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Abstract 

  
Seepage analysis is the indispensible part of dams structural analysis. The analysis is usually done to prevent excess seepage that 
leads to sand boil which is the major cause of dam failure. In this research work comparative analysis of seepage through dam is 
carried out using analytical methods (Schaffernack’s and L-Casagrande’s methods), and numerical methods (Finite element and 
Finite difference). The finite element method analysis was done using six-node triangular element mesh whereas finite difference 
analysis was done by dividing the problem in cells and applying spreadsheet iterative calculation. The result obtained shows that 
the methods have similar hydraulic head patterns. Moreover L-Casagrande’s, Finite element and Finite difference methods 
support the existence of Seepage face. Analytical and graphical methods are recommended for homogenous, isotropic and 

unconfined seepage flow while numerical method is recommended for complex situations such as anisotropic and heterogeneous 
conditions. Possible improvement for future work were also discussed. 
 

1. Introduction  

 

1.1. Preamble  

 

     Seepage is defined as the flow of fluid usually water 
through a soil under hydraulic gradient. Seepage 

analysis forms an important and basic part of 

geotechnical Engineering. Seepage analysis may be 

required in volume change prediction, groundwater 

contamination control, slope stability analysis and the 

design of earth structures such as dams, dyke and 

leeves.  .  

      Flooding has been one of the biggest and most 

continuous natural disaster in the world. In an effort to 

avert disasters in terms of loss of life and damage to 

properties caused by flooding, dams were built all over 

the world to control the flow of rivers. A dam is defined 
as a natural or manmade embankment, with a specific 

purpose to hold back water. Dams can also provide 

additional advantages apart from flood management, 

such as to provide water for irrigation, furnish 

hydroelectric power and improve the navigability of 

waterways. Dams that are built to protect land 

alongside rivers from frequent flooding caused by a rise 

in the water level of the river are called leeves. The 

structures prevent flooding of the adjacent area from 

Small floods and thus reduce the occurrence of flood. 

Dams usually contain flood waters when the river stage 
rises. When the river stage drops, dams do not hold 

back water. Thus dams see intermittent use only during 

times of high river stages. However, when floods of 

large magnitude occur, such as floods with a recurrence 

interval of more than 100 years, there are situations in 

which dams can cause more damage as these structures 

increase the volume of water that is held in the channel 
and if dams failure occurs, the sudden release of water 

can increase the size of the flooded area. To avert this 

disaster dam design, construction, maintenance and 

supervision holds a very important role. In order to 

avoid dam failure, it is important to analyse, possible 

cause of failure. The most common causes are over 

topping, erosion, Seepage and Piping (Bligh, 1915).  

      Seepage through or under dam may occur at a high 

enough rate to cause a boil, usually called sand boil. 

Presence of sand boils can play a major role in leeve 

failure. Seepage of flood water through or under a dam 

is a normal process. However, when seepage occurs at a 
high rate, the seepage water can carry soil material with 

it. Seepage through dam is relatively common, but 

when the seepage creates a drainage path and soil 

material is washed out through a boil on the landslide of 

the structure, a potentially dangerous condition can be 

created. A boil is a condition under which enough 

pressure is produced to pipe water through or under the 

dam with sufficient velocity to carry earth material to 

the landward side. Continuous piping can cause 

sufficient material to exit through the boil that a large 

void is created inside the dam, which can result in the 
weakening of the structure and eventually failure. Not 

all sand boil leads to dam failure. (Blight, et al., 1915).  
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Any seepage problems must consider three principal 

factors, which are soil media, type of flow and 

boundary conditions. The soil media are important in 

the determination of seepage characteristics since 

different soil media will exhibit difference behaviour. 

Some of the most important characteristics that need to 
be determined from the soil media are porosity and 

coefficient of permeability. Soil media can be classified 

by these different characteristics. For example, if the 

coefficient of permeability is the same at all points in 

the flow region and it is independent of the direction of 

the flow, the soil is classified as homogenous and 

isotropic. If on the other hand it is dependent on the 

direction of the flow, it is classified as heterogeneous 

and isotropic. For soil that is only independent on the 

direction of the flow, it is classified as homogenous and 

anisotropic (Bouwer, 1962).  

     The type of flow can be classified as either steady 
state or transient flow. In a steady state type of flow, 

time is not considered as a variable and the position of 

the water table does not change. On the other hand, a 

transient problems required time as a variable and so an 

initial condition needs to be described aside from 

boundary conditions and a time step needs to be 

determined to correctly illustrate the influence of time 

on the problem. In transient problems, it is always 

important to choose the right time steps needed to solve 

the problems.  

     Boundary conditions are needed to correctly 
describe the problem. In flow domains where all the 

boundaries are fixed and therefore known initially the 

flow is said to be confined but where one boundary is a 

free surface, the flow pattern is said to be unconfined. 

For this instance where seepage is evaluated through a 

dam, the important boundary conditions that need to be 

defined are the upstream face, downstream face and 

free water surface. To accurately describe the problem, 

on the upstream and downstream faces, the pressure 

head is due to water pressure and varies with the height. 

The free water surface on the other hand has two 

conditions that need to be satisfied, the first of which is 
that atmospheric pressure is maintained on the 

boundary, while the second is that no flow crosses the 

free surface. Both of these conditions need to be 

satisfied simultaneously in order to accurately describe 

the location of the free surface (Lamb, 1932).  

     Seepage analysis is an important tool which can be 

applied to predict seepage and to investigate measures 

to prevent or reduce the magnitude of seepage flow. 

Losses due to flow through dams must .be minimized 

and seepage flows that may cause piping must be 

controlled. Several seepage control measures can be 
implemented on dams to avoid failure. Control 

measures that can be implemented to control seepage to 

reduce risk of leeve failure include installation of a 

previous toe drain in the dam which will provide a 

ready exit for seepage through embankment, placement 

of a horizontal drainage layer during dam construction 

and incorporation of an inclined drainage layer in dam 

design (Cheng and Li, 1972).  

     Control of seepage is not the only reason for 

analyzing seepage. Seepage analysis can provide 

information with which to evaluate other consequences 

such as excessive soil saturation, the magnitude of 

seepage forces and uplift pressure that can lead to dam-

failures. Seepage analysis can also be used in 

evaluating proposed future design alternatives and dam 
maintenance design. Seepage path prediction is 

important in order to assess the necessary steps to avoid 

dam failure. Determination of the seepage path is an 

important tool that can be used to determine the 

probability of damage to the dam due to piping and in 

the evaluation of piping design control measures 

(Casagrande, 1940).  

      The details discussed above show all the available 

condition that can be considered in seepage analysis. 

Moreover, many methods have been adopted in recent 

years for determination of seepage through 

homogenous earth dams ranging from elementary 
method which include dupuits and Gilboy solution to 

more encompassing methods such as Schaffernacks, 

Casagrande, Pavlosky and conformal mapping 

techniques. Recently efforts have advanced in the 

application of numerical methods such as finite element 

method, finite difference method, Boundary element 

method and boundary fitted coordinate method.  

 

 1.2. Objectives of study 

  

     The objectives of this research are as follows:  
(1) To use numerical methods (Finite element and finite 

difference methods) and Analytical methods in 

determining seepage flow through earth dams.  

(2) Performing the comparative analysis of the methods 

to give reliable recommendation on the methods to use 

for any specific work.  

(3) To determine and/or prove the existence of seepage 

face using the method cited.  

 

 1.3. Scope of study  

 

      The study is limited to the case of homogenous, 
isotropic, unconfined and steady - state seepage flow 

through earth.  

 

2. Literature review  

 

 2.1. Analytical method of seepage analysis  

 

     Solution for groundwater seepage problems have 

been developed since the pioneering work of Henry 

Darcy (1956). For example, many analytical solutions 

were developed and presented by Harr (1962) and 
Polubarinova-Kochina (1962). The groundwater 

seepage problem can be described by Darcy's Law and 

continuity equations. The seepage equation is obtained 

by combining these two equations. Since the seepage 

equations are based on these two equations, the 

assumptions and limitations that apply to these 

equations also apply to the seepage equation. Darcy's 

law basically demonstrates a linear dependency 

between the hydraulic gradient and the discharge 
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velocity.  

      Several investigators (Shaffernak, 1917; Iterson 

1917; Casagrande, 1932) have suggested various 

methods to determine the quantity of seepage and locus 

of the phreatic line. Kozeny (1931) studied the seepage 

through an earth dam with a horizontal toe drain (under 
filter) resting on an impervious base assuming the earth 

dam to have a parabolic upstream face. Applying the 

method of fragments, Pavlosky (1931) determined the 

quantity of seepage and locus of phreatic line in an 

earth dam resting on an impervious base without a 

filter. The flow was decomposed into three fragments 

and the hydraulic resistance of the soil in the upstream 

side has been considered for finding the flow 

characteristics. Casagrande (1940) made a correction 

for the entrance condition at the upstream face and 

recommended the parabolic free surface to start at a 

point 0.3  upstream, where   is equal to base width of 
the upstream triangular part.  
 

2.1.1. Limitation of analytical methods  

     Although, analytical solutions are the most accurate 

methods in calculating seepage, the analytical method 

has several drawbacks. One major drawback of this 

method is that it is difficult to apply, as it is limited to 

groundwater flow with uniform hydraulic properties 

and simple boundary geometry. In some cases, 

analytical solutions cannot be obtained because of non-

linear features such as variable permeability or moving 

boundaries.  

 
2.2. Numerical methods of seepage analysis  

 

    Several investigators (Cividini and Gioda, 1990; 

Billstein et al., 1999; Bardet and Tobita, 2002) have 

applied numerical techniques to determine the quantity 

of seepage and locus of the phreatic line. Determination 

of phreatic line by numerical techniques involves 

iteration and requires special formulation.  

     The variational inequality formulation and its FEM 

solution for the free boundary problem of 2D steady 

state seepage flow was given by Guo et al. (1991), also 
a further investigation was made on the non-steady state 

seepage problem, taken the seepage flow of wells as an 

example. Li et al. (2003) described an element free 

method (EFM) for seepage analysis with a free surface 

which was based on the moving least square method 

which needs only the information at nodes. It avoids 

trouble-some modification of the mesh as in finite 

element method. Being irrelative of the nodes, the mesh 

for quadratic is fixed throughout the iterations in 

determining the free surface. And the nodes can be 

easily added, moved or deleted in the iterations. 

Considering the original free boundary problems as a 
shape optimization problem, Lcontiev et al, (2001) 

performed boundary elements discretization. A 

mathematical programming technique for numerical 

simulation of unconfined flow through porous media 

was presented. Taking the state variable and free 

boundary variable as independent variables they treated 

the discretized problems as nonlinear mathematical 

program and apply interior point algorithm to solve it. 

This simple, yet accurate and computationally efficient 

technique can be easily applied to 2D real size 

problems and extended to 3D problems. Finite 

difference method (FDM) based on boundary fitted 
coordinate (BFC) transformation was presented by lie 

et al. (2004). The curvilinear grid system, with 

computational boundary being coincident with the 

physical boundary was numerically obtained by solving 

the poisson equation. Seepage analysis can then be 

done by FDM in a uniform transformed orthogonal 

coordinate system. The method was applied to analyze 

the steady seepage in foundation pit, a lock foundation, 

and an embankment dam with a free surface.  

 

2.2.1. Limitation of Numerical Methods 

      They are approximate and requires in-depth 
knowledge of mathematics and computer programming 

and/or softwares.  

 

3. Theoretical background and analysis  

 

3.1. The physics of groundwater flow  

 

     Groundwater flows in the direction of decreasing 

potential energy caused by differences in pressure and 

elevation. A common measure of this potential energy 

is the total head h, which is simply the sum of pressure 
head and elevation head  

 

     (1) 

 
where P is the pressure acting on a unit mass of water, 

pw is the density of water, g is the acceleration due to 

gravity, and Z is the elevation of the water. Equation (1) 

assumes that water is an incompressible fluid (the 

density is the same at all pressures). As water flows 

down the head gradient, energy is lost due to friction 

from the boundary and decreasing elevation. The 

volume rate of flow per unit area is directly 

proportional to the rate of change of head as given by 

the differential form of Darcy's Law.  

 

q      =   - Kh                                                    (2)  
 
where q is the volume rate of flow per unit area, known 

as the specific discharge or Darcy velocity and k is the 

coefficient of permeability of the fluid.  

      For steady-state conditions, continuity requires that 

the amount of water flowing into a representative 

elemental volume be equal to the amount flowing out. 

The amount of water is measured by volume, which is 

equivalent to measuring mass since we have already 

assumed that water is an incompressible fluid. As well, 

the elemental volume cannot contain any source or 

sinks.  
 

     Thus, factors such as precipitation and evaporation 
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are ignored. With the assumptions, continuity requires 

that the following equation holds  

 

      (3) 
 

 

In other words, the sum of net change in the discharge 

rate of all component directions must equal zero.  

Substituting the components of Eq. (2) into Eq. (3) we 
have  

 

  (4) 

 

 Now, if we assume that the hydraulic permeability, K, 

is independent of x, y and z (which is true under 

homogenous, isotropic conditions) then Eq. (4) 
becomes  

 

                   (5) 

 

Which is Laplace's equation in the three dimensions - 

the governing equation for groundwater flow through 

an isotropic, homogenous aquifer under steady-state 

conditions.  
 

3.2. Applying finite element method to seepage  

 

     Flow of water that occurs in land drainage or 

seepage under dams can be described by Laplace's 

equation .  

 

       (6) 
 

Where   =  (x,y) is the hydraulic head and kx and ky 
are the hydraulic permeability in the x and y directions, 

respectively. The fluid velocity components are 

obtained from Darcy's Law as  

 

 

  

Equation 6 is similar to heat conduction equation. 

Where lines of   = Constant are called equipotential 
surfaces, across which flow occurs.  

The appropriate boundary conditions associated with 

Eq.6 are illustrated in fig. 1. The region to be modeled 

is shown shaded in fig 1. Along the left and right 

surfaces, we have the boundary conditions.  

 
3.2.1. Applying finite element method to seepage  

     Flow of water that occurs in land drainage or 

seepage under dams can be described by Laplace's 
equation.  

      (6) 

Where   =  (x,y) is the hydraulic head and kx and ky 
are the hydraulic permeability in the x and y directions, 

respectively. The fluid velocity components are 

obtained from Darcy's Law as  

  

Equation (6) is similar to heat conduction 

equation. Where lines of   = Constant are 
called equipotential surfaces, across which 

flow occurs.  

The appropriate boundary conditions 

associated with Eq.6 are illustrated in fig. 1. The 

region to be modeled is shown shaded in fig. 1. Along 

the left and right surfaces, we have the boundary 

conditions.  

 

       =   Constant  
 

 
Fig. 1. Boundary condition. 

  

The impermeable bottom surface corresponds to the 

natural boundary condition /dn = 0, where n is the 
normal, and does not affect the element matrices; the 

values  are unknowns. We first assmne a location for 
the line of seepage and impose the boundary condition 

 = yi at node on the surface. Then, we solve for =  

and check the error (i-yi). Based on this error, we 
update the locations of the nodes and obtain a new line 

of seepage. This process is repeated until the error is 

sufficiently small. Finally portion CD is a surnce of 

seepage. If no evaporation is taking place in this 

surface, then we have the boundary condition 

 =  

where y is the coordinate of the surface  

  

3.2.2. Introduction to the problem 

  

 
Fig. 2. Two dimensional cross section of a dam. 
 

      Considering the seepage through a darn introduced 

in Eq.(4) for the homogenous, isotropic case. We wish 
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to estimate the value of the groundwater head 

throughout a two dimensional cross section of a dam 

shown in Fig. 2. The formulation of the problem is as 

follows. The dam at y = 0 rests on impermeable 

bedrock, so the bottom boundary is a no flow boundary. 

The upper boundary is also no flow boundary (no 
precipitation, evaporation, e.t.c). In addition, the total 

head at each point on the upper boundary must equal its 

elevation. The reason for this is that there is no pressure 

acting on the upper boundary, making total head equal 

to elevation (see Eq. 1). The total head on the left and 

right boundaries are known and are 4.00m and 3.00m 

respectively. Note that we do know the vertical location 

of the' upper boundary except that at x = 0.00m, y = 

4.00m.  

     For homogenous isotropic case with no 

accumulation or loss of water from the system, the 

equation to be solved for this problem is Laplace's 
equation in 2-dimensions.  

 

                (8) 
 

Dupuits Assumptions  

1. The exit point coincides with the tailwater 

(No Seepage face).  

2. The hydraulic gradient is constant along a 

vertical line (flow is horizontal ).  

3. The hydraulic gradient is equal to the slope of 

the free surface.  

Under Dupuits assumptions, flow is one-dimensional. 
An analytical solution can therefore be obtained by 

solving.  

 (9) 
 

With boundary condition h = 4.00m at x = 0.00m and h 

= 3.00m at x = 6.00m. The Analytical solution of this 

boundary value problem is  

  

                (10) 
 

Eq. (10) is use to determine a close initial guess for the 

location of the upper boundary. Then the problem is 

solved using the finite element method and the result 

compared with the resulting head at the upper 

boundary with the guess given by Eq. (10). If they do 

not agree to two decimal places, the newly calculated 

head at the upper boundary is used as the new vertical 

location and the procedure is repeated again each time 

comparing head to the vertical location until two 

decimal place agreement is obtained along the upper 
boundary.  

 

3.2.3. Finite element method using six-node triangular 

elements  

     The shape functions for the six-node triangular 

master element (Fig. 3) are:  

N1(u,v)  = (u+v -I) (2u+2v-l)  N2(u,v) =  -4u(u+v-l)   

N3(u,v)  = u(2u-l)  N4(u,v) = 4uv  

Ns(u,v) = v(2v-l)  N6(u,v)=-4v(u+v-l)                  (11)  

 
The mapping that relates the coordinates of the master 

element to general element Ωe is 

 

            (12) 

 

                             (13) 

 
 

 
Fig. 3. Six-node triangular element mesh. 
 

Where ne
i,(xne

i, yne
i), i =1,2,…6, are the vertices 

of the general six-node triangular element.  

 

3.2.3. Finite element solution  

     The finite element approximation to this problem is 

given by   

  

          (14) 

 

Where each hi is the total head at node j generated by 
the program steady m in matlab (from Eq. 2 and wj 

(x,y) is the basis function representing node j). The 

basis function for a particular node j is formed using 

the shape functions of the elements associated with 

node j.  

 

3.3. Formulation of the finite difference modelling 

problem 
  

     The finite difference method is a numerical method 

which can be used for solving partial differential 

groundwater equations. The computational domain is 

discretized by rectangular cells although quadrilateral 

cells can also be used. For simplicity, we consider the 
cell lengths in the x and z directions to be constant and 

equal i.e. x = z. The unknown variables are defined 
in the nodes which are placed at the centers of the cells 
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or at the intersection points of cell boundaries. To 

follow a unique law for the nodes, we consider them to 

be at the intersection points of cell boundaries 

throughout the work. From the geometrical point of 

view, it is obvious that complex boundaries or complex 

inner structures can only be reproduced in a very 
simplified way to be step functions.  

     The formulation of the finite difference modelling 

problem is basically carried out by substituting the 

differential functions by approximated values derived 

from Taylor-series expansions of the functions. The 

equations are then put together in an explicit or implicit 

way. By developing the derivatives of unknown 

functions with the help of Taylor series expansions of 

the functions and taking into account initial and/or 

boundary conditions, we obtain the solution to the 

problem (Hinkelmann, 2005).  

      For the solution of the differential using Finite 
difference scheme, first we discretise the computational 

domain as shown below  

 
Fig. 4. Discrete representation of two-dimensional 
region. 

 

3.3.1. Discretization of function derivatives  

     As shown in Fig.5 as continuous function F(x) 

may be defined in terms of discrete values Fj 

corresponding to values Xi spaced along the x-axis, 

Assuming that the function F is differentiable, the 

function may be expanded by using a Taylor 

expansion about x.  

 

3.3.2. Discretization of function derivatives  

     As shown in Fig.5 as continuous function F(x) 
may be defined in terms of discrete values Fj 

corresponding to values Xi spaced along the x-axis, 

Assuming that the function F is differentiable, the 

function may be expanded by using a Taylor 

expansion about x.  

F(x+x) = F(x) +  2

2

2

x(x)
dx

Fd

2!

1
x(x)

dx

dF
  (15) 

Equation 15 may be written for x = xi 

fi+1 = fi + xi
dx

df
1  3

3

3

2

2

2

!3

1

!2

1
xli

dx

fd
lix

dx

fd
(16) 

fi-1 = Fi + xi
dx

df
1  3

3

3

2

2

2

!3

1

!2

1
xli

dx

fd
xli

dx

fd
(17) 

The First order differential may be approximated from 

discrete values by subtracting Eq.16 from Eq.17  

  

     (18) 

The second order derivative may be approximated by 

adding Eqs. 16 and 17:  

 

                              (19) 

Equations 18 and 19 are second order approximations 
of the First- and-second order derivations. The errors 

between the exact and approximate differentials 

converges quadratically towards its exact values.  

 
 

Fig. 5. Discrete representation of a continuous 

function F.  

 

3.3.3. Discretization of two-dimensional problems  

     Equations 18 and 19 also apply to functions of two 

variables x and y, such as the two-dimensional 

distribution of total head over a spatial region. As 

shown in Fig.4, the two-dimensional space is 

discretized with a grid of points, the coordinate of 

which are denoted by i and j. Carved boundaries have 

to be approximated with straight segments in order to 

be described with points. If x  and y are the nodes 
spacing in the x and y directions, respectively the 

discretized form Eq.2 at point i,j is  

 

)2()(
1.121,12 ijjijijiji

hhh
y

ky
hh

x

kx








=0                (20) 

 

As in Fig. 4b only the value of h at the nodes 

surrounding the node I,j contribute to Eq. 20 

When x = y, Eq. 20 becomes 
 

)(
)1(2

1
1111 





ijijjiji

hhhhhij 


                      (21) 

 

Where 
ky

kx
 . when x = y and kx = ky(=1) Eq. 

20 becomes 

 
hi.j = ¼ (hi+i.j + hi+1.j+hij+1+hi.j-1)                             (22) 

 

 
The first order differential is approximated by 

introducing a Fictitious node, out-side the seepage 

domain (see Fig. 6). Using Eq.18 at node i,j we obtain  

 

0
11


 ijj
hhi

dy

dh
               (23) 
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Therefore, hi, j+1. The value of total heed at the 

fictitious node I, j+1 is eliminated by combining Eqs. 

(22) and (24) 

 

hi,j = 
)2(4

1

1,1,1, 


jijiji
hh

                                          (24) 

 

In summary, for a horizontal impervious 

boundary, it is not necessary to define Fictitious 
nodes, however it is necessary to replace Eqs. 

(22) and (24).  

     The coefficient 2 in Eq. (24) applies to the 

internal nodes, not to the nodes on the boundary. 
Thus Eq. (24) may easily be generalized to a 

vertical boundary. Figure 6 gives additional 

relation for the total head at grid points on 
inclined boundaries and at various types of 

corner boundaries. The sum of the coefficients is 

equal to 1.  
     Then the total head at the grid points may be 

found by using either direct method or an iterative 

method.  

 

 
Fig.6. Nodal representation of the problem. 

 
The given problem represented by cells, AI, A2 ... 

respectively. The specified values of h are entered in 

cells AI, Bl, Cl, Dl, El, Fl, Gl, A2, D2, C2, D2, E2, F2 

etc. The relaxation solution gradually converges 

toward the exact solution within hundred iterations. 

The iterative calculations are activated by options 

calculation and by clicking on the iteration box.  
 

3.4. Solution of Schaffernak and Van Herson  

 
     The first approximate method that takes 

cognizance of the development of the surface of 

seepage at the down stream slope of the dam was 
proposed independently in 1916 by Schaffernak 

and Van Herson. Considering an earth dam on an 

impervious base with no tail water applying 

equation for discharge  

                    (25) 

  

 tansinka
dx

dy
kyq        (26) 

 

where a is the length of the surface of seepage. 

To determine a, we have from the equation 
above 

 

 
d

a

h

a
dxaydy

cossin
tansin 


      (27) 

 
which after integration yields 

 





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


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











2

2

2

2

sincoscos

hdd
  (28) 

 

Substituting a in Eq. 26 the seepage through 
the dam is obtained. The equation of the free 

surface is given by 

 

 22 sintansin2()( aaxxy  (Harr, 1960)    (29) 

 
3.5 L.Casagrande's solution 

  

Taking exception to Dupuits second assumption that the 

hydraulic gradient is equal to the slope dy/dx of the free 

surface. L. Casagrande analyzed the same problem as 

Schaffernak and Van iterson with' the hydraulic 

gradient equal to dy/ds, where equation along the free 
surface. Hence equation for Casagrande's method is  

  

                                             (30) 

 

 

Applying Eq.30 at AB (Fig.5) we have, for the quantity 

of seepage, 

 

q = kasin2a 

 

Equating the right sides of Eqs 30 and 31 and setting 
the limits of integrating, we obtain 

 

 





as

dsaa
0

2
asin

k
sinydy-



               (32) 

 

 

The equation yields 

 

a

h
ssa

2

2

2

sin
                (33) 

 
which can be substituted in Eq. 31 to obtain the seepage 
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The following equation were used to Casagrande 

to calculate the phreatic surface. 
 

o
y

yh
d

2

2 2

0


  

where yo = ddh  22   

 
4. Results and discusssion 

 
Fig. 7. Dam Specification. 

Height of dam = 5m 

Width of dam = 11.6m 

Height of water (up stream) = 4m 

Down stream = 3m 

 = 29o 
     From the dam with specification shown in Fig. 7 

above the following results were obtained. Applying 

the relvant equations and/or programmes stated in 

chapter three to the sections of the dam shown in Fig. 

7. The following results were obtained as tabulated 

below. 

 
Table 1 

Summary of the hydraulic head calculated from finite 

element, finite difference, Schaffernak’s and L. 

Casagrande’s methods 
X(m) h(m) 

SChaffemaks 

h(m) 

L.Casagrande 

h(m) 

Finite 

Element 

h(m) 

Finite 

difference 

0 4.00 4.00 4.00 4.00 

1 3.84 3.87 3.87 3.88 

2 3.66 3.71 3.72 3.73 

3 3.49 3.55 3.57 3.56 

4 3.30 3.39 3.40 3.42 

5 3.10 3.21 3.22 3.22 

6 2.90 3.03 3.04 3.04 

q(schaffermak)= 7x108m/s2 

q(Casagrande) = 6.9 x 102 m/s2 

q(Finite Element) = 6.2 x 10-8 m/s2 
q(Finite difference) = 6.2 x 10-4 m/s2 

 
Fig. 8. Graph of hydraulic head for each model. 

4. Discussion  

 
      In terms of the hydraulic they have similar heads at 

the phreatic surface (see fig. 8). Furthermore, from the 

results obtained Casagrande’s method, Finite element 

and Finite difference method support the existence of 

seepage face; with Finite element method and Finite 

difference method giving a seepage face of 0.4m 
whereas L. Casagrande method records a seepage face 

0.3m. Not minding that finite element approximations 

to this problem assume that the Dupuits assumption 

hold and therefore no seepage face exists, it can be 

seen that the results obtained by finite element using 

six-node triangular element approximation suggest the 

presence of seepage face. In contrast, the result 

obtained from Schaffernak’s method gives a negative 

seepage face thereby supporting Casagrande’s 

argument that seepage start at 0.3. The seepage flow 
calculated using numerical methods (Finite element 

and finite difference methods) are the same. It is also 

expected that when the mesh size decreases, the 
accuracy of result increases as well. Moreover, 

decreasing the size of mesh will yield more meshes 

thereby making the computation tasking. As can be 

seen from the graph that the five different methods 

yielded almost similar result with deviation from flow 

net technique. The reason is that the problem is not a 

complicated one. Even within the numerical methods 

there is likely to be a marked difference between Finite 

difference method and Finite element method in 

complicated cases. 

 
5. Conclusion    

 
     In the case of homogenous, isotropic and steady 

state seepage flow analytical and graphical method is 

recommended since they are simple and straight-

forward to apply but in the case of heterogeneous and 

transient seepage flow, numerical method preferably 

finite element which can adapt to any shape of cell or 

mesh is recommended. It is not advisable to use 

analytical methods in this case because in their 

derivations; homogenous, isotropic and steady state 
seepage were assumed. 

 
6. Recommendation 

 
     In case of finite element method, a finer mesh could 

be generated to increased accuracy, possibly through 

the use of finer element mesh generator as opposed by 

generating the mesh by hand as was done in this paper 

while in finite difference method, matrix method can 

be used in place of spreadsheet iterative method. 

Future work on this model could involve the 

consideration f the anisotropic case as well as allowing 

precipitation and evaporation. Different domain shapes 
could be considered as well as extending the model to 

consider flow in three dimensions. 

(34) 
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