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Abstract 

Elementary particles are atomic or sub-atomic particles that make up all kinds of matter. They are classified into two main groups, 

namely: bosons and fermions. In other words, bosons and fermions are found in all states of matter, viz: solids, liquids and gases. 

Fermions are constituents of matter while bosons are force carriers. Bosons are particles that transmit interactions or the constituents 

of radiation. In this work, the canonical ensemble partition functions were determined including the effects on intermolecular 

interactions. By using hydrogen, helium, bosons and fermions, the partition functions and the thermodynamic properties of internal 

energy, Helmholtz free energy and entropy were calculated.  The partition functions of all systems considered, hydrogen, helium, 

bosons and fermions were shown to increase  in the presence of intermolecular forces, the increase was more pronounced at increased 

temperatures in some cases.    It was also determined that while the internal energies for fermions and bosons decreased, Helmholtz 

free energies for the particles decreased with temperature. It was found that, at ultra cold condition of below about 200 K, the entropy 

of bosons is 1.15x10
-21

 J/K while that of the fermions is 0.435x 10
-21

 J/K.  This is understandable since the bosons condense at ultra 

cold conditions so their Entropy is lower. 
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__________________________________________________________________________________________________________ 

1.  Introduction 

In nature real particle gases do not obey the perfect gas 

equations. Some of these particles/gases are elementary in 

nature. They are elementary because they are a part of the  

make- up of every known substance as constituents of 

matter.They are grouped as Bosons and Fermions .The laws 

governing these particles are studied under the advanced 

aspect of Thermodynamics referred to as Statistical 

Thermodynamics. Statistical Thermodynamics is the study of 

the techniques used to  average the behavior of particles, so 

that by ignoring details of characteristics of  individual 

particles the gross effects of detail are discovered. Consider a 

low-density gas phase.  A gas filling volume V is composed of 

N similar molecules.  If the molecules are far enough apart, the 

forces between molecules are small compared to the forces 

within a molecule.  At first consideration, intermolecular 

forces are negligible.  This does not mean that the forces are 

completely non-existent; there must be occasional collisions 

between molecules so that the gas can come to equilibrium.  

Again, if the collisions are rare enough, the mean potential 

energy of interaction between molecules may be negligible 

compared to the mean kinetic energy of molecules (Morse, 

1969).  

Note here that the energy is conserved and so the total energy 

remains constant. At ultra cold conditions, the gases are dense 

and the average distance between molecules will be small.  In 

such situations, the potential energy of interaction cannot be 

considered negligible. 

In either case, the total energy of the system will be the sum of 

the separate energies εi of the individual molecules, each one 

depending only on its own quantum numbers as discussed in 

section 2.3. Eq.(2.26) can now be modified to include 

intermolecular interaction effect as 

zint =  zr zv ze zn z                                  (1)  

So that eq.(2.25) becomes  

              .                                  (2) 

Where     intermolecular (interparticle) partition function.   

JOURNAL OF ENGINEERING 
AND 

APPLIED SCIENCES 

mailto:ndukwe.okoro@gmail.com
mailto:sam.omenyi@unizik.edu.ng


                                                  Agha and Omenyi / Journal of Engineering and Applied Sciences 10  (2014)  88 – 98  89 
 
2. Methodology 

The partition functions are formulated both for the case where 

the intermolecular forces are considered absent and when they 

are considered present. 

2.1 Potential Energy of Interaction 

When two particles, say molecules are far apart, they move 

completely independently. Neither will feel the presence of the 

other. However, if they come close together, then the 

intermolecular forces get to work. They will attract one 

another. The magnitude  of the attraction depends on several 

factors (Matthews, 2004).  For example, the forces that  hold 

helium atoms, or covalent substances like iodine together in a 

liquid or solid are called intermolecular forces. If the forces 

are between atoms rather than molecules, one can speak about 

interatomic forces (Smith et al, 2005).  Another name given to 

these forces is van der Waal’s forces. For elementary particles 

such as bosons and fermions, the forces are referred to as 

interparticle forces. More precisely, they can be referred to as 

interbosonic and interfermionic forces, as the case may be. 

The attraction between the particles tends to bring them 

together. The outside of a molecule is really a layer of 

negatively charged electrons called the electron cloud (Biel 

and Mu-Jeong, 2009). When molecules approach closely, the 

electron clouds repel each other. It is the great strength of the 

 repulsion that puts a limit on how close the molecules can get. 

The separation of a positive and a negative charge produces 

what is called a dipole (Pillai, 2010). 

The force of attraction between two temporary dipoles is 

known as a London Force. Another name for it is dispersion 

force. London or Dispersion forces are just one type of 

intermolecular force. Recall that attraction means lowering of 

energy   and repulsion, increase in energy (Callaway, 1996). 

 

Fig 1 – Potential Energy curve for two particles (atoms  or molecules). 

In Fig 1, the energy diagram is displayed. Here, there is a 

minimum in the curve. This is when the attractive and 

repulsive forces balance each other. The particles are at their 

equilibrium distance apart. The normal equilibrium distance 

between molecules is about 200 to 800 pectometers (pm) 

(Smith, et al, 2005). The shape of the curve gives an idea why 

it is difficult or sometimes impossible to liquefy gases at high 

temperatures. This is the reason why bosons and fermions, 

which are smaller than molecules can be liquefied at very low 

temperatures, to obtain the ultra cold conditions. The average 

speed of bosons and fermions at high temperature is usually 

high (Tukerman, 2003). 

If two particles hit each other at a great speed they tend to 

become squashed together. This is rather like two springs 

being pushed together. This brings them high up the repulsion 

part of the curve. Then, they fly apart and go off to make 

further collisions. At lower temperatures when the speeds are 

much lower, the force of the collisions can be very much less. 

The interaction of their electron clouds may take them only 

part of the way up the repulsion part of the curve. If they do 

not get too high, they will not spring apart. Rather, they will 

stick together and oscillate around their equilibrium position. 

Considering an ensemble, if there are no forces acting between 

the molecules of the system, the canonical ensemble partition 

function, z is given by the expression (Tien and Lienhard, 

1971), 

Z = 
  

  
.                                                               (3) 

 where  z  =  
     

   

 

 
 V                   (4) 

However, the partition function, z pertains to a single molecule 

(monatomic) moving in a volume V which is potential free. 
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The gas molecules move in a field generated by all molecules 

and the molecular interactions can be described on pair wise 

basis as  

     =    , r      

        =       
  

 
 
 

 ,   r                    (5) 

_______________________________________________ 

The potential energy minimum occurs at  U =       at r =    

(Fig1). Replacing V in eq (3) with   , and introducing the

_______________________________________________ 

Boltzmann’s factor exp  
 

   
 , where   is the potential 

energy of interaction between any one molecule and all others 

of the system. The factor 
 

 
 is introduced because each pair 

interaction is to be shared between two molecules  in counting 

the total potential energy. Hence,  

  z =   
     

   

 

 
   exp  

 

   
 .                        (6) 

Z = 
 

  
   

     

   

  

 
  

  exp  
 

   
                   (7) 

Several kinds of force fields are at play between two particles 

as they undergo an encounter . The potential function for a 

given type of particle is a combination of the various 

components.  

As in eq. (7), assume a particular molecule of interest wanders 

through volume V and then collides with another molecule 

thus excluding a volume  
 

 
   

  (Fig.1). This volume should be 

divided by two because the excluded volume arises by the 

collision of two molecules and only 
 

 
 can be assigned  to one 

molecule . Therefore,  

   = V - Nb
 
  where b = 

 

 
                            (8) 

In the neighbourhood of a particular moving molecule 

between r = 0 and r =   , the density of other moving 

molecules will be zero. Between r =    and r =  it will be 

constant, N/V. If a random distribution  of molecules is 

assumed throughout the volume, the number of molecules 

(dN)  lying near a particular molecule in a spherical shell 

ranging between r and r + dr is 

  = 4       
 

 
                                                                                                            

i.e. volume of the shell  density.  

Where r     . 

The potential energy of interaction between each of these and 

a central molecule at r = 0 is given by  

φ =         
4      

  

 
 
 

 
 

 
  =   

   

 
 N              (9) 

where     
 

 
     

   

Applying the above equations into eq (7), gives the complete 

canonical ensemble partition function:  

    
 

  
  

     

   

  

 
  

     
   

 

   
               (10) 

Note that eq.( 10) is the partition function derived from 

potential energy of interaction and from it various 

thermodynamic properties can be evaluated . 

Note that while several authors recognize the importance of 

intermolecular interactions, the partition function for 

intermolecular interaction was not developed.  This work 

attempted the derivation of intermolecular partition functions 

from different potential models. 

2.2 Lenard-Jones Potential Energy 

An ideal gas is characterized by low molecular interactions. 

Real gases and other fluids are comprised of molecules that 

have not only the energy of individual molecules, but also 

energy that is shared among them because of intermolecular 

forces. This produces intermolecular potential energy, which 

is associated with collections of molecules, and is the form of 

energy that reflects the existence of such forces. Two 

molecules attract each  other when they are far apart and repel 

each other when they are close together. Intermolecular forces 

represent interactions among the charge distributions of 

neighbouring molecules. 

Fig.1 shows the intermolecular potential energy, U for an 

isolated pair of spherically symmetric neutral molecules for 

which U depends on the distance between the molecular 

centres, i.e. on the molecular separation, r. U is also a function 

of the relative orientations of the two molecules.  

This curve of fig. 1 best fits the Lenard-Jones Potential, 

     = 
 

     
 

                       (11) 

where       is the potential energy at a separation distance. A 

and B are constants. The intermolecular force, F is 

proportional to the r-derivative of U: 

      
        

  
                   (12) 

A positive F represents an intermolecular attraction. 

Molecules repel each other at small separations and attract 

each other at modest-to-large separations. The hard-core 

diameter, ‘d’ is a measure of the centre-to-centre distance for 

which U and hence F becomes infinite. The collision diameter, 

  is the separation for which U = 0. The equilibrium 

separation    is the separation for which U attains its minimum 

value of     . At r =   , the net intermolecular force is zero.   
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is the well depth. Typical ranges of values of    and   are    
 3 to 8         m and    0.1         J respectively. 

Commonly,    is about 10 to 15% greater than  . Thus, eq 

(3.24), the short range Lenard-Jones 12 / 6 pair potential 

function, is commonly stated as  

      = 4    
 

 
 
  

  
 

 
 
 

     (13) 

Stockmayer improved on the above equation by including the 

factor       which can be shown to be characteristic of a 

dipole-dipole interaction (Tien and Lienhard, 1971). 

      = 4    
 

 
 
  

  
 

 
 
 

  
  

      (14) 

This provides a semi-qualitative representation of the 

thermodynamic and transport properties for non-popular 

substances of relatively simple molecular structure.  

Note eq. (7) and recall that    the potential energy of 

interaction between any one molecule and all others of the 

system. Therefore,   can logically be replaced with       of 

eq.( 13) to get 

Z 
 

  
 
     

   
  

  

  
     

   

  
  

 

 
 
  

  
 

 
 
 

        (15) 

From this partition function, various thermodynamic 

properties for gases can be derived.   

2.3  van der Waals interaction forces 

Three distinct types of force contribute to what is now 

collectively known as van der Waals force (Deeney and 

O’Leary 2012) between two atoms or molecules; they are 

dispersion forces, orientation forces and induction forces. 

Dispersion forces, also known as London forces, charge 

fluctuation forces or electrodynamic forces, arise between 

totally non polar molecules such as helium, methane and 

carbon dioxide (Jungermann, 2006). These forces are 

electrostatic in origin which may be understood as follows:  

For a non polar atom the time average of its dipole moment is 

zero, yet at instant there exists a finite dipole moment given by 

the instantaneous positions of electrons about the nuclear 

protons (Isrealachvili, 1974).  This instantaneous dipole 

moment generates an electric field which polarizes a nearby 

atom, inducing in it a dipole moment.  The resulting 

interaction between the two dipoles gives rise to an 

instantaneous attractive force between the two neutral atoms. 

The dispersion free energy Udis of two atoms of polarizabilities 

α1 and α2 at a distance r apart is given approximately by 

London equation, 

      
 

 

     

     
 
    

       
    

    (16) 

Where h is Planck’s constant and           are the 

characteristic absorption frequencies of the atoms.  Orientation 

forces also known as Keesom forces or dipole-dipole forces 

arise between molecules which have permanent electric 

dipoles, and the resulting energy can be represented as 

        
    

      (17) 

The induction forces also known as Debye forces arise 

between polar and non polar molecules and the interaction 

energy can be represented by 

       
    

                    (18) 

The dispersion, orientation and induction energies give the 

total van der Waals energy between two atoms or molecules, 

as follows 

                       
    

   (19) 

Whereas there may be no orientation and induction forces 

between two molecules, dispersion forces are always present 

in which case, eq. (17) can suffice in calculations of van der 

Waals energy.  Thus, the interaction energy equation that 

should be used is 

   
 

 

     

     
 
    

                   (20) 

It is easier to use this expression in this form since gases are 

involved and the terms of this expression can easily be 

obtained.  Thus, the partition function can be written as in eq. 

(21) as   can logically be replaced with    

Zp  
 

  
 
     

   
  

  

  
     

 

   

     

     
 
    

       (21) 

Detailed analysis of eq. (21) especially for liquids and other 

condensed matter will resort to the theories of Hamaker and 

the equations of Lifshitz. For interaction in a single gas 

component,          and        . 

Knowledge of intermolecular interaction energies is essential 

for the understanding of the properties of gases, the strength 

and structure of molecular crystals and the magnitude of 

surface free energies of liquids. 

2.4  Interparticle interaction function 

r

mm1 2

 

                 Fig 2 Interparticle interaction  force . 
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Fig 2 is an arrangement of two interacting elementary 

particles. Their masses are m1 and m2  at a distance r apart.  

 We shall attempt, from quantum mechanics (Massignan, et 

al.,  2005).   formulate the interaction between two particles 

which can be described using a wave equation. Schroedinger 

had solved this problem, but we shall extend it from the van 

der Waals interactions. By extending the wave equation for 

classical fields to photons and generalizing to non-zero rest 

mass particles, and simplifying using approximations 

consistent with non-relativistic particles, the time independent 

Schroedinger equation for two interacting elementary particles 

has been derived (Tien and Lienhard, 1971, Ward and 

Volkner, 2008) as 

   
  

  
   

  

   
                                 (22) 

Which can be written as (Aruldhas, 2011) 

    
  

     
  

   
            (23) 

Since the potential is spherically symmetric, it is convenient to 

work in spherical polar co-ordinates  

r, , and    (                  ). Expressing 

eq(.23) in polar co-ordinates, the following expression is 

obtained: 
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where         
 

  

 

  
     

  
                                                                                  

and 
  

   
 was obtained from consideration of van der Waals 

interactions.  Eq. (25) can be expanded and put in the form 

 
 

  

 

  
     

  
  

  

     
        

     
  

   
         (25) 

Where            =    and  L= The orbital angular 

momentum of a particle and l = the quantum number.  

Rigorous analysis and solution of resulting equation gives 

(Bajpai et al, 1982) an asymptotic equation interacting 

particles of similar and equal, masses,           The 

resulting potential is 

  
    

                                                                                                          

          
     

                                                            (26) 

The partition function is defined by the expression . 

:                
     

               
     

          
    

             
        

                
     

            

                                                    
      

            

which is an infinite series with first term, a=1 and common 

ratio,           
    

          therefore, 

    
 

   
 

 

        
    

    
     

       

              
    

          
  

            (27) 

   is the inter-particle partition function of the system of 

interacting particles and Z is given by eq. (3), and the overall 

interaction function, Znew is given by the product of equations  

(10), (15), (21), (27).   

2.5 Thermodynamic considerations 

It was reported that it is the translational partition function that 

is most affected by intermolecular interactions.  In the absence 

of intermolecular interactions, the ideal gas condition is 

obtained.  In reality, there is no ideal gas condition; some 

intermolecular forces do exist, the difference lies in the order 

of magnitude. 

In the absence of intermolecular forces, eq. (4) gives the 

translational partition function so that the various 

thermodynamic properties can be determined using the 

expression for Znew. 

From Statistical thermodynamics, various thermodynamic 

functions can be determined using the above expressions. 

Hence, 

                   
    

  
 
 

 ,          (28a) 

                      
    

  
 
 

  ,       (28b) 

                  
 

  
        

  
 
 

          (28c) 

and Helmholtz Free energy function,  

                                                   (28d)          

3. Results and discussion                                                   

3.1  Intermolecular Partition Functions  

3.1.1 Canonical ensemble 

The operational partition function including intermolecular 

interaction is designated as Znew but when only the 

translational partition function is considered, the operating 

equation is designated as Zold.    

Making use of data of table 1, figs 3 to 5 were plotted for the 

partition function, i.e. for eqs. (3)  and (4) and the 

superimposed overall partition function modified for the effect 

of intermolecular interactions. These plots show the overall 
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partition function with and without effects of intermolecular 

interaction forces, being compared with each other. It can be 

observed that at extremely low temperatures (between 10 K 

and 300 K) the overall partition function (Zold) for Hydrogen is 

reduced by intermolecular interactions (Znew) as seen in fig.3 

by about 11% at 200 K. This difference increases moderately 

as temperature increases. As the temperatures go up to about 

4,000k (Fig.4) the differences between the partition functions 

also increase and at about 7000 K, the intermolecular effect 

becomes more pronounced as shown in Fig.5. This may be 

explained by the fact that gas, at high temperature, increases in 

its mean velocity and collisions among the gas molecules and  

with container walls increase leading to higher pressure. 

 

Table 1. Table of properties  (Israelachvili, 1974, Gupta, 1990) 

Property He Ne H2 C0 N2 

Polarizability,    (10
-24 

cm
3
) 

   

0.79 

 

1.95 

 

1.76 

Absorption frequency    (10
15

 s
-1

) 

   

3.73 

 

3.39 

 

3.77 

Dipole moment, md (3.336x10
-20

 cm) 

   

0 

 

0112 

 

0 

Constants in Lennard-Jones 

potential: 

 /k, 
o
K 

      

 

 

 

10.8 

2.57 

 

 

 

35.8 

2.75 

 

 

 

36.7 

2.96 

 

 

 

100.2 

3.76 

 

 

 

95.1 

3.70 

                                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

Element Particle mass    ( kg) wan der Waals radius (m) 

Hydrogen 1.67        0.37        

Helium 6.65        0.32        

Argon 6.6        0.97        

Iodine 4.22        1.33        

Proton 1.67495 x 10
-27 

 

Electron 1.67265 x 10
-27

  

Neutron 1.66057 x 10
-27

  

 

 

 

Boltzmann constant, k = 1.38x10
-23

 J 

Planck’s constant, h = 6.626 x 10
-34

 J s 

Avogadro’s number, No = 6.022 x 10
-23 

mol
-1 
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Fig. 3- Partition Function of interacting Hydrogen atoms at 

low temperatures. 

 

 

Fig.4 Partition Function of interacting Hydrogen atoms 

showing that the old and new Partition functions are virtually 

equal between 100 and 4,000 K. 

 

 

 

Fig.5 Partition Function of interacting Hydrogen atoms from  

 low temperatures to very high temperatures.. 

 

 

 

 

Fig. 6-Partition function of Helium at Ultra-cold  

conditions, 10-70K.  

Just as in the case of Hydrogen, it can be observed that for 

Helium, the partition function with intermolecular forces 

(Znew) included is smaller by about 20% at 30 K. The  

Difference is about 25% at 60 K. At this ultra cold region,  

Molecular collision activity will be much reduced.

 

3.1.2  Grand Canonical Ensemble  

The consideration of the bosons and fermions is through the 

number N of each elementary particle as it appears in the 

equations for the partition functions.  Appropriate expressions 

for the bosons and the fermions (Tukerman, 2003) given in 

eqs. (29) and (30) respectively, were used: 
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    (30) 
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Fig.7 Partition Function of Bosons (Old and New)  

at temperatures 10-300K   

 

 

Fig,8-Graphs comparing the two partition functions, 

old and new(for fermions) with each other at 

temperatures 10K-5000K. 

 

Fig. 7 and fig. 8 give the partition functions of the bosons and 

fermions as a function of temperature. At very low 

temperature (ultracold conditions) the graphs of the partition 

functions appear to agree but as the temperature increases, 

differences are observed and as before, with the effect of inter 

molecular interactions becoming more pronounced. For the 

fermions (fig. 8), it can be observed that differences begin to 

occur at about 2500K, where the intermolecular effect is seen 

to become more pronounced. In fig. 7 for the bosons, the 

difference is not very pronounced at the temperature limit 

considered.  The effect is expected to become pronounced as 

the temperature increases further. 

 

3.2 Thermodynamic properties 

3.2.1 Canonical Ensemble 

The thermodynamic relations will also obviously be affected 

by the intermolecular interaction forces of the elementary 

particles. It is bosons that condense at ultra-cold temperature 

and their thermodynamic relations are highly affected by the 

intermolecular interaction forces.  

 

 

Fig.9- Internal energy of Canonical ensembles using the old 

and  new Z's for hydrogen  at temperatures 10-300K.  

 

Since the partition functions were affected by intermolecular 

forces, it is expected that the thermodynamic relations of 

elementary particles would also be affected by their 

intermolecular interaction forces. In fig. 9, the wide 

difference between the internal energies shows that 

interparticle interaction affects the internal energies strongly.  

For Hydrogen, the internal energy with intermolecular 

effects considered is higher than the internal energy in the 

absence of intermolecular interactions by up to a factor of 7, 

with the internal energy variation increasing with increase in 

temperature. As explained before, higher temperature will 

witness increased molecular activities. 

 

Fig.10 Helmholtz Free Energy of Canonical Ensembles  

at temperatures 10-350K  for Hydrogen atoms. 
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The Helmholtz free energy (H) for hydrogen (fig.10) when 

intermolecular forces are considered is by a factor of 2.4 higher 

than in the absence of intermolecular interaction. The striking 

thing here is that, at ultra-cold conditions, H increases with 

decrease in temperature. 

 

 

Fig. 11.  Entropies of Canonical Ensembles using 

hydrogen   

 

Both Entropies appear to be equal at all temperatures below 

5,000 K for Hydrogen (fig. 11). This means that 

Intermolecular interaction effect is minimal in temperature 

range considered. At ultra-cold conditions, entropy increase is 

dramatic with increase in temperature because of increasing 

molecular activity with increase in temperature. However, 

beyond a temperature of about 1000K, there is a gradual 

reduction in entropy change probably due to attainment of 

steady state condition in molecular activity at higher 

temperatures. Note that entropy gives idea of quantity of heat 

involved (Saha, et. al., 2009).   

  

3.2.2 Grand Canonical Ensemble 

 

 

 

Fig.12. Helmholtz Free Energy of Bosons at 

temperatures 10-300K    

 

From fig. 12, the free energy extracted from system of 

particles comprised of bosons when estimated with the 

intermolecular effects is higher than that obtained without 

intermolecular interactions. The heat at ultra cold conditions 

appears to be higher, decreasing with increase in temperature.   

 

 

Fig 13.  Helmholtz Free Energy of Bosons at 10K-

5000K 

 

 

Fig 14. Internal Energy of Bosons at 10-300K.   
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Fig.15 The internal energies of fermions between 10 

and 300 K. 

 

The internal energy obtained from the partition function with 

intermolecular interactions can be seen in broken lines. Large 

difference is observed in the internal energies, showing 

profound effects of intermolecular interactions (Christian,. 

2004).   

 

 

Fig.16 Helmholtz Free Energy, F for fermions   

The Helmholtz Free Energy of Fermions calculated (fig. 16) using 

the partition function with intermolecular forces present can be 

seen to be higher than the values derived in the absence of 

intermolecular forces. One also infers that the molecular 

interaction forces in Fermions increase their Helmholtz Free 

Energy.     

 

The Internal Energy, U of Fermions calculated (fig. 17) using the 

partition function  with intermolecular interactions included can 

be seen to be higher than the values derived in the absence of 

intermolecular interactions.  The internal energies, including 

intermolecular effects are glaringly higher, up to a factor of about 

6. The inclusion of intermolecular forces undoubtedly has a 

profound effect on the internal energy. All the considerations 

above show that while the internal energy increases with 

temperature, the Helmholtz free energy decreases for both 

systems.  This is expected from the first law of thermodynamics. 

From the fact that F = U – TS, entropy S was calculated at T = 

200 K to be 0.435x10
-21

 J/K for the fermions and 1.15x10
-21

 J/K 

for bosons. 

 

Fig 17 Internal Energies of Fermions at 10-5000K     

Conclusion  

The partition functions with intermolecular interactions 

included have been derived. Computations using hydrogen 

and helium and with bosons and fermions were made. The 

results show that the partition functions are generally higher 

when intermolecular interactions are included.  These values 

are not very pronounced at ultra cold conditions (< 50 K).  It 

was observed that from ultracold temperatures to about 

1000K, the partition function is generally higher when 

intermolecular forces are included. The changes in the 

partition functions increase with increase in temperature. From 

1010K to about 4000K the two partition functions are equal. 

Hence, in computations of partition functions, intermolecular 

forces should not be neglected.    

Bosons condense at ultra cold temperatures and fermions 

condense at very high temperatures (from about 4000K 

upwards).  The partition functions of bosons and fermions 

generally increased with increase in temperature. So, 

generally, intermolecular interactions affect the overall 

partition function of bosons and fermions.  

The thermodynamic functions of enthalpy, internal energy and 

entropy were also determined for the systems studied. It was 

found that, while the energies and partition functions of 

fermions increased with temperature, Helmholtz energies of 

both bosons and fermions decreased with temperature. It was 

also seen that the internal energies of both particles increased 

with temperature. Computations at a temperature of 200 K 

showed that the entropy of the bosoms was 1.15x10
-21

 J/K 

while that of the fermions was 0.435x10
-21

 J/K. This is 

understandable since the bosons condense at ultra cold 

conditions. Thus, the thermodynamics of elementary particles 

is affected both at low and at extreme temperatures by 

intermolecular interaction forces.  

0 

20000 

40000 

60000 

80000 

100000 

120000 

0 100 200 300 400 

In
te

rn
al

 E
n

er
gy

, U
 (

X
1

0
ˉ2

4
) 

Temperature, K 

Uold for fermions Unew for fermions 

-1.5E+05 

-1.0E+05 

-5.0E+04 

0.0E+00 

5.0E+04 

1.0E+05 

1.5E+05 

0 100 200 300 400 

H
e

lm
h

o
lt

z 
Fr

e
e

 E
n

e
rg

y,
 F

 (
X

 1
0
²4)

 

Temperature, K 

Fold for fermions Fnew for fermions 

0 

50000 

100000 

150000 

200000 

0 2000 4000 6000 

In
te

rn
al

 E
n

er
gy

, U
(X

 1
0

-2
4
) 

Temperature,K 

Uold for fermions Unew for fermions 



98                          Agha and Omenyi / Journal of Engineering and Applied Sciences 10  (2014)  88 – 98 
 
References 

Annett, James F. (2004). Superconductivity, Superfluids and 

Condensates. New York: Oxford University Press. ISBN 0-

19-850755-0 

 

Aruldhas, G,(2011).  Quantum Mechanics, 2nd Edition, PHI 

Learning Private Ltd, New Delhi , India 

 

Atkins, P.and Julio D. (2006). Physical Chemistry, 8th ed.. 

Oxford University Press. ISBN 0-19-870072-5 

 

Bajpai, et al(1982) Mathematics for Engineers and Scientists, 

Volume 2, John Wiley and Sons, Chichester, New York, 

Bisbane and Toronto, 1982 

 

Brown, A (2010). Some notes on the ideal Fermion 

gas. brown@strw.leidenuniv.nl 
 

Callen, Herbert, B (2001). Thermodynamics and an 

Introduction to Thermostatistics, 2nd Ed.. John Wiley and 

Sons. ISBN 0-471-86256-8 
 

Christian, L.F. (2004).Determining the Unification Energies of 

Fermions in zero space. Journal of  Theoretics Vol 6-3.   

 

Deeney and O’Leary (2012). A van der Waals equation of 

state for a dilute boson gas. European Journal of 

Physics.33677.doi:10.1088/0143-0807/33/3/677. 

 

Feynman, R.P. (2006) QED: The Strange Theory of Light and 

Matter. Princeton University Press. ISBN 0-691-12575-9. 

 

Goshal, S.N, Nuclear Physics 1st Edition,S. Chand and 

Company Ltd,New Delhi, India, Reprinted 2009. 

Gupta, M . C., Statistical Thermodynamics John Wiley and 

Sons, New York, 1990. 

Israelachvili, J.N. (1974). Van der Waals Forces. 
Department of Neurobiology. Institute of Advanced 
Studies at the Australian National University, Canberra 
 

 

Jungermann, A.H. (2006). "Entropy and the Shelf Model: A 

Quantum Physical Approach to a Physical Property". Journal 

of Chemical Education 83 (11): 1686–1694. Bibcode 

2006JChEd.83.1686J. DOI:10.1021/ed083p1686. 

Massignan et al (2005). Strongly correlated quantum fields. 

Retrieved from New Journal of Physics website  

http//www.njp.org/doi:10.10088/1367-2360/14/11/115009 on 

M\arch 04, 2015.: 

 

Mattews, P, Advanced Chemistry, Cambridge Low Price 

Edition, Cambridge University Press, Cambridge, U.K., 2004.  

Morse, P.M, Thermal Physics, W. A Benjamin Inc, New 

York, 1969. 

Pillai, S.O., Solid State Physics, New Revised 6th Edition, 

New Age International Publishers, New Delhi, India, 2010. 

Saha, Arnab; Lahiri, Sourabh; Jayannavar, A. M; 2009, 

Entropy production theorems and some consequences," 

Physical Review E; The American Physical Society:    pp. 1–

10 
 

Smith, J.M., Van Ness,H.C, and Abott M.M.(2005) 

Introduction to Chemical Thermodynamics. 7th Edition 

McGraw Hill International Edition.  

Tien and Lienhard, J.H.(1971) Statistical Thermodynamics, 

1st Edition,Holt, Rinehart and Winston. 

Tien C.L.Lienhard, J.H.(1971) Statistical Thermodynamics, 

1st Edition,Holt, Rinehart and Winston,  

Tukerman, M. (2003), January 4). The General Formulation 

for Fermions. Retrieved from New York University Website: 

http://www.nyu.edu/classes/tukerman/stat.mech\ 

 

Zee, A. (2003). Quantum Field Theory in a Nutshell. 

Princeton University Press. ISBN 0-691-01019-6. 

Ward David W. and Volkner Sabine (2008). How to derive the 

Schrodinger equation, Am. J. Physics, iv. 1 – 1

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-19-850755-0
http://en.wikipedia.org/wiki/Special:BookSources/0-19-850755-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-19-870072-5
mailto:brown@strw.leidenuniv.nl
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-471-86256-8
http://en.wikipedia.org/wiki/QED:_The_Strange_Theory_of_Light_and_Matter
http://en.wikipedia.org/wiki/QED:_The_Strange_Theory_of_Light_and_Matter
http://en.wikipedia.org/wiki/Princeton_University_Press
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-691-12575-9
http://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/2006JChEd..83.1686J
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1021%2Fed083p1686
http://link.aps.org/doi/10.1103/PhysRevE.80.011117
http://link.aps.org/doi/10.1103/PhysRevE.80.011117
http://link.aps.org/doi/10.1103/PhysRevE.80.011117
http://www.nyu.edu/classes/tukerman/stat.mech/
http://en.wikipedia.org/wiki/Anthony_Zee
http://en.wikipedia.org/wiki/Princeton_University_Press
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-691-01019-6

