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Abstract  

 

Lagrange equations allow structural systems to be modeled as an assemblage of discrete masses connected by mass-less 

elements. The solution presented by the Lagrange equations is exact for such systems, but when a continuous system is modeled 

as having discrete masses connected by mass-less elements the results become approximate. Mass discretization as seen in the 

use of Lagrange equations for the analysis of continuous systems introduces an error in the inertia matrix. This error can be 

corrected by making a corresponding modification in the systems’ stiffness matrix. To achieve this, the force equilibrium 

equations of discrete elements of the continuous system were formulated for such systems under free vibration (using the 

Hamilton’s principle and the principle of virtual work) and the inherent forces causing vibration obtained. This was then equated 

to the corresponding equation of motion of the lumped massed (with discrete masses) system and the stiffness matrix of the 

system necessary for such equality obtained as a function of a set of modification factors. This was used to generate a table of 

stiffness modification factors for segments of the fixed-fixed beam under longitudinal vibration. By employing the Lagrange 

equations to lumped massed beams using these modification factors, we were able to predict accurately the fundamental 

frequency of the beam irrespective of the position or number of lumped masses introduced.  
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1. Introduction 

 

All bodies possessing mass and elasticity are capable of vibration thus all structures experience vibration to some degree 

(Thomson, 1996; Rajasekaran, 2009). A system under free vibration will vibrate at one or more of its natural frequencies. The 

natural frequencies of a system depend on the distribution of its mass and stiffness and hence are a property of the dynamical 

system (Ezeokpube, 2002; Blake, 2010). The number of independent coordinates required to describe the motion of a system is 

known as the degrees of freedom of the system. A continuous structure will have an infinite number of degrees of freedom and 

hence an infinite number of coordinates to analyze. However certain idealizations are made and a continuous system may be 

treated as one having a finite number of degrees of freedom (Blake, 2010). For systems with few degrees of freedom, it is 

possible to formulate the equations of motion by an application of the Newton’s laws of motion (Benaroya and Nagurka, 2010; 

Chandrasekaran, 2015). The method however becomes complicated for systems with a high degree of freedom and the energy 

methods provide a convenient alternative. One of the notable products of the energy method is the Lagrange’s equations. The 

Lagrange’s equation enables the analysis of structural elements as discrete masses connected together by mass-less elements 

(Ahmed and Campbell, 2013). With a proper selection of representative masses the results can be very close to the exact 

response. When the discretization is increased by the use of more number of lump masses, the accuracy of the response improves. 

In order to obtain the exact response of structural systems it is necessary to analyse them as elements with continuously 

distributed masses. A continuous structure has infinite degrees of freedom and normal modes but generally the first few modes 

are of most importance. 

The advent of fast digital computers has made the analysis of large simultaneous equations easy (Saad and Henk, 2000). This can 

be put to use in the Finite Element Method. Just like in the Rayleigh-Ritz method, there is need to select a shape function. The 
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accuracy of finite element method can be improved upon by the careful selection of better shape functions (p-version) and also by 

the introduction of more joints/nodes and hence more elements (h-version) (Houmat, 2009; Beaurepaire and Schueller, 2011; 

Tornabene et al 2015). The latter has the implication of increasing the size of the resulting equations and hence the computational 

cost.  

It is common practice to model a continuous system as being made of discrete masses connected by mass-less elements 

(Stephenson and Agapiou, 2005; Naess and Moan, 2012). This is largely because such discretization offers an easier dynamic 

analysis like the finite element and the Rayleigh-ritz method. It reduces the degree of freedom of the system from infinity to a 

finite value (Matthies et al., 1997; Ahan and Arisoy, 2014). It also offers a simpler and realistic visual appeal that aids the 

understanding of the rudiments of structural dynamics hence its use in most introductory topics in structural dynamics (Kot et al., 

2015). But such a simplification of the real system comes at a cost. The result obtained from such a dynamic analysis becomes 

less accurate (Morgan and Qiao, 2008; Baudet et al, 2007). This is largely due to the mass distortion occasioned by the use of 

lumped masses to represent continuous masses. This shortfall in accuracy of obtained results has greatly limited the use of 

lumped mass to represent continuous mass in researches in structural dynamics. This work hoped to redress it by modifying the 

system’s stiffness matrix. 

1.1 Mathematical theory 

Lagrange formulated a scalar equation in terms of generalized coordinates and is presented as 

𝜕

𝜕𝑡
(

𝜕𝑇

𝜕𝑞̇𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑈

𝜕𝑞𝑖
= 𝑄𝑖         (1) 

𝑖 = 1,2, … 𝑛  

Where q1, q2, …, qn are a set of independent generalized displacements, T is the kinetic energy of the structure and U is the strain 

energy of the structure and Qi is the non-conservative or the non-potential force on the system. The Lagrange‘s equations can be 

used to develop the matrix equation for the analysis of a free undamped n-degree of freedom discrete mass structure. 

[𝑚]{𝑞̈} + [𝑘]{𝑞} = 0        (2) 

By pre-multiplying the equation with the structure’s flexibility matrix [f] and obtaining the solution for a harmonic vibration will 

lead to an eigenvalue problem 

([𝐷] − 𝜆[𝐼]){𝜙} = 0        (3) 

Where [D] is the dynamical matrix, [I] is an identity matrix and 𝜆 = 1
𝑤2⁄      (4) 

Equation (3) represents a system of n-homogenous, linear algebraic equation in the amplitudes {𝜙} and can be solved to get the 

frequencies w1, w2, …, wn for an n-degree of freedom system. For each distinct frequency wj, there will be a set of amplitudes 
{𝜙}𝑗 .The eigenvectors or relative amplitudes {𝜙}𝑗 obtained from a free vibration satisfy certain orthogonality conditions 

(Tauchert, 1974). 

While Lagrange’s equations provide a way of analyzing a multi but finite degree of freedom system, a similar approach for 

continuous structures is an energy theorem known as the Hamilton’s principle. The principle states that the motion of an elastic 

structure during the time interval t1 < t < t2 is such that the time integral of the total dynamic potential U – T + VE is an extremum 

(Thomson and Dahleh, 1998). 

𝛿 ∫ (𝑈 − 𝑇 + 𝑉𝐸)𝑑𝑡 = 0
𝑡2

𝑡1
          (5) 

where U represents the strain energy of the system, T the kinetic energy and VE the work done by the external forces. The partial 

differential equation and boundary conditions governing the free longitudinal vibration of a bar are  

𝑐2𝑢1
′′ = 𝑢̈1            (6) 

where  𝑐2 =
𝐸𝐴

𝜇
              (7) 

𝑁𝑜 = [𝐸𝐴𝑢1
′ ]

𝑥1=0
  𝑜𝑟 𝛿𝑢1(0, 𝑡) = 0          (8) 

𝑁𝐿 = [𝐸𝐴𝑢1
′ ]

𝑥1=0
  𝑜𝑟 𝛿𝑢1(𝐿, 𝑡) = 0          (9) 
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Where A(x1) is the cross sectional area of the bar, µ(x1) is the mass per unit length of the bar and E is the modulus of elasticity of 

the material of the bar. For a normal mode vibration the general solution  is  

𝜙(𝑥1) = 𝐶1 cos
𝜔𝑥1

𝑐
+ 𝐶2 sin

𝜔𝑥1

𝑐
        (10) 

By introducing the boundary conditions equation (10) results to an eigenvalue problem, the solution of which yields the natural 

circular frequencies 𝜔𝑗  and mode shapes (eigenvectors) 𝜙𝑗  (Thomson and Dahleh 1998). 

The general solution of equation (6) by mode superposition is  

𝑢1(𝑥1, 𝑡) = ∑ 𝜙𝑗(𝑥1)(𝐴𝑗 cos 𝑤𝑗𝑡 + 𝐵𝑗 sin 𝑤𝑗𝑡)∞
𝑗=1      (11) 

Where the constants Aj and Bj can be determined form the initial conditions. The eigenfunctions 𝜙𝑗  also satisfy certain 

orthogonality relationships.  

 

2.0 Material and methods 
The two essential components that determine the vibration of structural systems are the structure’s mass distribution and the 

structure’s stiffness (Malekjafarian et al., 2016). These properties are captured in the structure’s inertia matrix and stiffness 

matrix respectively. If the mode shape 𝜙𝑗  and circular frequency 𝜔𝑗  are kept constant, then any variation in mass distribution 𝜇 

will have a corresponding change in the element rigidity EA.  

Two equations were compared and equated. One is the force equilibrium equation written as 

 {𝐹} + [𝑆]{𝐷} = {𝐹∗}          (12) 

(the external force vector {𝐹∗} acts at the element’s nodes) 

Where {F} is the vector of fixed end forces generated when nodal displacements are restrained. [S] is the element stiffness matrix 

and {D} a vector of nodal displacements (Okonkwo 2012). 

The second equation is the equation of motion of a vibrating system written simply as  

[𝑚]{𝑢̈} + [𝑘]{𝑢} = {𝑃}          (13) 

(the external force vector {P} acts at the element’s nodes) 

Where [m] is the inertia matrix, [k] is the element stiffness matrix and {u} a vector of nodal displacements. 

Although equations (12) have been largely applied in statics, it can also be applied in dynamics if the equations for the vector of 

fixed end moments/forces {F} can be formulated. The real structure (continuous system) was then analyzed using the Hamilton’s 

principle and the equations for the fixed end forces {F} and nodal displacements {D} formulated for any arbitrary segment of a 

vibrating beam at time t = 0. This was then substituted into equation (12) to get the vector of nodal force {F*} that is causing the 

vibration. 

[k] in equation (13) was taken as the stiffness matrix of the lump-massed beam. If a vibrating element of the real beam and that of 

a corresponding element of a lump-massed beam are to be equivalent then their deformation must be equal and the force acting 

on their nodes will also be equal. Therefore  

{𝐷} = {𝑢}           (14) 

{𝐹∗} = {𝑃}            (15) 

For a prismatic bar fixed at both ends we obtain from Hamilton’s principle the natural frequencies and mode shapes as 

𝑤𝑗 =
𝑗𝜋𝑐

𝐿
= 𝑗𝜋√

𝐸𝐴

𝜇𝐿2         (16) 

∅𝑗 = sin
𝑗𝜋𝑥

𝐿
        (17) 
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𝑗 = 1,2,3, … ,∞  

The second derivative of equation (15) with respect to time is 

𝑢̈1(𝑥, 𝑡) = ∑ −𝜔𝑗
2∅𝑗(𝐴𝑗 cos 𝜔𝑗𝑡 + 𝐵𝑗 sin 𝜔𝑗𝑡)∞

𝑗=1     (18) 

By substituting equation (17) into the second derivative of equation (11) at time t = 0 we obtain 

𝑢̈1(𝑥, 0) = ∑ −𝜔𝑗
2𝐴𝑗 sin 𝛾1𝑥∞

𝑗=1         (19) 

where  𝛾1 =
𝑗𝜋

𝐿
=

𝜔𝑗

𝑐
         (20) 

By treating the longitudinally vibrating bar like a beam segment pinned at both ends (see Figure 1), it is possible to obtain the 

fixed end forces (axial) forces of an arbitrary segment of the bar. The forces at the ends of the isolated segment are F1 and F2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Using the equations of external equilibrium 

∑ 𝑀2 = 0;    𝐹1(𝑥2 − 𝑥1) + ∫ 𝜇𝑢̈(𝑥2 − 𝑥)𝑑𝑥
𝑥2

𝑥1
= 0 

𝐹1 =
1

(𝑥2−𝑥1)
∑

𝜔𝑗
2𝐴𝑗𝜇

𝛾1
2

∞
𝑗=1 (𝛾1𝑥2 cos 𝛾𝑥1 − 𝛾1𝑥1 cos 𝛾𝑥1 − sin 𝛾1𝑥2 + sin 𝛾1𝑥1)  (21) 

∑ 𝐹𝑦 = 0;     𝐹2 = − ∫ 𝜇𝑢̈𝑑𝑥
𝑥2

𝑥1
− 𝐹1 

𝐹2 = ∑
𝜔𝑗

2𝐴𝑗𝜇

𝛾1
2

∞
𝑗=1 [

−𝛾1𝐿 cos 𝛾1𝑥2+𝛾𝐿 cos 𝛾1𝑥1

𝐿
−

𝛾1𝑥2 cos 𝛾1𝑥1−𝛾1𝑥1 cos 𝛾1𝑥1−sin 𝛾1𝑥2+sin 𝛾1𝑥1

𝑥2−𝑥1
]    (22) 

x1 

x2 x 

𝜇𝑢̈𝑑𝑥 

R2 R1 

L 

u 

x1 

x2 
x 

𝜇𝑢̈𝑑𝑥 

F2 F1 

(a) 

(b) 

Figure 1  

(a) A bar under longitudinal vibration due to inertial forces 𝜇𝑢̈ 

(b) A segment of the bar under longitudinal vibration due to inertial forces 𝜇𝑢̈ 
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These forces can be expressed in terms of EA rather than wj from equation (16) and by normalizing the length of the bar L to be 

equal to unity and the distances x1 and x2 expressed in dimensionless units we obtain 

𝐹1 =
𝐸𝐴

𝐿(𝜉2−𝜉1)
∑ 𝐴𝑗[𝑗𝜋𝜉2 cos 𝑗𝜋𝜉1 − 𝑗𝜋𝜉1 cos 𝑗𝜋𝜉1 − sin 𝑗𝜋𝜉2 + sin 𝑗𝜋𝜉1]∞

𝑗=1    (23) 

𝐹2 =
𝐸𝐴

𝐿
∑ 𝐴𝑗 [−𝑗𝜋 cos 𝑗𝜋𝜉2 + 𝑗𝜋 cos 𝑗𝜋𝜉1 −

𝑗𝜋𝜉2 cos 𝑗𝜋𝜉1−𝑗𝜋𝜉1 cos 𝑗𝜋𝜉1−sin 𝑗𝜋𝜉2+sin 𝑗𝜋𝜉1

𝜉2−𝜉1
]∞

𝑗=1  (24) 

Recall that the constant Aj depends on the initial conditions of the vibrating bar. 

The axial force due to self weight at any point x along the length of the bar is given by 

𝑃𝑥 = 𝜇𝑔 (
𝐿

2
− 𝑥)          (25) 

where µ is the mass per unit length of the bar and g is the acceleration due to gravity.  

If the axial deformation on the infinitesimal element dx is du, then from Hooke’s law 

𝑃𝑥 = 𝐸𝐴
𝑑𝑢

𝑑𝑥
           (26) 

By equating equation (25) to equation (26) and integrating 

𝑢(𝑥, 0) =
𝑒

𝐿
(𝐿𝑥 − 𝑥2)         (27) 

Where e is a dimensionless constant equal to 
𝜇𝑔𝐿

2𝐸𝐴
. 

𝐴𝑗 =
𝜇

𝑀𝑗
∫ 𝑢1(𝑥1, 0)𝜙𝑗𝑑𝑥1

𝑙

0
=

𝜇𝑒𝐿2

𝑀𝑗
(

2−𝛾1𝐿 sin 𝛾1𝐿−2 cos 𝛾1𝐿

𝛾1
3𝐿3 )    (28) 

The generalized mass can be expressed as 

𝑀𝑗 = 𝜇 ∫ ∅𝑗
2𝐿

0
𝑑𝑥 =

𝜇𝐿

2
       (29) 

Equation (29) above is an expression for the constant Aj for a bar under an initial displacement caused by its self weight. 

Equation (29) can be substituted into the equation (23) and (24) to obtain the values of the fixed end forces F1 and F2. With these 

equations the force equilibrium equations for segments of a vibrating beam can be written and the inherent forces in the system 

that is causing motion calculated at the nodes/junctions of the element. An arbitrary segment of a vibrating element is identified 

by means of the normalized distances 𝜉1 and 𝜉2 of its nodes from an origin. 𝜉1 and 𝜉2 are numbers between 0 and 1.  

Having obtained the fixed end forces F1 and F2, these are substituted into equation (12) to obtain the nodal forces {F*} in the real 

bar which from equation (15) are equal to {P}. 

𝑃1 = 𝐹1 +
𝐸𝐴

𝜉2−𝜉1

(𝑢1 − 𝑢2)       (30) 

𝑃2 = 𝐹2 +
𝐸𝐴

𝜉2−𝜉1

(−𝑢1 + 𝑢2)          (31) 

Where  

{𝐹} = {
𝐹1

𝐹2
}          (32) 

{𝑢} = {
𝑢1

𝑢2
}       (33) 

{𝑃} = {
𝑃1

𝑃2
}          (34) 

u1 is the total displacement at the position x1 while u2 is the total displacement at the position x2. The total displacement is 

obtained by totaling the displacements due to all the modes of vibration. A segment of a vibrating bar can be isolated and will be 
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in equilibrium with the application of the force vector {P}. The force {P} represents the effect of the removed adjourning 

elements on the isolated segment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2a shows a segment of the vibrating continuous or real bar. The nodal forces on the bar P1 and P2 are calculated from the 

equilibrium equations (equation 30 and 31). When the continuous bar is represented by a lumped massed bar which is a bar that 

has its distributed masses lumped at selected nodes, the equivalent segment of the bar is shown in Figure 2b. Just like the real 

segment the equivalent segment is supported by the same nodal forces P1 and P2 and has the same nodal displacements as the real 

bar. This implies that for the lumped massed beam to be equivalent to the real beam they must share the same inherent forces and 

displacements at the nodes. To achieve this equality the stiffness matrix of the lumped massed bar is modified. 

The equation of motion for the lumped massed bar is given as  

[𝑚]{𝑢̈} + [𝑘𝑑]{𝑢} = {𝑃}            (35)   

Where [m] is the inertial matrix, {u} is a vector of nodal displacement and kd is the stiffness of the lumped massed segment under 

consideration. 

The proposed stiffness matrix for the lumped massed segment kd is  

[𝑘𝑑] = [

𝐸𝐴

𝑙
𝛼1 −

𝐸𝐴

𝑙
𝛼2

−
𝐸𝐴

𝑙
𝛼2

𝐸𝐴

𝑙
𝛼1

]          (36) 

where α1 and α2 are the stiffness modification factors for longitudinal vibration. They help redistribute the stiffness of the lumped 

massed bar in such a way as to annul the effect of the discretization of the bar due to the lumping of its distributed mass on 

selected nodes. 

[𝑚] = [

𝜇(𝜉2−𝜉1)

2
0

0
𝜇(𝜉2−𝜉1)

2

]          (37) 

P1 P2 

𝜉2 − 𝜉1 

𝑢(𝜉1, 0) 𝑢(𝜉2, 0) 

(a) 

𝜉2 − 𝜉1 

(b) 

𝑢(𝜉1, 0) 𝑢(𝜉2, 0) 

P1 P2 

Figure 2 

(a) An isolated segment of the longitudinally vibrating continuous 
bar showing the nodal forces P1 and P2 

(b) An equivalent lumped massed segment showing the nodal forces 

𝜇(𝜉2 − 𝜉1)

2
 

𝜇(𝜉2 − 𝜉1)

2
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µ is the mass per unit length of the beam. 

When treating the isolated segment of the vibrating beam alone the vector of nodal acceleration is written as 

{𝑢̈} = {
𝑢̈(𝜉1, 0)

𝑢̈(𝜉2, 0)
} = {

−𝜔2𝑢(𝜉1, 0)

−𝜔2𝑢(𝜉2, 0)
} = {

−𝜔2𝑢11

−𝜔2𝑢21
}      (38) 

ω is the fundamental frequency of the vibrating mass while u11 and u21 are the values of u1 and u2 for the first mode only. By 

rearranging equation (35) we obtain 

𝛼1 =
−(𝜉2−𝜉1)𝑢11(𝑃1+

(𝜉2−𝜉1)𝜋2𝑢11
2

)+(𝜉2−𝜉1)𝑢21(𝑃2+
(𝜉2−𝜉1)𝜋2𝑢21

2
)

𝑢21
2 −𝑢11

2        (39) 

𝛼2 =
(𝜉2−𝜉1)𝑢11(𝑃2+

(𝜉2−𝜉1)𝜋2𝑢21
2

)−(𝜉2−𝜉1)𝑢21(𝑃1+
(𝜉2−𝜉1)𝜋2𝑢11

2
)

𝑢21
2 −𝑢11

2        (40) 

Equations (39) and (40) can be used to evaluate the stiffness modification factors for longitudinal vibration of a segment of a 

fixed-fixed or fixed-pinned bar located between 𝜉1 and 𝜉2 of the bar’s total length. A numerical demonstration of their use is 

presented below. For ease of presentation the calculations were presented in a tabular form. 

Example 1: when 𝜉1 = 0, 𝜉2 = 0.3 

𝜉1 = 0,   𝜉2 = 0.3 

j Aj F1j F2j u1j u2j 

1 0.25801227546560 0.11478175044198 0.21934693877846 0 0.20873631560902 

2 0 0 0 0 0 

3 0.00955601020243 0.08022004251217 0.09549849578482 0 0.00295296955097 

4 0 0 0 0 0 

5 0.00206409820372 0.03930310611130 -0.0068803273457 0 -0.0020640982037 

6 0 0 0 0 0 

7 0.00075222237745 0.01576740240345 -0.0149577678401 0 0.00023244949818 

8 0 0 0 0 0 

9 0.00035392630379 0.00905258916811 0.00683642625235 0 0.00028633239453 

Total 0.25912489063701 0.29984376562978 0 0.21014396884897 

u11 = 0 

u21 = 0.20873631560902 

From equations 30 and 31 

P1 = -0.95960478680024 

P2 = 0.40063613053345 

From equations 39 and 40  the stiffness modification factors for longitudinal vibration of the element are 

α1 = 1.01993444314165 
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α2 = 1.37916315711590 

 

Table 1: Calculation of the Stiffness modification factor for an element positioned at  𝜉1 = 0, 𝜉2 = 0.3 on a fixed-fixed bar under 

longitudinal vibrationj is the mode number, j = 1 stands for the first mode, j = 2 for the second mode and so on. The values of the 

paramaters Aj, F1j, F2j, u1j and u2j are evaluated for modes 1 – 9 and summed to obtain end forces F1 and F2 and the end 

displacements u1 and u2. 

Table 1 is an illustration on how the inherent nodal forces P1 and P2 and the stiffness modification factors α1 and α2 are 

calculated. The nodal forces P1 and P2 are the forces acting at the selected nodal point if the beam segment under consideration is 

decomposed. These nodal forces represent the effect of the removed adjacent beam segment on the beam segment under 

consideration. Using the methods presented in table 1 the values of stiffness modification factors at different values of 𝜉1 and 𝜉2 

for the longitudinal vibration of a fixed-fixed bar are presented in Table A1 in the Appendix. A sample matlab program for the 

calculation of the stiffness modification factors for a segment of a beam restrained at both end can be found the Appendix B. 

 

3.0 Results and Discussions 

 

 

For the beam of Figure 3a the stiffness matrix and inertia matrix of the bar with respect to the coordinate of the lumped mass are 

 𝑘 =
4𝐸𝐴

𝐿
        (41) 

 𝑚 =
1

2
𝜇𝐿           (42) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By substituting equations (41) and (42) into equation (3) and solving we obtain 
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Figure 3: Some lumped massed beams 

constrained at both ends used for illustration of 

Lagrange equation  
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 𝜆 =
0.125𝜇𝐿2

𝐸𝐴
        (43) 

 {𝜙} = 1          (44) 

 𝜔 = 2.8284√
𝐸𝐴

𝜇𝐿2         (45) 

From Appendix A the stiffness modification factors of the two segments/elements of the bar are 

For element 1: ξ1 = 0, ξ2 = 0.5, α1 = 1.233701, α2 = 1.859611 

For element2: ξ1 = 0.5, ξ2 = 1, α1 = 1.233701, α2 = 1.859611 

By applying these stiffness modification factors, the modified stiffness matrix of the bar with respect to the coordinate of the 

lumped mass becomes  

 𝑘 =
4.934804𝐸𝐴

𝐿
          (46)  

By using this modified stiffness on equation (46) the new values of  𝜆, natural frequency and mode shape obtained are 

 𝜆 =
0.1013211467𝜇𝐿2

𝐸𝐴
       (47) 

 {𝜙} = 1         (48) 

 𝜔 = 3.14159√
𝐸𝐴

𝜇𝐿2         (49) 

These were repeated for the bars of Figures 3b, 3c, 3d, 3e and 3f and a summary of the obtained natural frequencies presented in 

table 2. 

Table 2: Comparism of the obtained Natural frequencies of different lump-massed fixed-fixed bar under longitudinal 

vibration with their exact values. 

 Mode No Hamilton 

(Exact) 

Lagrange Percentage 

Error  

(%) 

Lagrange 

with 

modified 

stiffness 

Percentage 

Error  

(%) 

Figure (a) 1 3.1416 2.8284 9.97 3.1416 0 

Figure (b) 1 3.1416 3.0000 4.51 3.1416 0 

Figure (c) 1 3.1416 3.0000 4.51 3.1416 0 

2 6.2832 5.1962 17.30 5.4486 13.28 

Figure (d) 1 3.1416 2.9646 5.63 3.1416 0 

2 6.2832 5.4863 12.68 5.6096 10.72 

Figure (e) 1 3.1416 3.0615 2.55 3.1416 0 

2 6.2832 5.6569 9.97 5.6593 9.93 

3 9.4248 7.3910 21.58 7.3611 21.90 

Figure (f) 1 3.1416 2.9940 4.70 3.1416 0 

2 6.2832 5.7735 8.11 5.6649 9.84 
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3 9.4248 8.6237 8.50 8.2736 12.21 

 

From table 2, it would be observed that the natural frequencies obtained from the use of Lagrange equation on the continuous 

system had some measure of errors as seen from its comparison with exact results (results from the use of Hamilton’s principle). 

The errors depended on the number of subdivisions of the bar and the non-uniformity of the lengths of the bar segments. 

However when the stiffness of the system was modified using the stiffness modification factors, the use of Lagrange’s equation 

was able to predict accurately the fundamental frequencies irrespective of the number of subdivisions or length of segments 

hence their percentage errors were zero. The values of the higher frequencies obtained from the used of the stiffness modification 

factors remained approximate.  

4.0. Conclusion  

Using the matlab program in the appendix the stiffness modification factors were generated and used for the solution 

of different lumped massed beams. Their results were studied and the following conclusions drawn 

1) In order to obtain an accurate dynamic response from a lumped massed beam there must of necessity be a modification 

in the stiffness composition of the system (the finite element method actually does the opposite). Since the lumping of 

the continuous mass has altered the inertia matrix the matrix ceases to represent well the mass distribution of the 

structure. The stiffness matrix is the only matrix left for a corresponding redistribution to amend the error. 

2) No linear modification of the stiffness distribution of lumped mass fixed-fixed beams under longitudinal vibration can 

cause them to be dynamically equivalent to the continuous beams. This is so because the values of α1 and α2 obtained 

for each segment as shown in Appendix A are not equal. 

This work has laid a foundation on the possible modification in the stiffness matrix of lumped masses structures in order to 

obtained improved result. 

 

 

5.0 Recommendation 
The use of lumped masses as a simple idealization for continuous systems has gained a lot of relevance in the field of structural 

dynamics. While this work was limited to beams, it can also be extended to frames and other two dimensional structures like 

plates. This will greatly simplify the analysis of such complex structures and encourage more dynamic analysis of such structures 

leading to increased understanding of their behaviour under dynamic load. In order to simplify the analysis only deformation due 

to bending moment was considered in our analysis. More work can be done in considering the effect of other internal stresses on 

the obtained stiffness modification factors. 
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APPENDIX A  

Table A1: Stiffness modification factors for the longitudinal vibration of a fixed-fixed/fixed-pinned/pinned-pinned bar 

  𝜉2 

   0 0.05 0.10 0.15 0.20 0.25 0.30 

𝜉1 

0 α1 - 1.143151 1.058495 0.997834 0.986672 1.000866 1.019934 

α2 - 1.188747 1.203565 1.228843 1.265503 1.314943 1.379163 

0.05 α1 1.143151 - 1.080427 1.024910 1.006729 1.012629 1.026512 

α2 1.188747 - 1.113157 1.115460 1.141255 1.181044 1.232144 

0.10 α1 1.058495 1.080427 - 0.998704 0.980187 0.981916 0.991600 

α2 1.203565 1.113157 - 1.014836 1.019911 1.042110 1.074280 

0.15 α1 0.997834 1.024910 0.998704 - 0.938539 0.935178 0.938885 

α2 1.228843 1.115460 1.014836 - 0.943689 0.948312 0.962200 

0.20 α1 0.986672 1.006729 0.980187 0.938539 - 0.901715 0.897092 

α2 1.265503 1.141255 1.019911 0.943689 - 0.903322 0.902645 

0.25 α1 1.000866 1.012629 0.981916 0.935178 0.901715 - 0.867017 

α2 1.314943 1.181044 1.042110 0.948312 0.903322 - 0.868061 

0.30 α1 1.019934 1.026512 0.991599 0.938885 0.897092 0.867017 - 

α2 1.379163 1.232144 1.074280 0.962200 0.902645 0.868061 - 

0.35 α1 1.054605 1.057992 1.018826 0.959383 0.908659 0.867950 0.829199 

α2 1.460963 1.299001 1.121355 0.990718 0.916692 0.869455 0.828832 

0.40 α1 1.115179 1.117462 1.074506 1.008167 0.948618 0.897608 0.846355 

α2 1.564248 1.386386 1.188496 1.039554 0.952085 0.893711 0.841244 

0.45 α1 1.182917 1.189762 1.146079 1.074437 1.007395 0.947269 0.884015 

α2 1.694512 1.496212 1.274497 1.104955 1.003103 0.933439 0.868971 

0.50 α1 1.233701 1.254602 1.215722 1.141712 1.069081 1.000866 0.924602 

α2 1.859611 1.632023 1.379063 1.183281 1.063227 0.979259 0.898881 

0.55 α1 1.268354 1.315400 1.288508 1.216097 1.140810 1.066697 0.976738 

α2 2.071070 1.803974 1.511273 1.283034 1.141149 1.040586 0.940450 

0.60 α1 1.288113 1.378511 1.374214 1.310002 1.238324 1.165702 1.068050 

α2 2.346373 2.027226 1.685114 1.418270 1.252950 1.137999 1.020543 

0.65 α1 1.249068 1.411994 1.447670 1.401772 1.343039 1.284923 1.195354 

α2 2.713217 2.318450 1.909302 1.591796 1.398286 1.272354 1.146426 

0.70 α1 1.074514 1.359921 1.462504 1.446515 1.407191 1.374004 1.310103* 

α2 3.218047 2.702364 2.192812 1.798719 1.559662 1.416893 1.288271* 

0.75 α1 0.698504 1.194162 1.408082 1.436868 1.416483 1.406445* 1.374004 

α2 3.944830 3.23164 2.570783 2.059370 1.740833 1.557625* 1.416893 

0.80 α1 0.001153 0.883447 1.298618 1.409046 1.412313* 1.416483 1.407191 

α2 5.062014 4.010719 3.125278 2.446031 2.003625* 1.740833 1.559662 

0.85 α1 -1.459811 0.229120 1.047829 1.340164* 1.409046 1.436868 1.446515 

α2 6.963446 5.225115 3.975516 3.060516* 2.446031 2.059370 1.798719 

0.90 α1 -5.085133 -1.343961 0.348648* 1.047829 1.298618 1.408082 1.462504 

α2 10.832088 7.246460 5.263551* 3.975516 3.125258 2.570783 2.192812 

0.95 α1 -17.031813 -5.197933* -1.343961 0.229120 0.883447 1.194162 1.359921 

α2 22.586202 11.159537* 7.246460 5.225115 4.010719 3.231645 2.702364 
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1.00 α1 - -17.031813 -5.085133 -1.459811 0.001153 0.698504 1.074515 

α2 - 22.586202 10.832088 6.963446 5.062014 3.944830 3.218047 

  𝜉2 

   0.35 0.40 0.45 0.50 0.55 0.60 0.65 

𝜉1 

0 α1 1.054605 1.115179 1.182917 1.233701 1.268354 1.288113 1.249068 

α2 1.460963 1.564248 1.694512 1.859611 2.071070 2.346373 2.713217 

0.05 α1 1.057992 1.117462 1.117462 1.254602 1.315400 1.378511 1.411994 

α2 1.299001 1.386386 1.386386 1.632023 1.803974 2.027226 2.318450 

0.10 α1 1.018826 1.074506 1.074506 1.215722 1.288508 1.374214 1.447670 

α2 1.121355 1.188496 1.188496 1.379063 1.511273 1.685114 1.909302 

0.15 α1 0.959383 1.008167 1.008167 1.141712 1.216097 1.310002 1.401772 

α2 0.990718 1.039554 1.039554 1.183281 1.283034 1.418270 1.591796 

0.20 α1 0.908659 0.948618 0.948618 1.069081 1.140810 1.238324 1.343039 

α2 0.916692 0.952085 0.952085 1.063227 1.141149 1.252950 1.398286 

0.25 α1 0.867949 0.897608 0.897608 1.000866 1.066697 1.165702 1.284923 

α2 0.869455 0.893711 0.893711 0.979259 1.040586 1.137999 1.272354 

0.30 α1 0.829199 0.846355 0.846355 0.924602 0.976738 1.068050 1.195354 

α2 0.828832 0.841244 0.841244 0.898881 0.940450 1.020543 1.146426 

0.35 α1 - 0.806627 0.806627 0.854040 0.883238 0.951720 1.069273* 

α2 - 0.804377 0.804377 0.833896 0.850730 0.903873 1.010934* 

0.40 α1 0.806627 - 0.810954 0.820405 0.825416 0.861619* 0.951720 

α2 0.804377 - 0.808189 0.810737 0.805463 0.827032* 0.903873 

0.45 α1 0.830575 0.810954 - 0.825638 0.816815* 0.825416 0.883238 

α2 0.820765 0.808189 - 0.823439 0.808272* 0.805463 0.850730 

0.50 α1 0.854040 0.820405 0.820405 - 0.825638 0.820405 0.854040 

α2 0.833896 0.810737 0.810737 - 0.823439 0.810737 0.833896 

0.55 α1 0.883238 0.825416 0.816815* 0.825638 - 0.810954 0.830575 

α2 0.850730 0.805463 0.808272* 0.823439 - 0.808189 0.820765 

0.60 α1 0.951720 0.861619* 0.825416 0.820405 0.810954 - 0.806627 

α2 0.903873 0.827032* 0.805463 0.810737 0.808189 - 0.804377 

0.65 α1 1.069273* 0.951720 0.883238 0.854040 0.830575 0.806627 - 

α2 1.010934* 0.903873 0.850730 0.833896 0.820765 0.804377 - 

0.70 α1 1.195354 1.068050 0.976738 0.924602 0.884015 0.846355 0.829199 

α2 1.146426 1.020543 0.940450 0.898881 0.868971 0.841244 0.828832 

0.75 α1 1.284923 1.165702 1.066697 1.000866 0.947269 0.897608 0.867949 

α2 1.272354 1.137999 1.040586 0.979259 0.933439 0.893711 0.869455 

0.80 α1 1.343039 1.238324 1.140810 1.069081 1.007395 0.948618 0.908659 

α2 1.398286 1.252950 1.141149 1.063227 1.003103 0.952085 0.916692 

0.85 α1 1.401772 1.310002 1.216097 1.141712 1.074437 1.008167 0.959383 

α2 1.591796 1.418270 1.283034 1.183281 1.104955 1.039554 0.990718 

0.90 α1 1.447670 1.374214 1.288508 1.215722 1.146079 1.074506 1.018826 

α2 1.909302 1.685114 1.511273 1.379063 1.274497 1.188496 1.121355 

0.95 α1 1.411994 1.378511 1.315400 1.254602 1.189762 1.117462 1.057992 

α2 2.318450 2.027226 1.803974 1632023 1.496212 1.386386 1.299001 



130  Oni et. al. / Journal of Engineering and Applied Sciences 11  (2015),  1-10 
 

JEAS   ISSN: 1119-8109 

 

1.00 α1 1.249068 1.288113 1.268354 1.233701 1.182917 1.115179 1.054605 

α2 2.713217 2.346373 2.071070 1.859611 1.694512 1.564248 1.460963 

 

 

 

  𝜉2 

   0.70 0.75 0.80 0.85 0.90 0.95 1.00 

𝜉1 

0 α1 1.074514 0.698504 0.001153 -1.459811 -5.085133 -17.031812 - 

α2 3.218047 3.944830 5.062014 6.963446 10.832088 22.586202 - 

0.05 α1 1.359921 1.194162 0.883447 0.229120 -1.343961 -5.197933* -17.031812 

α2 2.702364 3.231645 4.010719 5.225115 7.246460 11.159537* 22.586202 

0.10 α1 1.462504 1.408082 1.298618 1.047829 0.348648* -1.343961 -5.085133 

α2 2.192812 2.570783 3.125258 3.975516 5.263551* 7.246460 10.832088 

0.15 α1 1.446515 1.436868 1.409046 1.340164* 1.047829 0.229120 -1.459811 

α2 1.798719 2.059370 2.446031 3.060516* 3.975516 5.225115 6.963446 

0.20 α1 1.407191 1.416483 1.412313* 1.409046 1.298618 0.883447 0.001153 

α2 1.559662 1.740833 2.003625* 2.446031 3.125258 4.010719 5.062014 

0.25 α1 1.374004 1.406445* 1.416483 1.436868 1.408082 1.194162 0.698504 

α2 1.416893 1.557625* 1.740833 2.059370 2.570783 3.231645 3.944801 

0.30 α1 1.310103* 1.374004 1.407191 1.446515 1.462504 1.359921 1.074515 

α2 1.288271* 1.416893 1.559662 1.798719 2.192812 2.702364 3.218047 

0.35 α1 1.195354 1.284923 1.343039 1.401772 1.447670 1.411994 1.249068 

α2 1.146426 1.272354 1.398286 1.591796 1.909302 2.318450 2.713217 

0.40 α1 1.068050 1.165702 1.238324 1.310002 1.374214 1.378511 1.288113 

α2 1.020543 1.137999 1.252950 1.418270 1.685114 2.027226 2.346373 

0.45 α1 0.976738 1.066696 1.140810 1.216097 1.288508 1.315400 1.268354 

α2 0.940450 1.040586 1.141149 1.283034 1.511273 1.803974 2.071070 

0.50 α1 0.924602 1.000866 1.069081 1.141712 1.215722 1.254602 1.233701 

α2 0.898881 0.979259 1.063227 1.183281 1.379063 1.632023 1.859611 

0.55 α1 0.884015 0.947269 1.007395 1.074437 1.146079 1.189762 1.182917 

α2 0.868971 0.933439 1.003103 1.104955 1.274497 `1.496212 1.694512 

0.60 α1 0.846355 0.897608 0.948618 1.008167 1.074506 1.117462 1.115179 

α2 0.841244 0.893711 0.952085 1.039554 1.188496 1.386386 1.564248 

0.65 α1 0.829199 0.867949 0.908659 0.959383 1.018826 1.057992 1.054605 

α2 0.828832 0.869455 0.916692 0.990718 1.121355 1.299001 1.460963 

0.70 α1 - 0.867017 0.897092 0.938885 0.991599 1.026512 1.019934 

α2 - 0.868061 0.902645 0.962200 1.074280 1.232144 1.379163 

0.75 α1 0.867017 - 0.901715 0.935178 0.981916 1.012629 1.000866 

α2 0.868061 - 0.903322 0.948312 1.042110 1.181044 1.314943 

0.80 α1 0.897092 0.901715 - 0.938539 0.980187 1.006729 0.986672 

α2 0.902645 0.903322 - 0.943689 1.019911 1.141255 1.265503 

0.85 α1 0.938885 0.935178 0.938539 - 0.998704 1.024910 0.997834 

α2 0.962200 0.948312 0.943689 - 1.014836 1.115460 1.228845 
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0.90 α1 0.991598 0.981916 0.980187 0.998704 - 1.080427 1.058495 

α2 1.074280 1.042110 1.019911 1.014836 - 1.113157 1.203565 

0.95 α1 1.026512 1.012629 1.006729 1.024910 1.080427 - 1.143151 

α2 1.232144 1.181044 1.141255 1.115460 1.113157 - 1.188747 

1.00 α1 1.019934 1.000866 0.986672 0.997834 1.058495 1.143151 - 

α2 1.379163 1.314943 1.265503 1.228843 1.203565 1.188747 - 
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