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Abstract 

The Bragg-Williams equation is actually a form of van der Waal’s equation of gases presented in the form of an infinite 

Maclaurin’s series. The problem with such expressions is that discrepancies tend to arise during computations of an infinite 

series. To make computation easier and in addition obtain more accurate results, a closed form of Bragg-Williams equation 

was obtained using geometric progressions.  The comparison of the closed and open Bragg-Williams equations shows that 

the point at which the two equations agree increases with increase in the power of θ in the open expression. The increase in 

the dimensionless quantity, Pb/kT, with increase in powers of θ suggests that the pressure of the gas is increased since kT is 

constant at a given temperature. Increase in pressure means that the interaction energy of the gas represented by Pb is 

increased. By relating the number of particles to bosons and fermions, it is seen that this energy is less for bosons and more 

for fermions.  Thus, interaction energy between the fermions particles will be expected to be more than for the bosons in a 

given matter. Increase in pressure can guarantee increase in other thermodynamic quantities.               .  

Key words: Bragg-Williams, bosons, fermions, virial coefficient, van der Waals equation. 

_______________________________________________________________________________________________ 

 

1. Introduction. 

Elementary particles are atomic or sub-atomic particles 

that make up all kinds of matter (Goshal 2009). They are 

classified into two main groups, namely: bosons and 

fermions. In other words, bosons and fermions are found 

in all states of matter, viz: solids, liquids and gases.(Gupta 

1990) Fermions are constituents of matter while bosons 

are force carriers. Bosons are particles that transmit 

interactions or the constituents of radiation.(Leggett 2001, 

Dalfovo et al 1999) It can therefore be deduced that 

bosons are actually what is seen when light is emitted or 

when energy is exchanged. This means that there are 

actually particles in light and other forms of energy, for 

example, heat. Therefore, matter is really transferred in 

the course of every energy transmission (Lewenstein et al 

2007). Bosons can also be said to be quanta of energy and 

fermions quanta of mass. 

When two particles, say molecules are far apart, they 

move completely independently. Neither will feel the 

presence of the other. However, if they come close 

together, then the intermolecular forces get to work. They 

will attract one another. The magnitude  of the attraction 

depends on several factors. For example, the forces that  

hold helium atoms, or covalent substances like iodine 

together in a liquid or solid are called intermolecular 

forces. If the forces are between atoms rather than 

molecules, one can speak about interatomic forces. 

Another name given to these forces is van der Waal’s 

forces. For elementary particles such as bosons and 

fermions, the forces are referred to as interparticle forces. 

More precisely, they can be referred to as interbosonic 

and interfermionic forces, as the case may be. 

The attraction between the particles tends to bring them 

together. The outside of a molecule is really a layer of 

negatively charged electrons called the electron cloud. 

When molecules approach closely, the electron clouds 

repel each other. It is the great strength of the repulsion 

that puts a limit on how close the molecules can get. The 

separation of a positive and a negative charge produces 

what  is called a dipole. 

The force of attraction between two temporary dipoles is 

known as a London Force. Another name for it is 

dispersion force. London or Dispersion forces are just one 

type of intermolecular force. Recall that attraction means 

lowering of energy   and repulsion, increase in energy. 
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Fig 1 – Potential Energy curve for two particles (atoms  or molecules). 

In Fig 3.1, the energy diagram is displayed. Here, there is 

a minimum in the curve. This is when the attractive and 

repulsive forces balance each other. The particles are at 

their equilibrium distance apart. The normal equilibrium 

distance between molecules is about 200 to 800 

pectometers (pm).The shape of the curve gives an idea 

why it is difficult or sometimes impossible to liquefy 

gases at high temperatures.(Smith et al 2005). This is the 

reason why bosons and fermions, which are smaller than 

molecules can be liquefied at very low temperatures, to 

obtain the ultra cold conditions. The average speed of 

bosons and fermions at high temperature is usually high. 

If two particles hit each other at a great speed they tend to 

become squashed together. This is rather like two springs 

being pushed together. This brings them high up the 

repulsion part of the curve (Matthews 2004). Then, they 

fly apart and go off to make further collisions. At lower 

temperatures when the speeds are much lower, the force 

of the collisions can be very much less (Pillai, 2010). 

 The interaction of their electron clouds may take them 

only part of the way up the repulsion part of the curve. If 

they do not get too high, they will not spring apart. 

Rather, they will stick together and oscillate around their 

equilibrium position. 

Several kinds of force fields are at play between two 

particles as they undergo an encounter .The potential 

function for a given type of particle is a combination of 

the various components. 

  

 Assume a particular molecule of interest wanders 

through volume V and then collides with another 

molecule thus excluding a volume  
 

 
   

  .This volume 

should be divided by two because the excluded volume 

arises by the collision of two molecules and only 
 

 
 can be 

assigned  to one molecule . Therefore,  

   = V - Nb
 
where b = 

 

 
                                    (1) 

In the neighbourhood of a particular moving molecule 

between r = 0 and r =   , the density of other moving 

molecules will be zero. Between r =    and r =  it will 

be constant, N/V. If a random distribution  of molecules is 

assumed throughout the volume, the number of molecules 

(dN)  lying near a particular molecule in a spherical shell 

ranging between r and r + dr is 

  = 4       
 

 
                                                                                                            

i.e. volume of the shell  density.  

Where r     . 
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The potential energy of interaction between each of these 

and a central molecule at r = 0 is given by  

φ =         
4      

  

 
 
 

 
 

 
  =   

   

 
 N        (2) 

where    = 
 

 
     

   

2. van der Waals interaction 

The potential energy of interaction was obtained as in eq. 

(2) and from the application of thermodynamic principles, 

the pressure and hence van der Waals equation can be 

obtained in a series form.  By application of simple 

strategy, the Helmholtz function, F can be determined 

using the relation (Tien and Lennard 1971) 

 F = - kT lnZ, as 

  = -kT         
 

 
    

     

  
            

    

   
    (3)  

But, from Thermodynamics, the pressure is related to 

Helmholtz energy F, as  

P = -  
  

  
 

 
                                                                   (4) 

Differentiating  eq(31) with respect to V at  constant T, 

then 

P = -  
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Then Eq (5) becomes  
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Recast  
 

    
 into Maclaurin’s series: 

Let f( ) = 
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Since   = 
  

        
 for bosons Eq (6) becomes  
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For fermions, it becomes 

 

  
  =  

 

    
   

  

  
 

  

           
 
 

                                   (9) 

   
  

  
  in eq. (7) is the second virial coefficient. Thus, 

multiplying eq.(8) by b and putting     , the equation 

becomes  

  
  

  
         

  

  
          ……………..      (10) 

Equation (10) is known as the Bragg-Williams equation 

for gas model.  In computations, one does not know how 

far to go in the series.  This work therefore sought to 

obtain the Bragg-Williams equation in a closed form to 

facilitate computation. 

It is noted that at high temperatures, the approximation 

regarding the random distribution of molecules is quite 

good. Hence, the value of the second virial coefficient 

calculated from eq.(10) agrees quite well with the value 

for imperfect gases. In eq.(10), the terms after the second 

term can be represented as  

                     ………   (11) 

Where    is the sum of the geometrical progression      
       ,………………………………   . 

Here, the first term of the geometric progression is    and 

the common ratio is   (Kreyzig 1990; Stroud 1996), thus 

    
        

   
                                                          (12) 
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For such elementary particles as bosons and fermions, b is 

very small. Therefore, the term    is considered 

negligible, and recall that        , then eq.(10) becomes 

   
  

  
        

  

  
     

  

   
                    (13) 

However, if     is not negligible. eq, (10), becomes 

   
  

  
        

  

  
     

        

   
                     (14) 

This is the closed form of van der Waals equation 

obtained through modification of Bragg-Williams 

equation. 

3.  Prediction of pressure of gas 

The Bragg-Williams equation for a gas as given in eq. 

(10) gives the van der Waals equation in a dimensionless 

form; the equation can be used to predict the pressure in a 

gas.  This equation is not in a closed form and in 

computations one has to apply different powers of θ until 

the equation converges. 

Bragg-Williams equation was however brought to a 

closed form as given in eq.(13).  The highest power of θ 

in this equation is 3. With powers of θ denoted by n = α 

in eq.(10), equations (10) and (14) were plotted as shown 

in fig.1 as a function of   for various values of α. The 

term 
  

  
 in the equations mentioned above was calculated 

by assuming critical values (Omenyi 2011) for volume, V 

and temperature, T. For b =  
  

  
   and            

 

 
 
     

 
  

where    = Critical volume and      =  Critical 

temperature, the critical constants in terms of    and    

are:                    
  

    
      

  

          

 
  

  
                    

   

  
 

 

  
.  .  Thus, in eqs. (10) and 

(14),   
  

  
                 

  

 
. 

 

Fig. 2a  A plot of equations (10) and (14) for      
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Fig.2b A plot of equations (10) and (14) for           

 

Fig.2c  A plot of equations (10) and (14)         

A look at the graphs of fig. 2, show that the curves for the two equations are coincident up to a certain value of θ. The values 

of θ at which the two graphs begin to diverge and the corresponding values of Pb/kT were determined for various values of α 

and plotted in fig.3. 
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Fig.3a. Variation of θ with α 

 

 

Fig.3b. Variation of Pb/kT with α 

Figs.3a & b show that each of Pb/kT and θ is a 

monotonically increasing function of α.  Increase in α 

leads to an increase in the values of θ and also of Pb/kT at 

which the two curves are coincident. 

Note that     ,   
 

 
 =   = particle density, b = 

 

 
     so 

that   
 

 
    

 
. The values of N can be determined from  

N  =  
  

           
  for bosons and  N  =  

  

           
 for 

fermions (Steuerman, 2011). For the same volume V, 

then N for bosons is larger than N for fermions and hence 

θ at which the two curves diverge will be larger for 

bosons than for fermions.  It is then obvious from eqs. 

(10) and (14) that the pressure will be higher for fermions 

than for bosons for a given container volume. 
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It is clear that increase in θ is due to increase in number of 

gas molecules N since volume of container V is constant.  

With Vf = V – Nb one sees that Vf is decreased as α and 

hence θ are increased.    

The increase in the dimensionless quantity, Pb/kT, with 

increase in α suggests, as expected in view of eqs.(10) and 

(14), that the pressure of the gas is increased since kT is 

constant at a given temperature. Increase in pressure 

means that the interaction energy of the gas represented 

by Pb is increased. This energy is less for bosons and 

more for fermions.  Thus, interaction energy between the 

fermions particles will be expected to be more than for 

the bosons in a given matter. Increase in pressure can 

guarantee increase in other thermodynamic quantities and 

these, in view of the discussion above, will be more in 

fermions than in bosons. 

4.  Conclusion 

The Bragg-Williams equation is actually a form of van 

der Waal’s equation of gases presented in the form of an 

infinite Maclaurin’s series. The problem with such 

expressions is that discrepancies tend to arise during 

computations of an infinite series. To make computation 

easier and in addition obtain more accurate results, a 

closed form of Bragg-Williams equation was obtained 

using geometric progressions.  

This paper tried to point out the fact that working with a 

power series solution could be somewhat cumbersome, 

especially, when there is an alternative closed expression 

that could serve the same purpose and still give a good 

result. When the graphs were juxtaposed with each other, 

the two expressions agreed depending on the highest 

power in the series.  

In practice, certain of the constants in the expressions are 

not calculated from some assumed pair potential, but are 

used as adjustable parameters chosen to give best fit to 

the experimental data over some range of temperature and 

density. The results were applied to the analysis of 

elementary particles, bosons and fermions. 
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