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Abstract 

In this paper, the derivation of orthogonal polynomial displacement functions 

based on static deflection profiles for rectangular plates with various boundary 

conditions was carried out. The completeness characteristics for appropriate shape 

functions were taken into consideration; and the derived polynomial shape 

functions satisfied the homogeneous boundary conditions. Furthermore, the 

efficacy of the derived polynomial shape functions in dynamic analysis of 

rectangular plates was determined by using the derived polynomial shape 

functions to determine the fundamental frequencies of rectangular plate with 

various boundary conditions in Ritz method. The numerical values for the 

fundamental frequencies of rectangular plates as computed were compared with 

the results from previous work in literature; and it was discovered that 76.19% of 

the boundary conditions of rectangular plates showed good convergence to results 

in literature. Equally observed, the set of boundary conditions containing two or 

more free edges conditions exhibited poor convergence to exact results. 

Nonetheless, the mean percentage difference between the present study’s results 

and those results from the previous work in literature is 12.581, which in view of 

statistical interpretation is in close agreement with results in literature.     
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a length of rectangular plate 

b width of rectangular plate 

t thickness of plate 

E Young modulus 

ρ mass density of plate materials 

µ Poisson’s ratio 

D flexural rigidity 

M mass per unit area of the plate 

𝑤(∙,∙)     polynomial displacement function 

𝑤′(∙,∙)    first derivative with coordinate axis 

𝑤′′(∙,∙)    second derivative 

𝑤′′′(∙,∙)   third derivative 
 

1.0 Introduction 
Rectangular plates, in their engineering applications, are characterized with edge constraints; 

and altogether, there are twenty one simple combinations from principal edge constraints 

(i.e. clamped edge, simply supported edge and free edge), which are identified for 

rectangular plates. But unfortunately, closed –form solutions to all the boundary conditions 

of rectangular plates are possible only but for a few cases. Consequent upon, many 

researchers on rectangular plate problems resort to the use of numerical and approximation 

techniques in their investigations. The approximation techniques which are popular among 

researchers are the Rayleigh-Ritz method, Galerkin method, the energy method in Hamilton 

principle, improved Kantorovich method and the like. 

However in approximation techniques, most of the mathematical models formulated require 

that characteristic shape functions (displacement functions) are to be substituted into the 

derived equations; from which their solutions are expected to approximate exact solutions. 

Thus, the efficacy of a given set of shape functions is desirous to yield results that are in 

good agreement with exact results. Consequently, many investigators used to employ 

different shape functions in bid to seek for most appropriate displacement functions that can 

yield excellent results that are comparable with exact results. For instance, Leissa (1969); 

Leissa and Qatu (2011) and Birman (2011), in their individual texts, used trigonometric 

functions in Fourier series to solve free vibration problems of rectangular plates in Ritz 

method. Other investigators who applied trigonometric functions as shape functions in their 

individual investigations into dynamical problems of rectangular plates are Mindlin et al. 

(1951), Johnson and Bauld (1968), Cheung et al. (1998), Janevski (2002), Shimpi (2002), 

Shooshtari amd Khadem (2007), Hao et al. (2011), Nefovska-Danilovié and Petronijevié 

(2014), Saheb and Rao (2014), and Mamandi et al. (2015).  On the other hand, Reddy (2007) 

used polynomial displacement functions as shape functions to determine flexural natural 

frequencies of rectangular plate with various boundary conditions in Ritz method. But the 

author did not give any method on how to derive the selected polynomial displacements he 

used; and therefore such application lacked in academic systematization. However, Ezeh et 

al. (2013) used Taylor series to generate polynomial displacement functions for dynamic 

analysis of isotropic SSSS plate in Galerkin method. 

Commonly observed from the previous works reviewed herein, 88.24% of them used 

trigonometric functions as shape functions. Probably the urge to adopt trigonometric 
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Figure 1: A Rectangular Plate with Arbitrary Edge Constraints, showing 

Coordinate Dimensions a and b.  

y 

functions as shape functions is informed by the fact that trigonometric functions have the 

advantage of being continuous in their derivatives. Nevertheless, the application of 

trigonometric functions as displacement functions has some shortcomings in dynamic 

analysis of rectangular plates, especially in nonlinear dynamic analysis. Due to orthogonality 

properties of trigonometric functions, only but a few cases of nonlinear vibrations of thin 

rectangular plates could be successfully solved by using trigonometric functions as shape 

functions. Moreover from the previous works reviewed herein, the application of polynomial 

displacement functions has not been adequately explored in dynamic analysis of rectangular 

plates based on energy methods. Anyway, polynomial displacement functions are popular in 

finite element and finite difference analyses. Notwithstanding with their unpopularity as 

shape functions in energy methods, polynomial displacement functions are very easy to 

handle with respect to differentiation and integration. Therefore, the present work wants to 

fill the identified gaps herein with the objectives to derive the appropriate orthogonal 

polynomial displacement functions based on static deflection profiles for the twenty-one 

boundary conditions of rectangular plates; and to assess the effectiveness of orthogonal 

polynomial displacements as shape functions by applying the derived orthogonal polynomial 

displacement functions in evaluating the fundamental frequency for each of the rectangular 

plates.   
 

2.0 Polynomial Displacement Functions 

A rectangular plate (Figure 1) can be idealized as a system consisting of series of 

orthogonal beam network; and the deflection configuration of the plate is assumed to be a 

composition of series of orthogonal beam deflection configurations. Equally, it is assumed 

that each beam element running along any coordinate direction is a good representative of 

other series of beams that run along the same direction. 
 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Furthermore, a rectangular plate (Figure 1) is constrained at each edge either as clamped 

edge, or simply supported edge or free edge; and a minimum of two homogeneous boundary 

conditions must be satisfied on each edge. For instance, for clamped edge, the boundary 

conditions are: 

𝑤(∙,∙) = 𝑤′(∙,∙) = 0                                                                                                        (1)    
And for simply supported edge, the boundary conditions are: 
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𝑤(∙,∙) = 𝑤′′(∙,∙) = 0                                                                                                      (2)   
And for free edge, the boundary conditions are: 

𝑤′(∙,∙) = 𝑤′′(∙,∙) = 𝑤′′′(∙,∙) = 0                                                                                (3)    
 

Suppose in Figure 1, the edge (1) is clamped; the edge (2) is simply supported; the edge (3) 

is free and the edge (4) is simply supported; then the boundary conditions for the plate are 

thus: 

𝑤(0, 𝑦) = 𝑤′(0, 𝑦) = 0                                                                                               (4)   
𝑤′′(𝑎, 𝑦) = 𝑤′′′(𝑎, 𝑦) = 0                                                                                          (5)    
𝑤(𝑥, 0) = 𝑤′′(𝑥, 0) = 0                                                                                              (6)    
𝑤(𝑥, 𝑏) = 𝑤′′(𝑥, 𝑏) = 0                                                                                              (7) 
Let us define the five-term polynomial deflection configurations in x- and y-directions 

respectively as: 

𝑤(𝑥) = ∑ 𝑐𝑖𝑥𝑖

4

𝑖=0

                                                                                                             (8)  

𝑤(𝑦) = ∑ 𝑑𝑗𝑦𝑗

4

𝑗=0

                                                                                                           (9)  

Where 
𝑐𝑖 𝑎𝑛𝑑 𝑑𝑗  are undetermined coefficients 

By applying boundary conditions of Equations (4) and (5) on Equation (8), the deflection 

function that is complete in nature is: 

𝑤(𝑥) = 𝑐4 ∗ 𝑎4 [6 (
𝑥

𝑎
)

2

− 4 (
𝑥

𝑎
)

3

+ (
𝑥

𝑎
)

4

]                                                          (10) 

Then for series of beams running in the same direction, we have: 

𝑤(𝑥) = 𝑐4 ∗ 𝑎4 [6 (
𝑥

𝑎
)

𝑚+1

− 4 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

]                                          (11) 

for m = 1,2,3, ⋯ 
Similarly, by applying boundary conditions of Equations (6) and (7) on Equation (9), the 

deflection function that is complete in nature is: 

𝑤(𝑦) = 𝑑4 ∗ 𝑏4 [(
𝑦

𝑏
) − 2 (

𝑦

𝑏
)

3

+ (
𝑦

𝑏
)

4

]                                                              (12) 

Then for series of beams running in the same direction, we have: 

𝑤(𝑦) = 𝑑4 ∗ 𝑏4 [(
𝑦

𝑏
)

𝑛

− 2 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

]                                                  (13)    

for n = 1,2,3, ⋯ 
Thus, the orthogonal polynomial displacement functions for CSFS rectangular plate based 

on static deflection configuration are: 

𝑤(𝑥, 𝑦) = 𝐴𝑚𝑛 [6 (
𝑥

𝑎
)

𝑚+1

− 4 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [(
𝑦

𝑏
)

𝑛

− 2 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

]                                                                                    (14) 
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Where Amn is the amplitude of deflection, defined as expressed in Equation (15): 
 

𝐴𝑚𝑛 = (𝑐4 ∗ 𝑎4) ∗ (𝑑4 ∗ 𝑏4)                                                                                 (15) 
 

Moreover, suppose in Figure 1, the edge (1) is clamped; the edge (2) is free; the edge (3) is 

clamped and the edge (4) is free, then the associated boundary conditions for the plate are: 

𝑤(0, 𝑦) = 𝑤′(0, 𝑦) = 0                                                                                        (16) 
𝑤(𝑎, 𝑦) = 𝑤′(𝑎, 𝑦) = 0                                                                                        (17) 
𝑤′′(𝑥, 0) = 𝑤′′′(𝑥, 0) = 0                                                                                   (18) 
𝑤′(𝑥, 𝑏) = 𝑤′′′(𝑥, 𝑏) = 0                                                                                    (19) 
Then the five-term polynomial deflection configurations in x- and y-directions are defined 

respectively as: 

𝑤(𝑥) = ∑ 𝑐𝑖𝑥𝑖

4

𝑖=0

                                                                                                     (20) 

𝑤(𝑦) = ∑ 𝑑𝑗𝑦𝑗

5

𝑗=1

                                                                                                   (21) 

By applying the boundary conditions of Equations (16) and (17) on Equation (20), the 

deflection function that is complete in nature is: 

𝑤(𝑥) = 𝑐4 ∗ 𝑎4 [(
𝑥

𝑎
)

2

− 2 (
𝑥

𝑎
)

3

+ (
𝑥

𝑎
)

4

]                                                        (22) 

Then for series of beams running in the same direction, we have: 

𝑤(𝑥) = 𝑐4 ∗ 𝑎4 [(
𝑥

𝑎
)

𝑚+1

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

]                                       (23) 

for m = 1,2,3, ⋯ 
Similarly, by applying the boundary conditions of Equations (18) and (19) on Equation (21), 

the deflection function that is complete is: 

𝑤(𝑦) = 𝑑5 ∗ 𝑏5 [5 (
𝑦

𝑏
) −

5

2
(

𝑦

𝑏
)

4

+ (
𝑦

𝑏
)

5

]                                                     (24) 

Then for series of beams running in the same direction, we have: 

𝑤(𝑦) = 𝑑5 ∗ 𝑏5 [5 (
𝑦

𝑏
)

𝑛

−
5

2
(

𝑦

𝑏
)

𝑛+3

+ (
𝑦

𝑏
)

𝑛+4

]                                         (25) 

for n = 1,2,3, ⋯ 
Thus, the orthogonal polynomial displacement functions for CFCF rectangular plate based 

on static deflection configuration are: 

𝑤(𝑥, 𝑦) = 𝐴𝑚𝑛 [(
𝑥

𝑎
)

𝑚+1

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [5 (
𝑦

𝑏
)

𝑛

−
5

2
(

𝑦

𝑏
)

𝑛+3

+ (
𝑦

𝑏
)

𝑛+4

]                                                                               (26) 

Where 

𝐴𝑚𝑛 = (𝑐4 ∗ 𝑎4) ∗ (𝑑5 ∗ 𝑏5)                                                                            (27) 
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Thus procedurally, the orthogonal polynomial displacement functions, w(x,y) for twenty-

one known boundary conditions of rectangular plates were derived and presented in Table 

A.1 of Appendix A. 

 

 

3.0  Variational Functional in Ritz Method 
Under free vibrations, the linear equation of equilibrium of motion for thin, isotropic and 

homogeneous rectangular plate was given by Leissa and Qatu (2011) as: 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
−

𝜌𝑡𝜔2

𝐷
𝑤 = 0                                                         (28) 

The variational statement (Weak-form) for Equation (28) is: 

0 = ∫ ∫ 𝑉(𝑥, 𝑦) [
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
− 𝐾𝑀𝜔2𝑤] 𝑑𝑥𝑑𝑦                 (29)

𝑏

0

𝑎

0

 

 

Where  

V(x,y) = weight function 

𝐾 =
1

𝐷
                                                                                                                     (30) 

𝑀 = 𝜌 ∗ 𝑡                                                                                                               (31) 
 

Then by performing integration by parts on Equation (29) to trade differentiation from w(x,y) 

to V(x,y), the functional in Ritz method is: 

0 = ∫ ∫ [
𝜕2𝑉

𝜕𝑥2

𝜕2𝑤

𝜕𝑥2
+ 2

𝜕2𝑉

𝜕𝑥𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+

𝜕2𝑉

𝜕𝑦2

𝜕2𝑤

𝜕𝑦2
− 𝜔2𝑀𝐾𝑉𝑤] 𝑑𝑥𝑑𝑦      (32)

𝑏

0

𝑎

0

 

 

Where  

V = V(x,y 
 

4.0      Linearly Fundamental Frequency 
For first mode of vibration of rectangular plate, the variables m and n contained in the 

expression for orthogonal polynomial displacement functions are individually equal to unity; 

and V equals w, hence Equation (32) becomes: 

0 = ∫ ∫ [(
𝜕2𝑤

𝜕𝑥2 )

2

+ 2 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑤

𝜕𝑦2 )

2

− 𝜔2𝑀𝐾𝑤2] 𝑑𝑥𝑑𝑦                   (33)

𝑏

0

𝑎

0

 

That is 

𝜔2𝑀𝐾 ∫ ∫ 𝑤2𝑑𝑥𝑑𝑦 = ∫ ∫ [(
𝜕2𝑤

𝜕𝑥2 )

2

+ 2 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑤

𝜕𝑦2 )

2

] 𝑑𝑥𝑑𝑦       (34)

𝑏

0

𝑎

0

𝑏

0

𝑎

0

 

 

Thus by substituting for the orthogonal polynomial displacement functions of any set of 

boundary conditions as required by Equation (34); and then performing direct integration as 

required, the unknown frequency parameter in ω is solved for. 
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5.0 Numerical Examples 
In linearly dynamic analysis of rectangular plates, the rigidity characteristics are considered 

to be constant for all small deflections (Volmir, 1974). Therefore the amplitude of 

displacement, Amn is taken to be equal to unity without loss in generality. 

The plate parameters adopted for the numerical examples are: 

𝐸 = 10.92 ∗ 106𝑁𝑚−2;  𝜌 = 100𝐾𝑔𝑚−3;  𝜇 = 0.3;  𝑎 = 𝑏 = 1.0𝑚;  𝑡 = 0.01𝑚  
By performing direct integration term by term on Equation (34) we have: 

∫ ∫ (
𝜕2𝑤

𝜕𝑥2 )

2

𝑑𝑥𝑑𝑦 = 𝑢1                                                                                          (35)

𝑏

0

𝑎

0

 

∫ ∫ (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

𝑑𝑥𝑑𝑦 = 𝑢2                                                                                        (36)

𝑏

0

𝑎

0

 

∫ ∫ (
𝜕2𝑤

𝜕𝑦2 )

2

𝑑𝑥𝑑𝑦 = 𝑢3                                                                                          (37)

𝑏

0

𝑎

0

 

 

And 

𝑇1 = 𝑢1 + 2 ∗ 𝑢2 + 𝑢3                                                                                             (38) 

∫ ∫ 𝑤2𝑑𝑥𝑑𝑦 = 𝐽1                                                                                                    (39)

𝑏

0

𝑎

0

 

 

Then 

𝜔2𝑀𝐾𝐽1 = 𝑇1                                                                                                           (40) 
 

That is: 

𝜔2 =
1

𝑀𝐾

𝑇1

𝐽1
                                                                                                             (41) 

 

Therefore 

𝜔11 = √
𝑇1

𝐽1
∗ √

𝐷

𝑀
                                                                                                   (42) 

Or 

𝜔11 = 𝜆√
𝐷

𝑀
                                                                                                            (43) 

Where 

 = nondimensional frequency parameter 

𝜔11 = fundamental frequency 

𝐷 =
𝐸 ∗ 𝑡3

12(1 − 𝜇2)
                                                                                                   (44) 
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The numerical results for the boundary conditions of rectangular plates are presented in 

Table A.2 of Appendix A. 
 

6.0 Results and Discussion 
The orthogonal polynomial displacement functions for rectangular plate with various 

boundary conditions are presented in Table A.1; and the linearly fundamental frequencies 

evaluated based on the derived orthogonal polynomial displacement functions for 

rectangular plate with various boundary conditions are also presented in Table A.2 along 

side with results from previous work due to Leissa and Qatu (2011). The orthogonal 

polynomial displacement functions presented in Table A.1 are physical functions which 

satisfy both the completeness characteristics of good shape functions and homogeneous 

boundary conditions. From the results presented in Table A.2 with special reference to 

column 4, the present study’s results were all in the upper bound; and the convergence of the 

results from the derived orthogonal polynomial displacement functions with respect to 

majority of the boundary conditions was very good; but nevertheless, some showed poor 

convergent results, which were common among the boundary conditions involving two or 

more free edge conditions. In this work, the boundary conditions that showed poor 

convergence include CCFF, SFSF, CSFF, SSFF, CFSF and CFFF rectangular plates. The 

reason behind the poor convergence may be attributed on one hand to stability of the derived 

polynomial displacement functions used as shape functions. On the other hand, it may be 

attributed to the fact that the integral functions (the functionals) defining the rectangular plate 

problems are not self-adjoint equations; and if they were not, their approximations using the 

Ritz energy method are stubborn. In fact, the same observation was pointed out in the 

previous work of Leissa (1969). Despite the odds, the mean percentage difference in the 

results from the present work and the results from previous works in literature was 12.581, 

which invariably is statistically acceptable. 
 

7.0 Conclusion 
In this paper, the orthogonal polynomial displacement functions for rectangular plate with 

various boundary conditions have been derived based on static deflection profiles; and the 

majority of the fundamental frequencies evaluated for various boundary conditions of 

rectangular plates were in good agreement with the results from previous works in literature. 

Furthermore, an average percentage difference in the results from the present work and the 

results from previous works in literature was 12.58, which was statistically acceptable for 

majority of engineering precisions. Therefore, it is here concluded that the application of 

orthogonal polynomial displacement functions as shape functions provides satisfactory 

results in dynamic analysis of rectangular plates. 
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Appendix A 
 

Tables of Results 
 

Table A.1 Orthogonal Polynomial Shape Functions for Various Boundary 
Conditions of Rectangular Plates 

Boundary 

Conditions 

Polynomial Shape Functions, w(x,y) 

 

CCCC 

 

𝐴𝑚𝑛 [(
𝑥

𝑎
)

𝑚+1

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [(
𝑦

𝑏
)

𝑛+1

− 2 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

SSSS 
𝐴𝑚𝑛 [(

𝑥

𝑎
)

𝑚

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [(
𝑦

𝑏
)

𝑛

− 2 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CSCS 
𝐴𝑚𝑛 [(

𝑥

𝑎
)

𝑚+1

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [(
𝑦

𝑏
)

𝑛

− 2 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CSSS 
𝐴𝑚𝑛 [

3

2
(

𝑥

𝑎
)

𝑚+1

−
5

2
(

𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [(
𝑦

𝑏
)

𝑛

− 2 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CCSS 
𝐴𝑚𝑛 [

3

2
(

𝑥

𝑎
)

𝑚+1

−
5

2
(

𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [
3

2
(

𝑦

𝑏
)

𝑛+1

−
5

2
(

𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CSFS 
𝐴𝑚𝑛 [6 (

𝑥

𝑎
)

𝑚+1

− 4 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [(
𝑦

𝑏
)

𝑛

− 2 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CCCS 
𝐴𝑚𝑛 [(

𝑥

𝑎
)

𝑚+1

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [
3

2
(

𝑦

𝑏
)

𝑛+1

−
5

2
(

𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CCCF 
𝐴𝑚𝑛 [(

𝑥

𝑎
)

𝑚+1

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [6 (
𝑦

𝑏
)

𝑛+1

− 4 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

SSSF 
𝐴𝑚𝑛 [(

𝑥

𝑎
)

𝑚

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [8 (
𝑦

𝑏
)

𝑛

− 4 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CCSF 
𝐴𝑚𝑛 [

3

2
(

𝑥

𝑎
)

𝑚+1

−
5

2
(

𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [6 (
𝑦

𝑏
)

𝑛+1

− 4 (
𝑥

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CSSF 
𝐴𝑚𝑛 [

3

2
(

𝑥

𝑎
)

𝑚+1

−
5

2
(

𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [8 (
𝑦

𝑏
)

𝑛

− 4 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 
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CSCF 
𝐴𝑚𝑛 [(

𝑥

𝑎
)

𝑚+1

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [8 (
𝑦

𝑏
)

𝑛

− 4 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CCFF 
𝐴𝑚𝑛 [6 (

𝑥

𝑎
)

𝑚+1

− 4 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [6 (
𝑦

𝑏
)

𝑛+1

− 4 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CFCF 
𝐴𝑚𝑛 [(

𝑥

𝑎
)

𝑚+1

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [5 (
𝑦

𝑏
)

𝑛

−
5

2
(

𝑦

𝑏
)

𝑛+3

+ (
𝑦

𝑏
)

𝑛+4

] 

SFSF 
𝐴𝑚𝑛 [(

𝑥

𝑎
)

𝑚

− 2 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [5 (
𝑦

𝑏
)

𝑛

−
5

2
(

𝑦

𝑏
)

𝑛+3

+ (
𝑦

𝑏
)

𝑛+4

] 

 
Table A.1 Orthogonal Polynomial Shape Functions for Various Boundary 

Conditions of Rectangular Plates, (Cont’d). 
 

CSFF 
𝐴𝑚𝑛 [6 (

𝑥

𝑎
)

𝑚+1

− 4 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [8 (
𝑦

𝑏
)

𝑛

− 4 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

SSFF 
𝐴𝑚𝑛 [8 (

𝑥

𝑎
)

𝑚

− 4 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [8 (
𝑦

𝑏
)

𝑛

− 4 (
𝑦

𝑏
)

𝑛+2

+ (
𝑦

𝑏
)

𝑛+3

] 

CFSF 
𝐴𝑚𝑛 [

3

2
(

𝑥

𝑎
)

𝑚+1

−
5

2
(

𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [5 (
𝑦

𝑏
)

𝑛

−
5

2
(

𝑦

𝑏
)

𝑛+3

+ (
𝑦

𝑏
)

𝑛+4

] 

CFFF 
𝐴𝑚𝑛 [6 (

𝑥

𝑎
)

𝑚+1

− 4 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [5 (
𝑦

𝑏
)

𝑛

−
5

2
(

𝑦

𝑏
)

𝑛+3

+ (
𝑦

𝑏
)

𝑛+4

] 

SFFF 
𝐴𝑚𝑛 [8 (

𝑥

𝑎
)

𝑚

− 4 (
𝑥

𝑎
)

𝑚+2

+ (
𝑥

𝑎
)

𝑚+3

] [5 (
𝑦

𝑏
)

𝑛

−
5

2
(

𝑦

𝑏
)

𝑛+3

+ (
𝑦

𝑏
)

𝑛+4

] 

FFFF 
𝐴𝑚𝑛 [5 (

𝑥

𝑎
)

𝑚

−
5

2
(

𝑥

𝑎
)

𝑚+3

+ (
𝑥

𝑎
)

𝑚+4

] [5 (
𝑦

𝑏
)

𝑛

−
5

2
(

𝑦

𝑏
)

𝑛+3

+ (
𝑦

𝑏
)

𝑛+4

] 

 

 

Table A2 Linearly Fundamental Frequencies of Rectangular Plate with various 

Boundary Conditions  
Boundary 

Conditions 

Present Work  

[𝑟𝑎𝑑/𝑠] 
Leissa and Qatu (2011) 

[𝑟𝑎𝑑/𝑠] 
Percentage Difference 

[%] 
CCCC 36.0000 35.99 -0.0278 

SSSS 19.7476 19.7392 -0.043 

CSCS 28.9560 28.9509 -0.018 

CSSS 23.6795 23.6463 -0.140 

CCSS 27.1285 27.06 -0.253 

CSFS 13.7213 12.6874 -8.149 

CCCS 31.8681 31.83 -0.120 

CCCF 24.6475 24.02 -2.612 

SSSF 12.3435 11.6845 -5.640 
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CCSF 18.3969 17.62 -4.409 

CSSF 17.347 16.86 -2.893 

CSCF 23.8605 23.46 -1.707 

CCFF 8.0335 6.942 -15.723 

CFCF 23.8695 22.270 -7.182 

SFSF 12.3595 9.6314 -28.325 

CSFF 6.3658 5.364 -18.676 

SSFF 4.9369 3.369 -46.539 

CFSF 17.3598 15.280 -13.611 

CFFF 6.3892 

3.8863† 

3.492 -82.967 

-11.293† 
 

†Result evaluated by using functional in Galerkin’s method. 


