier 

expansion. Slater (1937) formulated the band structure 

methods based on Muffin-tin potential such as the 

augmented – plane wave (APW) methods and karringa- 

kolin –Rostoker (KKR) method which depend only on 

the logarithmic derivatives of the potential at the muffin-
tin-radius. But these methods are not customarily used for 

pseudopotentials. 

 

But a later approach was given by Bachelet et al (1982) 

in which a set of non conserving ion-core 

pseudopotentials for all elements in the periodic table 

were given. The transferability of these pseudopotentials 

makes them quite useful in calculations involving the 

electronic properties of molecules, solids and surfaces. 

The usefulness of the parameters given is further 

enhanced by the choice of the basis functions for 

parametric representation of the potential. The use of 

error functions and Gaussians as basic functions for the 

potential leads to analytical expressions for the matrix 
elements for both plane-wave and Guassian base sets for 

the wave functions. Thus the choice of the basic function 

for the parametric expression of the pseudoptential 

enables a speedy and narrative evaluation of the matrix 

elements. In order to obtain the linear coefficients Ai to 

be used in calculation, the coefficients, Ci have to be 

transformed by an inverse orthogonality transformation 

shown in equation (1). 
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    Ai= ∑Ci Qil
-1 - - - - 1 

          i= 1  
Where i is the ion core patential 

 

Pattnaik (1983) prescribed the use of explicit expressions 

for the inverse of orthogonality transfer matrix Q. The 
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analytical expressions for the elements of Q-1 enable us to 

directly calculate the parameters Ai from the calculated 

Ci parameters by the use of computer.  

 

The interest to revisit the Backelet approach (1982) is 

motivated by the current numerical computation of 
electronic properties of condensed matter which has 

taken on an increased momentum with the new age of 

advanced computer logarithms using computers. Our 

intention is to use developed pseudopotential form factors 

(Ezenwaka, 2007) in the computation of various solid 

state properties like liquid metal resistivities which could 

not be calculated using the Philips and Klemann form 

(1959).  

 

 

2 THE MATRIX ELEMENT OF THE 

PSEUDOPOTENTIAL FORM FACTORS 
The matrix element between plane waves of the 

pseudopotential is given by    

          

Kv1
ion (r) k + q> = 1/ Ω ∫  ∫  ∫ e- ik.r Vi

ion  
 

(r) e+i(k+q).r dc    -   -  (2)  

 

Where k is the vector of the scattered electron Vion of 

ionic potential, q is the scattered vector, Ω is the atomic 

volume and Vcore is core potential 

 

  

Kvi
ion (r) K+ q>= 1/ Ω ∫   ∫

 
  ∫ VI

ion (r) e iq.r  
 
r2 drsinθ d θ dФ    

  

 =    1/ Ω ∫  ∫ ∫    [Vcore (r)  

 

                     + ∆Vi 
ion (r)] e iq.r r2 drsinθ   - (3)      

Where Vcore (r)= Zv /r {Σ Ci
core erf [i

 core)1/2 r} 
 

and Δ v1
core= Σ (Ai + r2 Ai + 3) e–air 2 

                     i-1                                   

With Zv as the valence charge of each atom, Ci
core, i 

core i 
= 1, 2 are the linear core coefficient and decay constant 

respectively, and Ai of Ai +3 with i = 1,2,3 are also 
linear coefficients and decay constants. A similar 

expression is written for spin-orbit part of the potential 

Vi
so (r) where applicable. The above integral in equation 

(3) can be reduced to 
 

V1 
ion (q) = 1 / Ω 4/q ∫vi

 ion  (r) rdr sin qr      (4) 

 

Substituting eqn. (3) into equ. (4), we get  

 

V1 
ion (q) =4π / Ωq ∫ Zv {Σci 

core erf [(i 
core) 1/2 r]} r sin qrdr 

 

+ 4π / Ωq ΣAi ∫e
-air2 r3 sin qrdr   

 +  4π / ΩqΣAi + 3 ∫e-air2 r3sin qrdr   - - -  --  (5) 

 

Thus, we have three integrals to evaluate as follows: 

I1= ∫ erf [(i 
core

)
1/2

 r] sin qr = 1/q e 
–q2

/ 4


i 
core

  
I2 = ∫e-ir2 r sin qr =q   π1/2  exp (-q2) / 4

I 
 

 

 I3 = ∫e-ir2 r3 sin qr dr =  √π(6q-q3) /16i7/2exp (-q2/ 

4
I)(6) 

 

Therefore, for each angular momentum, we have  

Vi
ion(q) = -4πZv/Ωq2ΣCi

 coree-q2/ 4I 
core 

 

+π3/2 /Ω Σ {Ai/ 
3/2 e –q2/ 4

I 
core} 

                                      i=1 
       

     + 4π3/2 /Ω 4Σ Ai/ +3 /i
7/2 (6i-q

3)e-q2/4I  - (7) 
                                         i=1 

 

3.  PSEUDOPOTENTENTIAL FORM FACTORS  

The total ionic pseudoptential was evaluated by 

Ezenwaka (2007) by a sum over the angular momenta 

from equation (7) and developed the pseudopotential 

form factors: 

 

Vps
ion = ∑vi

(ion) (q) = - 4πZv ∑Ci
core e-q2/4I 

core 
                                                  Ωq2 

 

+ ∑    π3/2    Ail e
-q2   4il  +  A2l  e

-q2  42l 

   i=1   Ω      il
3/2          il

3/2 
 

 

+ A3l  e
-q2  /  43l +  π3/2      A2l (6il

 – q2) e-q2/4il 

  3l
3/2                     4Ω       i l

7/2 
 

+ A5l  (6
2l – q2)e-q2/42 

   2l
7/2                     

+A6i/3l (63l
 – q2) e-q2/42l

   - - (8)                  
 

The pseudopotential form factors are obtained in 

momentum space and there is need to obtain the 
parameters Ai which are the linear coefficients.  
 

4. DETERMINATION OF THE PARAMETER Ai 

Linear dependencies of the fitting functions can lead to 

large values for some of the fitting coefficient Ai in the 

potential.  

 

ΔVį 
core = ∑    Aį + r2 Aį + 3) e- ir2 

                           i=1 

 

Thus each atom is characterized by: 

i. a valence charge Zv and two sets of linear 
coefficients and decay constant describing the core, Ci

core, 


i 
core

, I = 1, 2 

2 

2  

0 0 0 

∞ 2π π 

0 0 0 

∞ 2π π 

3 

∞
 

0
 

∞
 

0
 

2
 

0 0 0 

∞ 2π π 

2
 

4i 
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 where,  

Ci 
core + C2

 core = 1 

ii. For each i value, two sets of three linear coefficients 

each Ai and Ai + 3 corresponding to the decay constants 

i = 1, 2, 3 for the average potential, provided the spin 
orbit splitting of the eigenvalues is larger than a chosen 

threshold value of 0.05ev. In order to obtain the linear 

coefficients Ai to be used in calculation, the coefficients 
Ci have to be transformed by an inverse orthogonality 

transformation 

 

Ai = ∑ Ci Qil
–1   - - - (9)                         

            i=1 

 

The Ci parameters as tabulated by Bachelet et al (1982) in 

Table 1 are used in the calculation of Ai. Nevertheless, 

too many significant figures must be retained in the Ai’ s 

for practical tabulations. To solve this problem, we have 
transformed the coefficients Ai, Ai + 3, i = 1, 3 of 

equation (9) into a set of coefficients Ci 1 = 1, 6 for an 

orthonomal bases sets; 

 

Ci = ∑ Δi Qil    - - - (10) 

 

Table 1: The Ci parameters as tabulated by Bachelet et al (1982) for Lithium,  Sodium Potassium, Calcium and 

Zinc.  
Atom  Zv L 1 2 3 C1 C2  C3 C4 C5 C6 

Li 1 Core  1.84 0.73  2.9081 -19081     

  0 1.10 1.23 1.42 -1.4520 0.2543 0.0381 0.0581 -0.004 -0.0114 

  1 2.48 7.42 8.20 -0.0046 -0.1402 0.1055 0.1259 0.0241 0.0122 

  2 0.33 0.46 0.62 06347 -0.5406 -01712 -0.0055 -0.0300 0.0316 

Na 1 Core  1.71 0.50  5.1815 -4.1815     

  0 0.99 1.10 1.24 -2.4718 0.3334 0.0619 0.0890 -0.0041 -0.0123 

  1 0.51 0.65 0.84 -1.6202 -0.4908 -0.0861 0.0375 -0.0161 0.0070 

  2 0.38 0.55 0.73 -0.9415 -0.9710 -0.2336 -0.0593 -0.0228 0.0455 

K 1 Core  1.42 0.26  6.3140 -5.3140     

  0 0.58 0.64 0.71 -3.9287 0.2938 -0.0613 0.1062 0.0000 -0.0092 

  1 0.39 0.56 0.73 -3.2276 -0.4254 -0.1754 0.0803 0.0067 0.0111 

  2 2.84 3.12 55.36 2.0774 -0.7044 -0.1248 -0.3174 -0.0802- -0.0004 

Ca 2 Core  1.61 0.45  4.8360 -3.8360     

  0 0.75 1.19 2.08 -4.7576 0.3179 -0.1286 0.0279 0.0520 0.0054 

  1 0.67 2.23 2.99 -4.1513 0.0156 -0.1494 -0.2563 -0.0404 -0.0179 

  2 6.92 24.35 86.59 3.0392 -1.0190 0.2634 0.4961 -0.0295 0.0089 

Zn 2 core 8.38 3.49  2.6313 -1.6313     

  0 2.11 2.80 3.67 -7.8453 -1.2476 -0.9016 0.2734 -0.0392 0.0280 

  1 1.38 2.54 3.12 -6.0406 -2.6215 -1.3062 0.2663 -0.2050 0.1599 

  2 3.09 32.58 30.83 1.7225 3.1083 0.9207 0.2519 0.2946 0.1898 

  So1 0.58 1.48 1.72 -0.0374 -0.0024 0.0041 0.0029 -0.0009 -0.0004 

  So2 16.48 18.18 25.99 -0.0165 -0.007 -0.0025 0.0000 0.0001 -0.001 

 
Table 2: Ai Results for Li, Na, K, Ca, and Zn atoms 

[Li] 
L A1 A2 A3 A4 A5 A6 

0 78.07395 -109.36503 51.71981 0.57288 -0.28227 -0.27460 

1 47.21382 -16.76466 -2.56942 -2.32355 -0.17881 0.05299 

2 43.20601 -29.38373 6.05858 -129180 -0.34902 0.02958 

 
[NA] 

L A1 A2 A3 A4 A5 A6 

0 44.66191 -66.21326 37.29997 0.19264 -0.49985 -0.20105 

1 27.79250 -4.57524 -1.28774 -2.32245 0.47952 -0.04965 

2 11.06046 -66.21326 37.29997 0.19264 0.49985 -0.06744 

 

[K] 

L A1 A2 A3 A4 A5 A6 

0 51.65715 -75.47792 43.03156 0.37112 -0.35745 -0.20105 

1 34.15055 -5.67858 -2.61607 -2.60972 -0.49116 -0.04965 

2 14.15523 5.48528 -1.20937 -1.23555 -0.17929 0.06744 

 

 

 

 

 

[Zn] 

2 
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  L A1 A2 A3 A4 A5 A6 

0 66.03779 -123.17795 99.83706 -2.82897 0.35245 0.03456 

1 10.29377 70.43324 -14.06683 0.13694 25.34715 9.25869 

2 3.27978 -806.42524 732.50003 -5.32135 121.38282 -124.84925 

So1 -123.17795 99.83706 -2.82897 0.35254 -0.34565 1.75000 

So2 70.43324 -41.06683 0.13694 25.34715 9.25869 1.2500 

5. LIQUID METAL RESISTIVITY  

The electrical resistivity of liquid transitional metals is 
given by the Ziman’s formula (Ziman 1961). Where Ωo is 

the atomic volume, Vf is the velocity of the electron at 

fermi level, s(q) is the structure factor, and V (q) is the 

form factor of the single ion potential. The calculation of 

liquid metal resistivity can be done once the function 

/V(q)2/ is determined from equ (8). The model potential 
parameters developed by Animalu and Heine (1965) were 

used in the calculations. 

 

 

Table 3:  Model Potential Parmeters (Animalu,1965) Used For the Calculation of Liquid Metal Resistivity for, Lithium, Sodium Postassium, 

Calcium and Zinc.  

Element  Ao A1 A2 Rm Ω Z M* Kf (1/2 /W)2 dAo 

dE 

2dAo 

  dE 

dA2
 

 dE 
 

Li 0.328 0.400 0.218 2.600 144.9 1 1.330 0.5890 0.547 0.605 1.000 1.844 0.096 

Na 0.312 0.357 0.980 2.200 254.5 1 1.096 0.4882 0.201 0.187 0.117 1.802 0.087 

K 0.248 0.248 0.500 0.212 481.4 1 0.884 0.3947 0.450 0.240 0.287 0.846 0.086 

Ca 0.610 0.607 0218 2.600 293.5 2 1.000 0.5865 0.375 0.123 0.288 0.774 0.038 

Zn 1.029 1.405 0.980 2.200 102.0 2 1.000 0.8342 0.610 0.300 0.123 0.096 0.079 

 

In table 3, Ao, A1, A2 are the corresponding model potential well depths, Rm is the model radius, Ω is the atomic volume, Z in the valance charge, M* 

is the effective mass and Kf is the fermi wave vector. 

 

Table 4: Experiment and Calculated Values for Liquid Metal Resistivity for Lithium, Sodium, Potassium, Calcium and Zinc (in units of ohm-cm).  

 

Liquid metals  Experimental values faber (1977) Calculated values  

Li 24.0 23.2 

Na 9.6 6.4 

K 13.0 12.1 

Ca 33.0 28.9 

Zn 37.4 35.6 

  

The liquid metal resistivity of lithium, sodium, potassium 

calcium and zinc were computed. The results obtained 

are shown in table 4, where they are compared with 

experimentally obtained values (Faber, 1977). It is 

observed that the calculated results are 88% in good 

agreement with experimentally obtained results.  

 
6. DISCUSSIONS AND CONCLUSION 

 

The liquid metal resisitivty are calculated using 

pseudopotential form factors. The input parameters yield 

88% agreement with the experimental structure factors. 

The Ci parameters as tabulated by Bachelet et al (1982) 

are shown in Table 1 for Lithium, sodium, potassium 

calcium and zinc together with the values of 1,2,3. 
These parameters were used to calculate the linear 

coefficient parameters Ai as well as adapting the 

prescription of Pattnaik et al (1979), which eliminated the 

numerical instability problems on the calculated Ai are 

shown in Table 2. The model potential derived from 
spectroscopic term values by Animalu and Haine (1965) 

are shown in Table 3. This modified form of the model 

potential has the advantage that it includes both a 

repulsive exchange overlap (core-core) part, and 

attractive part that takes into account s – d hybridization, 

and is purely columbic outside the parameric radius Rm. 

For screening we used the simple Thomas-fermi type of 

dielectric function, which is quite adequate for liquid 

metal resisitivity calculations to ensure that we have – 

2/3Ef limit as q tends to zero.  

 

We have applied the pseudopotential form factor in 
calculation of the liquid metal resistivity for metals and 

the results obtained are tabulated in table 4 where they 

are compared with the experimentally obtained results of 

Faber (1977). The results are 88% in good agreement 

with the experimental results.  

 

It is interesting to note that the pseudopotential form 

factors calculations are rigorous, extensive and detailed, 

but that price is worth paying for considering the 

accuracy with which theoretically calculated results 

agreed with the experimental results.  

 
The results of the pseudoptential form factor calculation 

provide exciting insight to many applications as proposed 

by Slater (1937). It is our belief that the application of the 

pseudopotential form factor calculations to other 

phenomena like phonon frequencies, optical properties 

etc will not be different.  
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We cannot conclude without pointing out a major 

problem encountered. During the calculation of the 

values of Ai for each element, we encountered a problem 

of zero result for quantum number, l = 2. This bottle-neck 

was overcome by putting a modulus in all the square root 
functions. The Ai’s were used to carry out some checks 

with Nickel and Vs(q) behave as is expected in the limit 

as q 0 (Sattar, 2003) 
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