
59 P.D. Onodagu etal / Journal of Engineering and Applied Sciences 4 (2008) 89 - 95                  59 

 

 

 
Journal of Engineering and Applied Sciences 5 (2010)  

 

 

Free vibrations of multi-storey, multi-bay reinforced concrete frames 
with strong column – weak beam model. 

 
P.D. Onodagu, C.A. Chidolue, and I.O. Onyeyili 

 
Department of Civil Engineering, Nnamdi Azikiwe University, Awka. 

 

 

 

 

 

Abstract 

 
This paper investigated the dynamic responses of multistorey, multibay reinforced concrete framed buildings, using the concept 
of strong column – weak beam model. In the course of this work, three simulated frames were dynamically investigated; the 
natural frequencies of each frame at various ratios of column flexural strengths to beam flexural strengths were numerically 
evaluated at a given concrete grade and unit weight; using classical method of displacement; and subsequently, the fundamental 

tone of vibration at a given c bEI EI ratio was explicitly compared with the fundamental tone of vibration of the same system, 

evaluated using the Shear Building model approach. And from the results obtained, it was found that the column flexural strength 
demand for dynamic stability varied in accordance with the number of floor levels of the frames. This paper, therefore, 
establishes no fixed empirical value for the ratio of column flexural strength to beam flexural strength; and consequently 
recommends that the column flexural strength participation factor(s) in the analysis of dynamic stability of frames with strong 
column – weak beam concept be adequately evaluated, using Classical method of analysis.  
Keywords: Capacity design concept; Strong column – weak beam model; multistorey – multibay frames; Finite degree of 
freedom; Classical displacement method; Fundamental frequency. 
 

 

Introduction 

 

     Multi-storey, multi-bay reinforced concrete (r. c.) 
frames are increasingly becoming important 

engineering structures of our modern time, in the sense 

that, most of the high-rise buildings are designed and 

constructed as multi-storey, multi-bay frames. 

However, the ultimate objective of structural design of 

such important structures is to devise structures that are 

capable of fulfilling their intended purposes with a 

minimum risk of failure, given all statistical 

uncertainties of loads and resistances, and economic 

constraints, [Meyer, 1991]. In practice, two load cases 

are usually considered when analyzing multi-storey 
frames; the static conditions and the dynamic 

conditions. However, the static conditions impose lesser 

difficulties when compared with the dynamic 

conditions. Predominant among the dynamic load 

conditions on multi-storey frames are those associated 

with lateral load applications, probably because of their 

catastrophic effects, especially those that are 

accompanied with reversal of stress inputs. Different 

design approaches and analytical models have been 

formulated by different stakeholders in structural 

engineering, for use in the evaluation of dynamic 

stability of multi-storey framed structures. Among them 

is the capacity design concept. In Capacity Design 

Model, (CDM), a special hierarchy of members’ 

strengths is devised that assures the formation of plastic 
hinges in pre-specified zones. The simplest and most 

current in use is the “strong column – weak beam” 

concept, [Park, 1986]. Also, in the design guidelines 

given in the report 352 of ACI Committee, it is 

recommended that since it is preferable to have plastic 

hinges formed in the beams rather than in columns, the 

columns should have flexural strengths 1.4 times those 

of the beams framing into the same joints if these joints 

are part of the primary system that resists seismic 

lateral load, [ACI – ASCE, 1985]. Fundamentally, this 

design concept assumes that all or most of the structural 
elements participate equally in the task of energy 

dissipation, with the result that any damage occurring is 

uniformly distributed over the entire frame. Consequent 

upon, it is on the basis of this design concept of strong 

columns – weak beams and the assumption of equal 

participation in the task of energy dissipation by all the 

structural members of the frame that this paper is 

poised to investigate the free vibrations of multi-storey, 

multi-bay r. c. frames with strong column – weak beam 

model. The main objective of this paper is to evaluate 

the dynamic responses of multi-storey, multi-bay r. c. 

framed structures under self-excitation, using strong 
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column – weak beam model, analyzed using Classical 

Displacement Method Approach (CDMA)  and 

compare the results with the results obtained by using  

shear Building Model (SBM) method of analysis for the 

same framed structural buildings.    

 

STRUCTURAL MODEL AND DYNAMIC FLOOR 

MASS: 

 

     The building configuration adopted in this study is 

simple and regular; a typical office block building with 

a plan view as shown in Figure 1. In this study, a 

reinforced concrete frame of a three-floor simulated 

model, a five-floor simulated model and a ten-floor 

simulated model are considered to represent low, 

medium and tall buildings respectively, as shown in 

Figures 2, 3 and 4 respectively; using the same plan 

view of Figure 1. The floor thickness for each floor 
level is 150mm except the topmost floor level, which is 

125mm thick. A concrete grade of 25 with Elastic 

modulus of 26 x 106kN/m2 and a unit weight of 

24kN/m3 is adopted. A provision for finishes at each 

floor is given to be 0.75kN/m2 and is constant for all the 

floors; thereby giving the numerical value of dynamic 

floor mass, M1 = M2 = …= Mn-1 = 14047.706kg, and 

Mn = 12110.092kg; where n = number of floor levels. 

 

DYNAMIC MODEL: 

 
     In spite of the fact that almost all engineering 

structures are continuous and possess infinite number of 

degrees of freedom, [Clough, & Penzien, 1993; 

Polyakov, 1985], the adoption of lumped mass system 

in the dynamic analysis provides satisfactorily 

approximate results, [Feodosyev, 1973]. Thus, in the 

course of this work, each of the simulated r. c. multi-

storey, multi-bay frames is modeled as a structure with 

finite number of degrees of freedom, by assuming 

lumped mass element concentration at the right corner 

of each floor level, as shown in Figure 5.  

 
DYNAMIC ANALYSIS:   

  

     The fundamental principle in the dynamic analysis 

of structural system is the determination of the natural 

frequencies associated with the natural vibration of the 

system, [Biggs, 1964; Rao, 2006]. For regular building 

structures, it is only the fundamental tone of vibration 

that is usually considered to be paramount, as resonance 

at the lowest frequency will result in maximum 

dynamic effects, [Darkov, 1983]. However, in a recent 

publication, [Hemant et al 2006], it was pointed out that 
with increasing number of floors, the flexibility of 

building structures increases, thereby bringing higher 

mode effects into the picture. Therefore, it is 

recommended that in dynamic analysis of tall buildings 

(ten or more floors), even if the buildings are regular, 

the higher modes should be considered in addition to 

the first mode. 

 

 

EQUATION OF MOTION: 

 

Most often, the governing differential equation 

employed is the D’Alembert’s principle for dynamic 

equilibrium equations; thus:  

M  tx


 + C  tx


 + K
 t

x  = P
 t

  (1) 

where M, C, K are matrices of mass elements, damping 

elements and stiffness coefficients respectively; P(t) is 

the column vector representing the external excitations;  

 t
x ,   ,tx



  tx


 are vectors of displacements, velocities 

and accelerations of a system with finite number of 

degrees of freedom. In this work, we assume that the 

system is performing natural vibration, and therefore 

the exciting force vector is assumed to be zero. Thus 

equation (1) becomes: 

 M  tx


 + C  tx


 + K
 t

x  = 0    (2) 

Generally, all vibrating systems are, to certain degree, 

subject to damping effect due to the fact that energy is 

dissipated by friction and other resistances. However, in 
some cases, damping is very small or the dynamic 

disturbances on the vibrating system (buildings) act for 

relatively short duration, so that the effect of damping 

becomes unimportant and very negligible, [Humar, 

2002; Meirovvitch, 1986; Coates, Coutie &Kong, 

1980]. Therefore, in this work, we completely neglect 

the effect of damping; and equation (2) reduces to: 

M  tx


 + K  t
x  = 0    (3) 

By adopting the stiffness matrix and displacement 

approach, the natural frequencies of the simulated 

frames can be evaluated by solving the non-trivial 

equation: 

1 2
sM K I   = 0  (4) 

where  
1

sM K
 = dynamic matrix 

and 
M

-1 = inverse matrix of mass system 

Ks = Stiffness matrix 

ω = eigenvalues 

I = identity matrix 

 

METHODOLOGY 

 

     For a given concrete grade and unit weight, the 

flexural strength of the structural members is a function 

of the sectional moment of inertia. Consequently, by 

adopting a constant concrete grade and unit weight in 

this work, both the columns and beams are made to 

have equal initial flexural strength, (i.e. c bEI EI ). 

 

Procedure of Methodology 

(i) The ratios of column flexural 

strength, cEI  to beam flexural 
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strength,
bEI ,  c bEI EI   are 

established, in which α = 1, 5, 10, 15, 20. 

(ii) The natural frequencies of the simulated r. 

c. frame, for a given value of α, are 

evaluated using the Classical method of 

Flexible Horizontal Members Model, 

(FHMM). 

(iii) The natural frequencies of the simulated r. 

c. frames are evaluated using the Shear 

Building Model approach. 

(iv) The fundamental tone of vibration of each 
simulated system, for a given value of α, 

is normalized with the fundamental tone 

of vibration of that obtained by using the 

corresponding SBM approach; and the 

normalized fundamental frequencies are 

represented graphically against α, with the 

α as the abscissas. 

 

RESULTS AND DISCUSSIONS:  

 

Tables 1, 2, and 3 show the dynamic responses of the 
simulated r. c. framed structures at various 

,c bEI EI  evaluated using the Classical Method, 

(CM) of Flexible Horizontal Members Model (FHMM) 

approach; and Table 4 shows the dynamic responses of 

the same reinforced concrete (r. c.) multi-storey framed 

buildings of ten, five and three floors respectively, 

evaluated using the Shear Building Model, (SBM) 

approach. In the analysis of the results, the fundamental 

tone of vibrations of the simulated frames for a given α 

– value is compared with the corresponding 

fundamental tone of vibrations obtained using SBM. In 

the process, the fundamental frequencies of each 

simulated r. c. frame at various α – values are 
normalized with the fundamental frequency of the 

corresponding SBM, (i. e. 1 1)  ; and the results are 

graphically represented in Figure 6. The abscissa 

coordinate value at which 1 1  equals unity is read 

off from each graph as required column flexural 

strength multiplication factor. From the graphical 

interpretations, it is deduced that in capacity design of 

strong column – weak beam model, the column 

dynamically flexural strength demand is of the order of 

4.65; 8.75; and 10 times that of the beam dynamically 

flexural strength demand for a 3- floor storey, 5-floor 

storey and 10-floor storey building respectively, using 

the SBM dynamical response as a standard. 
 

CONCLUSION AND RECOMMENDATION: 

 

From the results obtained, it is quite obvious that in the 

Capacity Design Concept of strong column – weak 

beam model, the ratio of column flexural strength to 

beam flexural strength is not constant, but varies 

accordingly with the increase in the number of floors of 

the buildings. Therefore, the idea of adopting a fixed 

empirical value for the ratio of column flexural 

strengths to beam flexural strengths is not adequately 

justified in the dynamic analysis of multi-storey, multi-

bay r. c. framed buildings. It is essentially 

recommended, therefore, that the column flexural 

strength participation factor(s) in the analysis of 

dynamic stability of multi-storey, multi-bay r. c. framed 
buildings be adequately evaluated using Classical 

method of analysis. Also, for economic implications, it 

is recommended that this design concept should be 

limited in its application to low and medium rise 

buildings, as the dimensional requirements of the 

columns are quite enormously so demanding with the 

increase in the number of floor levels.     

 

REFERENCES: 

 

 ACI – ASCE COMMITTEE 352: 

Recommendations for Design of Beam – Column 
Joints in Monolithic Reinforced Concrete 

Structures. ACI Report 352R-85, 1985. 

 

 Briggs, J. M.: Introduction to Structural Dynamics. 

McGraw – Hill Book Company, New York, 1964. 

 

 Clough, R. W. & Penzien, J.: Dynamics of 

Structures. McGraw – Hill, New York, 1993. 

 

 Coates, R. C., Coutie, M. G. & Kong, F. K.: 

Structural Analysis. ELPS, 2nd ed. 1980. 
 

 Darkov, A.: Structural Mechanics. Mir Publishers, 

Moscow, 4th ed. 1983. 

 

 Feodosyev, V.: Strength of Materials. Mir 

Publishers, Moscow. 2nd ed. 1973. 

 

Hemant, B. K., Durgesh, C. R. and Sudhir, K. J.: A 

Case for use of dynamic analysis in designing for 

earthquake forces; Scientific Correspondence; 

2006.      

www.iitk.ac.in/nicee/RP/2006_DynamicAnalysis_
Current_Science.pdf 

 

 Meyer, C.: “Reinforced Concrete Frames Subjected 

to Cyclic Load”: Structures Subjected to Repeated 

Loading, stability and Strength; Edited by 

Narayanan, R. & Roberts, T. M.; Elsevier Science 

Publishers ltd, London, 1991. 

 

 Park, R.: Ductile Design Approach for Reinforced 

Concrete Frames. Earthquake Spectra, EERI 2(3), 

1986, pp 565 – 619. 
  

 Polyakov, S. V.: Design of Earthquake Resistant 

Structures; Mir Publishers, Moscow; 1985. 

 

 Rao, S. S.: Mechanical Vibrations. Pearson 

Education, Inc. and Dorling Kindersley Publishing 

Inc., Low Price Edition, 2006. 
 

http://www.iitk.ac.in/nicee/RP/2006_DynamicAnalysis_Current_Science.pdf
http://www.iitk.ac.in/nicee/RP/2006_DynamicAnalysis_Current_Science.pdf


139 I.C.E. Umeghalu et al. / Journal of Engineering and Applied Sciences 4 (2008) 134 - 138                  139 

 

αEI 

αEI 

αEI 

αEI αEI αEI 

αEI αEI αEI 

αEI αEI αEI 

EI EI EI 

EI EI EI 

EI EI EI 

EI 

αEI 

EI EI 

EI EI EI 

EI EI EI 

EI EI EI 

EI EI EI 

EI 

αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI 

EI EI 

EI EI EI 

EI EI EI 

EI EI EI 

EI EI EI 

EI EI EI 

EI EI EI 

EI EI EI 

EI EI EI 

EI EI EI 

αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

αEI αEI αEI αEI 

 
Figure 1: The Plan view of the Simulated 

Multi-storey, Multi-bay Reinforced 

Concrete Building. 
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 Figure 2: A Three-Floor, Multi-bay Simulated 

Reinforced Concrete Frame showing the 
Flexural Rigidity Arrangement for the 

Structural Members.  
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Figure 3:     A Five-Floor, Multi-bay 

Simulated Reinforced Concrete 

Frame showing the Flexural 
Rigidity Arrangement for the 

Structural Members.  
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Figure 4:   A Ten-Floor, Multi-bay 

Simulated Reinforced Concrete 

Frame showing the Flexural 

Rigidity Arrangement for the 

Structural Members.  
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Figure 5: Dynamic Model for the Ten-Floor, 

Multi-bay Simulated Reinforced 
Concrete Frame. 
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Table 1: The Natural Frequencies of the Three-   

Floor Storey Reinforced Concrete 
Model evaluated using the Classical 

Method of Flexible Horizontal Members 

Model approach at various α-values. 
Frequency 1   5   10   

1  
0.1699rad/sec 0.2522rad/sec 0.2899rad/sec 

2  
0.6482rad/sec 1.0667rad/sec 1.3260rad/sec 

3  
1.2109rad/sec 2.4097rad/sec 3.2688rad/sec 

 

 

 

Table 2: The Natural Frequencies of the Five-   
Floor Storey Reinforced Concrete 

Model evaluated using the Classical 

Method of Flexible Horizontal Members 
Model approach at various α-values. 

Frequency 1   5   10   

1  
0.3261rad/sec 0.4597rad/sec 0.4985rad/sec 

2  
1.1062rad/sec 1.6588rad/sec 1.9283rad/sec 

3  
2.0476rad/sec 3.4304rad/sec 4.3135rad/sec 

4  
3.0573rad/sec 5.8258rad/sec 7.7790rad/sec 

5  
3.9333rad/sec 8.3801rad/sec 11.6530rad/sec 

 

  

Table 3: The Natural Frequencies of the Ten-   
Floor Storey Reinforced Concrete 

Model evaluated using the Classical 

Method of Flexible Horizontal Members 

Model approach at various α-values. 
Frequency 1   10   20   

1  
0.1618rad/sec 0.2360rad/sec 0.2358rad/sec 

2  
0.5322rad/sec 0.8065rad/sec 0.7908rad/sec 

3  
0.9633rad/sec 1.5933rad/sec 1.4071rad/sec 

4  
1.4325rad/sec 2.6347rad/sec 2.0140rad/sec 

5  
1.9345rad/sec 3.9567rad/sec 2.5791rad/sec 

6  
2.4579rad/sec 5.5800rad/sec 3.0830rad/sec 

7  
2.9864rad/sec 7.4780rad/sec 3.5114rad/sec 

8  
3.4854rad/sec 9.5409rad/sec 3.8539rad/sec 

9  
3.9101rad/sec 11.5282rad/sec 4.1030rad/sec 

10  
4.1998rad/sec 13.0374rad/sec 4.2540rad/sec 

 
 

 

 
 

Table 4: The Natural Frequencies of the 

Simulated Frames evaluated using Shear 
Building Model approach.  

 

Frequency 

 

Ten-Floor 

Storey  Frame 

Five-Floor 

Storey Frame  

Three-Floor 

Storey Frame 

1  
0.2358rad/sec 0.4835rad/sec 0.2459rad/sec 

2  
0.7908rad/sec 1.5756rad/sec 0.8577rad/sec 

3  
1.4071rad/sec 2.6738rad/sec 1.3494rad/sec 

4  
2.0140rad/sec 3.5580rad/sec  

5  
2.5791rad/sec 4.1159rad/sec  

6  
3.0830rad/sec   

7  
3.5114rad/sec   

8  
3.8539rad/sec   

9  
4.1030rad/sec   

10  
4.2540rad/sec   

 

 
 

 

 

 
 

 

 
Table 5: The Normalized Fundamental 

Frequencies of the Three-Floor Storey and 

Five-Floor Storey Frame Models with the 

Associated Fundamental Frequency of the 
Shear Building Model  

 

c
i

b

EI

EI
  

3-Floor Storey 

Frame: 

  

 

5-Floor Storey 

frame: 

1

1




 

1

1




 

1   
0.69 0.67 

5   
1.03 0.95 

10   
1.18 1.03 

 

 

 
 

 

Table 6: The Normalized Fundamental 
Frequencies of the Ten-Floor Storey 

Frame Model with the Associated 

Fundamental Frequency of the Shear 
Building Model.  
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 Normalized Frequency 

1   10   20   
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Figure 6: The Graphical Representations of 

various Normalized Fundamental 

Frequencies.  
 


