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Abstract 

It will always be the desire of the machinist to simultaneously meet the two opposed demands: achieving high productivity 

and high surface quality. It is seen from  this work that the extent to which these two demands are considered opposed 

depends on the machines stability information at the disposal of the machinist. The parameters adopted for the turning 

process considered are as follows; mass, m = 0.0431kg; Natural frequency, ω� = 5700 rad sec� ; damping factor, ξ =0.02; feed speed, v = 0.0025m/sec  and material cutting coefficient, C = 3.5 × 10�Nm��� . Stability chart was constructed 
from which a number of comments and recommendations were made. It was seen from the stability chart that the machine 

would have very low productivity at low spindle speed requiring very small dept of cut for stable operation. For example at a 

spindle speed of 2000rpm the maximum depth of cut for stable operation would be about 0.25mm. This result points to the 

need of chatter stability enhancement for low speed range turning machine through any means of chatter suppression. 
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1. Introduction 

Turning like most machining processes, is 

described by delay differential equation which is an 

equation in which the present rate of change is 

dependent on both the present and past solutions of 

the system. Full-immersion or low speed turning 

being a continuous process is described by 

autonomous delay differential equation. Chatter in 

such a turning process could build up progressively 

when there is no destructive interference stemming 

from any disturbance. For this reason it is logical to 

suppose that turning chatter could be suppressed by 

some form of periodic disturbance. The result that 

parametric excitation effects suppress chatter 

derives from the knowledge of stabilizing effects of 

parametric excitation on inverted pendulum 

(Insperger, 2002). Though not proven formally, it is 

qualitatively deduced from time domain analysis 

that low frequency periodic disturbance would be 

effective at suppressing turning chatter (Ozoegwu, 

2011). Suppressive effect of spindle speed 

modulation on turning chatter is given a good 

attention by Insperger (2002). Bifurcation analysis 

of turning process has been conducted by Stepan et 

al (2003).  Analytical proof has been given by 

Stepan and Kalmar-Nagy (1997) that turning 

chatter at loss of stability is subcritical in nature, 

which is confirmation of an earlier experimental 

finding by Shi and Tobias as reported by Insperger 

(2002).  

The purpose of this work is to give a detailed 

stability analysis that leads to the generation of a 

working chart for turning process with the 

following parameters; mass  =0.0431!", Natural frequency $% = 5700 &'( )*+� , damping factor , = 0.02, 

feed speed v = 0.0025m/sec  and material cutting 

coefficient - = 3.5 × 10�Nm��� . These values are 

typical for machine turning processes.  The stability 

chart which this work aims to generate is valuable 

in machine turning processes.  With it, it is easy to 

determine the machining conditions for stability 

operations. This type of analysis is considered a 

form of proactive chatter control for machine tools 

which ultimately results in better products, higher 

productivity and machine longevity.  

2.  Equation of vibratory motion of 

turning tool 

Fig.1a represents the turning of an external 

cylindrical surface. The workpiece at the rotational 

speed Ω in revolutions per minute of the spindle is 

clamped in a chuck while the tool is made to 

transverse it. The mechanical model in fig.1a 

represents an orthogonal turning process. In 

orthogonal cutting process, the cutting edge of the 
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tool is perpendicular to the feed motion. The modal 

parameters of the turning process are;  , mass of 

tool; +,  the equivalent viscous damping coefficient 

modelling the hysteretic damping of the tool 

system and !, the stiffness of the tool system.   

Regenerative waviness on the machined surface is 

shown magnified for emphasis. In this model a 

single degree of freedom vibration is assumed in . −direction (feed direction). The tool is fed into 

the workpiece at a speed 0. Response .(2) of the 

tool system is measured relative to the unloaded 

equilibrium position of tool (or tool holder axis).  

The response of the tool .(2) satisfies the equation 

of motion derived as follows; 
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The free body diagram for the tool system is fig.1b 

and gives the equation of motion at an arbitrary 

time of cutting, 2 as 

 .?(2) + +A.B (2) − 02C + !A.(2) − 02C + DE= 0                                   (1) 

Where DE is the .-component of cutting force.  DE 

could have the empirical form found in the works 

of Tlusty as reported by Stepan et.al. (2003);  

DE = -F4GH                                                      (2) 

where - is the cutting coefficient (a property of the 

workpiece material), F is the depth of cut, 4G is the 

actual feed rate and I is an exponent that has 

typical values 0.8 '9( 3 4K  (Stepan and Kalmar-

Nagy, 1997). The latter exponent spells the three-

quarter rule. Since uniform feed rate 4 is described 

as the prescribed movement of the tool cutting edge 

in  *2*&) L*& &*0;:<25;9 of the workpiece, the 

actual feed rate 4G could be defined as difference of 

present and one period delayed position of tool if 

discrete delay equal to period of revolution is 

adopted. Thus from fig. 1a it could be seen that 

4G = .(2) − .(2 − M)                               (3) 

Putting eq.s (1), (2) and (3) together gives  

 .?(2) + +A.B (2) − 02C + !A.(2) − 02C+ -FA.(2) − .(2 − M)CH= 0                                 (4) 

To make the derivation more compact the 

following notations are used; .(2) = . and (2 − M) = .N . The notation also applies to any 

subsequent variable that involves delay. Applying 

the notation and re-arranging, eq. (4) becomes  

 .? + +.B + !. = +0 + !02 − -F(. − .N)H    (5) 

Suppose the motion of the tool is assumed to be a 

linear superposition of prescribed feed motion 02, 

static transverse deflection of the tool system .O(2) 

and perturbation P(2) (Insperger, 2002).   In this 

work, perturbation is synonymous with 

regenerative vibrations. Then  

.(2) = 02 + .O(2) + P(2)                             (6) 

Straight-forwardly it goes that .O(2) = RSTUV
W   . 

Using this in eq. (6) gives eq. (5) as 

 P? + +PB + !P = -F(0M)H− -FA0M + (P − PN)CH     (7) 

Linearizing eq. (7) after being put in Taylor’s series 

about 0M results 

 P? + +PB + !P = −ℎF(P − PN)                  (8) 

Where ℎ = -I(0M)HRX is the specific force 

variation (Insperger, 2002). Eq. (8) becomes 

rearranged into the modal form to give 

P? + 2,$%PB + Y$%Z + ℎF [ P = ℎF PN          (9) 

Where the natural frequency and damping ratio are 

respectively given as $% = ] Ŵ  '9( , = _Z`^W . 

Eq. (9) is seen to represent a delayed oscillator. Eq. 

(9) is the general equation modelling the 

regenerative vibration of the tool in turning 

process. The nature of the solution of eq. (9) is a 

reflection of stability condition of an operating 

point. If the perturbation motion or its derivative 

rises with time, there is chatter instability while 

bounded response with time implies a stable 

operation.  

With the substitutions >X = P '9( >Z = PB made, 

eq. (9) could be put in state differential equation 

form 

a>BX>BZb = c 0 1− Y$%Z + ℎF [ −2,$%d e>X>Zf
+ c 0 0ℎF 0d e>X,N>Z,Nf         (10) 

Where >g,N = >g(2 − M) for  5 = 1 '9( 2. The time 

domain eq. (10) is the substance of stability 

characterization of turning process. Eq. (10) could 

be given in terms of dimensionless parameters Ωh  

and Fi  as 

a>BX>BZb = j 0 1−$%Z(1 + Fi) −2,$%k e>X>Zf
+ j 0 0Fi$%Z 0k e>X,N>Z,Nf   (11) 

Where  Ωh = lΩmnop and Fi = Tq^opr  . By solving 

eq.(11) numerically, time histories for stable and 

unstable turning together with their determining 

dimensionless parameters were calculated and 

presented in fig.2
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3. Stability analysis of turning 

Eq. (11) has the general form 

sB = ts + usN                                         
Where t = v 0 1− w$%Z + qT̂x −2,$%y
v 0 0qT̂ 0y . This is an autonomous delay

equation with discrete delay. A trial solution of 

form s(2) = z*{O (Stepan, 1998) put in eq

gives the equation 

|s = ts + us*R{N                            
The characteristic equation of the tool 

seen from eq. (13) to be  

}|~ − t − u*R{N} = 0                       
Upon simplification equation (14) becomes 

|Z + 2,$%| + $%Z + ℎF �1 − *R{N�
Expansion of the exponential term of eq

Maclaurin’s series shows that the characteristic 

equation has infinitely many solutions or 

values also called characteristic roots,

having the form | = � + 5$ . Eigen-values of the 
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           (12) 

y and =
. This is an autonomous delay-differential 

equation with discrete delay. A trial solution of 

put in eq. (12) 

       (13) 

The characteristic equation of the tool system is 

      (14) 

) becomes  

� = 0  (15) 

exponential term of eq. (15) in 

he characteristic 

equation has infinitely many solutions or eigen-

characteristic roots, with each 

values of the 

system migrate on the complex plane as the cutting 

parameters are varied.  All the roots must have 

negative real parts for the turning process to be 

stable; thus operation is critical whenever there 

exist roots on the imaginary axis.

turning operation could occur when a pair of 

complex conjugate characteristic roots crosses from 

the left-half plane to right-half plane of the 

complex plane. This occurrence is called the Hopf 

bifurcation of a corresponding non

(Insperger, 2002). The trivial solution to eqP(2) = �*{O Fℎ*&* �, | � -  (Stepan, 1998). 

any pair of complex conjugate roots 

exists a solution P(2) = �X*{�O + �
eq. (12) is linear. Since under bifurcation condition 

the critical characteristic roots are pure imaginary

this solution becomes 

P(2) = �X*goO + �Z*RgoO = -+;)(
where - = �(�X + �Z)Z − (�Xr
� = 2'9RX �g(��R�r)����r �. Thus $ is seen to be the 

frequency of the arising chatter vibrations. This

the bifurcation of Hopf type which has been proven 

experimentally by Shi and Tobias 

Insperger (2002)  and analytically by Stepan and 

Kalmar-Nagy (1997) to have subcritic

The stability boundary curves also called the D

curves or Stability lobes are drawn to separate the 

stable cutting domain (at which all �

                   71 

 
system migrate on the complex plane as the cutting 

All the roots must have 

negative real parts for the turning process to be 

thus operation is critical whenever there 

exist roots on the imaginary axis. Bifurcation in 

turning operation could occur when a pair of 

complex conjugate characteristic roots crosses from 

half plane of the 

This occurrence is called the Hopf 

rresponding non-linear system 

The trivial solution to eq. (12) is 

(Stepan, 1998).  For 

any pair of complex conjugate roots |X,Z there �Z*{rO being that 

(12) is linear. Since under bifurcation condition 

the critical characteristic roots are pure imaginary, 

($2 − �)   (16) 

( − �Z)Z and 

is seen to be the 

frequency of the arising chatter vibrations. This is 

the bifurcation of Hopf type which has been proven 

by Shi and Tobias as reported by 

analytically by Stepan and 

to have subcritical nature. 

The stability boundary curves also called the D-

curves or Stability lobes are drawn to separate the � � 0) from the 
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unstable one ( at which some � > 0). On the D-

curves are roots of the characteristic equation that 

are most critical; pure imaginary roots or zero. The 

D-curves could be tracked based on eq. (15) by 

making the substitution | = 5$. The two equations 

resulting are   

−$Z + $%Z + ℎF (1 − +;)$M) = 0           (17) 

2,$%$ + ℎF )59$M = 0                              (18) 

By method of D-subdivision (Insperger, 2002; 

Stepan, 1998)  eqs (17) and (18) could be solved to 

give expressions for critical combinations of 

cutting parameters of depth of cut F and spindle 

speed Ω  as follows; 

From eq. (18) results 

ℎF = −2,$%$)59$M   , $M ≠ !� 4;& ! = 0, 1, 2   (19) 

For positive depth of cut equation (19) gives the 

condition )59$M � 0. Eq. (19) put into (17) gives 

−$Z + $%Z − 2,$%$ (1 − +;)$M))59$M = 0    (20) 

Using the trigonometric relationship 
(XR_��oN)�g%oN =2'9 oNZ ,  equation (20) becomes 

−$Z + $%Z − 2,$%$2'9 $M2 = 0              (21) 

Since (1 − +;)$M) > 0 then 

2'9 $M2 = −$Z + $%Z2,$%$ � 0                        (22) 

It is implied from (19) and (22) that 
oNZ  lies in any 

of the intervals 

�2 (29 + 1) � $M2 � �(9 + 1)�2 (29 + 3) � $M2 � �(9 + 2)                  (23) 

Where 9 = 0, 1, 2, 3, 4, … … … ... From eq.(24), sign 

inversion gives 

−2'9 $M2 = $Z − $%Z2,$%$ > 0                        (24) 

 It could be seen from eq. (24) that it holds under 

the constraint 

0 � 2'9RX �$Z − $%Z2,$%$ � � �2
� � 2'9RX �$Z − $%Z2,$%$ � � 3�2

    (25) 

Then eq. (24) gives 

$M2 = �� − 2'9RX �$Z − $%Z2,$%$ � , �
= 1, 2, 3, …   (26) 

Therefore  

M = 2$ ��� − 2'9RX �$Z − $%Z2,$%$ ��   (27) 

Though positive depth of cut is assumed in arriving 

at eq. (27), the same result is achieved for negative 

depth of cut following a similar argument. 

Eq. (26) can be written as follows; 

)59$M = )592A�� − 2'9RX �$Z − $%Z2,$%$ �C 
The above equation can be simplified to 

)59$M = −2 Y$Z − $%Z2,$%$ [
Y$Z − $%Z2,$%$ [Z + 1 

It then follows from result of eq.(19) that 

ℎF = ,$%$
���
��Y$Z − $%Z2,$%$ [Z + 1

Y$Z − $%Z2,$%$ [ ���
��
 

This becomes re-arranged to give the expression 

for boundary depth of cut as 

F =  2ℎ �($Z − $%Z)Z + 4,Z$%Z$Z$Z − $%Z �  (28) 

Stability charts are most often given in terms of 

cutting parameters like spindle speed Ω and depth 

of cut F to give the range of technological 

parameters for non-chatter cutting. The pair of 

equations for stability analysis of turning thus 

becomes; 

Ω = 60M = 30$
�� − 2'9RX Y$Z − $%Z2,$%$ [    (29) 

F =  2ℎ �($Z − $%Z)Z + 4,Z$%Z$Z$Z − $%Z �    (30) 



           C.G. Ozoegwu, Sam Omenyi / Journal of Engineering and Applied Sciences 

JEAS   ISSN: 1119-8109 

 

Put in dimensionless form eqs. (29) and (30

become 

Ωh = �Ω30$%  
= �$

$% a�� − 2'9RX Y$Z − $%Z2,$%$ [b          

Fi = Fℎ $%Z = ($Z − $%Z)Z + 4,Z$%Z$2$%Z($Z − $%Z)
Where the dimensionless speed Ωh  is seen to be the

boundary frequency ratio of the tool since 

circular frequency of arising loss of stability 

vibrations. 

 

 

     ẅ = Dimensionless Depth of Cut
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Making use of the extended Routh

stability criteria for infinite dimensional system, 

one arrives at the result that, points 

curve will produce chatter while those below each 

curve will result in stable cutting. The stabili

chart of fig. 3 makes the work of an operator 

turning machine systematic since region

cutting are made clear, and choices can

made. Recalling that Ωh = Ω�nUp = Ωlmnopℎ = -I(0M)HRX and M = ZlopΩh , any point on the 

plane of dimensionless parameters (

chatter

Journal of Engineering and Applied Sciences 8(1)  (2012), 68-75  

(29) and (30) 

b           (31) 

$Z        (32) 

is seen to be the 

frequency ratio of the tool since $  is the 

loss of stability 

 

4. Results and Discussions 

The typical machine turning parameters had earlier 

been given as:  = 0.0431!"; $% = ��nn�G �¡_ '9(  
3.5 × 10�Nm���  a¢d v = 0.0025m/
2011). To generate the stability chart for the system 

assumed to have the parameters stated above, use 

was made of eqs (31) and (32), and the results 

shown in fig.3. 

Dimensionless Depth of Cut 

                                                     

                                                      → Dimensionless Spindle Speed,  Ὧ 

                                                                        

Making use of the extended Routh-Hurwitz 

nfinite dimensional system, 

 above each 

uce chatter while those below each 

The stability 

operator on a 

machine systematic since regions of stable 

choices can now be 

p, Fi = Tq^opr , 

, any point on the 

plane of dimensionless parameters (Ωh, Fi) 

becomes given as a point £mnopΩl
on the  Ω - F plane. For example the choice of a 

point (0.9, 0.3) on the Ωh −  Fi  plane

equivalent to the point (48988, 0.00067) on the 

- F plane is an asymptotically stable turni

operation for the system while the choice of 

operation (0.35, 0.4) on the Ωh −  
is equivalent to the point (19051, 0.0011

- F plane is an unstable one. This is confirmed by 

stable
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been given as:  , = 0.02;   - =
/sec (Ozoegwu, 

To generate the stability chart for the system 

assumed to have the parameters stated above, use 

was made of eqs (31) and (32), and the results are 

Ωh , ^opr Ti
SHY¤ r¥¦pΩh [V��§ 

For example the choice of a 

plane which  is 

the point (48988, 0.00067) on the Ω 

an asymptotically stable turning 

while the choice of  Fi  plane which 

19051, 0.0011) on the Ω 

This is confirmed by 
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the time histories of this system generated by 

solving eq. (10) at these points as shown on fig.

 

The forgoing means that a choice of spindle speed 

of 48988 rpm and depth of cut of 

represents a good cutting condition while that of 19051 rpm and depth of cut of 1.1 mm
one for the machine. It is instructive to note that 

relative to an unstable operation at spindle speed of 

32659rpm and depth of cut 0.00019757mm, there 

is a much more productive and economical (in 

terms of spindle power requirement) operation for 

spindle speed of 24494rpm and depth of cut 

5. Conclusion 

The first conclusion drawn in this work is

the extent to which achieving high productivity 

and high surface quality are considered 

opposed demands depends on the turning 

machine’s stability information at the disposal 

of the machinist. This conclusion is drawn for 

the relatively high speed region of the stability 

chart under the assumption that full

condition persists. The second conclusion 

drawn is that the turning machine has very low 

productivity at low spindle speed

requiring chatter stability enhancement through 

any means of chatter suppression.  

the stability chart, a machinist is able to choose 

machine turning parameters that will ensure 

stable operation. 
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generated by 

these points as shown on fig. 4.  

The forgoing means that a choice of spindle speed 

rpm and depth of cut of 0.67mm 

represents a good cutting condition while that of mm is a bad 

one for the machine. It is instructive to note that 

relative to an unstable operation at spindle speed of 

32659rpm and depth of cut 0.00019757mm, there 

is a much more productive and economical (in 

terms of spindle power requirement) operation for 

ndle speed of 24494rpm and depth of cut 

0.39806mm which are stable turning operations.  It 

must be pointed out that machine operation at such 

high speeds could become interrupted with loss of 

contact effects, limiting the practical application of 

stability chart of fig.3 at high speed domain of the 

chart. It can also be seen from the stability chart 

that the machine has very low productivity at low 

spindle speed requiring very small dept of cut for 

stable operation. For example at a spindle speed of 

2000rpm the maximum depth of cut for stable 

operation is about 0.25mm. This result points to the 

need of chatter stability enhancement for low speed 

range turning machine through any means of 

chatter suppression. 

conclusion drawn in this work is that 

the extent to which achieving high productivity 

and high surface quality are considered 

opposed demands depends on the turning 

machine’s stability information at the disposal 

conclusion is drawn for 

the relatively high speed region of the stability 

chart under the assumption that full-immersion 

condition persists. The second conclusion 

drawn is that the turning machine has very low 

productivity at low spindle speeds thus 

ring chatter stability enhancement through 

  By the use 

the stability chart, a machinist is able to choose 

machine turning parameters that will ensure 
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