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Abstract  

The study aimed at developing an optimal maintenance policy for 800kVA Perkins electrical generating sets (gen-sets) using 

Markovian predictive model. The 800kVA Perkins gen-set used by the Michael Okpara University of Agriculture, Umudike 

(MOUAU) was employed as a case study. To derive the solution for the analysis, the Markovian predictive model utilized sought 

answer to such questions as, “At what rate should the generator be maintained; and at what condition would it be after 

maintenance?” Theoretical data derived from the system were compiled, tested and thereafter simulated. Results of the analysis 

gave a value of 10 weeks and 2 days as the optimal operation policy period for 800kVA gen-sets; meaning that the system should 

be regularly maintained at the end of this period. In conclusion, appropriate models for enhancing the performance of the 

MOUAU‟s main gen-set have been developed in this study. In particular, the models are for determining the effective 

maintenance policy for an electrical gen-set so as to ensure that the system lasts long in service. Hopefully, results from the study 

will assist maintenance engineers and plant operators in improving the performance of their gen-sets through preventive rather 

than reactive maintenance. Consequently, it is recommended that the engineers and plant operators of the 800kVA Perkins gen-

set at MUOAU and any other institution should adopt the developed models in the plant maintenance practices. It is also 

recommended that the maintenance policy developed from the study be integrated with the automated generator condition 

assessment models. 
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Nomenclature 

𝐾  Failure frequency per year 

𝑛 Number of states or the condition rating of the engine for an activity (or efficiency at 95% significant level 

of confidence) 

𝑛𝑜𝑝𝑡𝑖𝑚𝑎𝑙  Optimal policy value 

𝑁 Number of years projected for the engine to generate power or shelf-life of the engine (yrs) 

𝑃  Probability or transition matrix  

𝑄𝑛   State vector time at step 𝑛 (used to output results generated from “𝑃” matrix when ran on the Matlab 

interface) 

𝑟  Initial state vector 

𝑡𝑐  Average duration of one corrective maintenance (hrs) 

𝑡𝑐𝑚   Total corrective maintenance (hrs) 

𝑡𝑖   Average duration of one inspection or average time for an engine inspection (ℎ𝑟𝑠) 

𝑡𝑚  Average duration of one maintenance (ℎ𝑟𝑠) 

𝑇𝑛  Total downtime (ℎ𝑟𝑠) caused by the generator for each activity (task) in a given state (n) 

𝑡𝑝𝑚   Preventive (repair) maintenance (hrs) 

𝑡𝑟   average duration of one preventive maintenance (hrs) 

𝜆  Transition rate 

𝜆𝑖𝑗   Rate of transition from one state to the other 

𝜆𝑛   Failure rate occurrence per year 
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1. Introduction 

In view of the rapid development around the globe, power demand has increased drastically during the past decade 

(Giftson and Rajan 2013). The advances in computer and information technology having created a strong trend in 

the world today also necessitated the integration of various operation facilities into large scale systems. As a result 

of this integration, the productivity and efficiency of these systems have been significantly improved. On the other 

hand, the integration as Giftson and Rajan (2013) suggested, has also created a strong functional dependency 

between the components of the system. Failure of any one of these components as they stated could destabilize the 

entire system and hence cause significant financial loses and serious safety problems.  

 

To meet this demand, the development of power system technology has become increasingly important in order to 

maintain a reliable and economic electric power supply. One major concern of such development is the optimization 

of power plant maintenance scheduling. Since maintenance is aimed at extending the life-time of power generating 

facilities or to improve its performance in the mean time the next failure for which repair cost may be significant, an 

effective maintenance policy would reduce the frequency of service interruptions and their consequences (Giftson 

and Rajan 2013). In other words, an effective maintenance scheduling is very important for a power system to 

operate economically and with high reliability. Therefore, it is the focus of this work to resolve maintenance 

decision problems and establish an optimal maintenance policy for an electrical generating system with an economic 

dependency. This was done using MOUAU, 800kVA Perkins gen-set in-situ at the University as case study. In this 

direction, an opportunistic maintenance policy generally applicable to the economic dependency problem was 

proposed for developing optimal maintenance schedule.  

 

Although, effective maintenance policy development has become the major challenge and primary concern for 

today‟s system managers, many maintenance-scheduling methods had been proposed using conventional 

mathematical programming methods or heuristic techniques. Heuristic approaches provide the most primitive 

solution based on trial-and-error approaches (Giftson and Rajan 2013). These techniques may not generally lead to 

the global optimality for a complex problem; that is, the procedure tends to fall into a local minimum if a starting 

point is not carefully chosen. Heuristic methods were used earlier in solving maintenance scheduling problems for 

centralized power systems because of their simplicity and flexibility. Mathematical optimization-based techniques 

such as integer programming (Dopazo and Merrill 1975), dynamic programming (Yamayee et al.1983; Zurn and 

Quintana 1975) and branch-and-bound (Egan et al.1976) were proposed to solve maintenance scheduling problems. 

For small problems, these methods give an exact optimal solution. However, as the size of the problem increases, 

the size of the solution space increased greatly and hence, the running time of these algorithms. These approaches 

tend to suffer from an excessive computational time with the increase of variables. To overcome this difficulty, 

modern techniques such as simulated annealing (Cerny 1985; Kirkpatrick et al.1983), stochastic evolution (Saab and 

Rao 1991), genetic algorithms (Goldberg 1989) and Tabu search (Rajan and Mohan 2004) were utilized as 

alternatives where the problem size precludes traditional techniques. These techniques are completely distinct from 

classical programming and trial-and-error heuristic methods.   

 

Maintenance as Dhillon (2002) defined is all actions appropriate for retaining an item or part or equipment in place, 

or restoring it to a given working condition. Hence, maintenance more specifically is used to repair broken 

equipments, preserve equipment conditions and prevent their failure, which ultimately reduces production loss and 

downtime as well as the environmental and the associated safety hazards. Effective and optimum maintenance has 

been the subject of research both in academia and in industry for a long time. Despite this abundance, the 

optimization of decision variables in maintenance planning like preventive maintenance frequency or spare parts 

inventory policy, is usually not discussed in textbooks nor included as a capability of the software packages. 

Nonetheless, it has been extensively studied in academic research, for which many models were discussed and 

summarized by Wang and Pham (2006) and various review papers (Wang 2002a and Wang 2002b). Most of the 

models were deterministic models obtained by making use of simplified assumptions, which allowed the use of 

mathematical programming techniques to solve. 

  

The most common optimization criterion is minimum cost and the constraints are requirements on system reliability 

measures: availability, average uptime or downtime.  More complex maintenance models that considered 

simultaneously many decision variables like preventive maintenance (PM) time interval, labor workforce size, 

resources allocation were usually solved by genetic algorithm (GA) (Saranga 2004; Shum and Gong 2006), while 
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Monte Carlo simulation is usually used to estimate reliability parameters in the model. Tan and Kramer (1997) 

utilized both Monte Carlo simulation and GA. However, none of the preventive maintenance planning models 

considered constraints on resources available in process plants, which include labour and materials (spare parts). For 

example, the maintenance work force, which is usually limited, cannot perform scheduled PM tasks for some 

equipment at scheduled PM time because of the need to repair other failed equipments. Such dynamic situations 

cannot be handled by deterministic maintenance planning models or were not considered in published maintenance 

planning models that use Monte Carlo simulation tools. To ameliorate all the aforementioned shortcomings, a new 

maintenance model based on the use of Monte Carlo simulation was developed in this research paper. The model 

incorporated three practical issues that were not considered in previous works as: different failure modes of 

equipment, ranking of equipment according to the consequences of failure, and labour and material resource 

constraints. The maintenance model, which was developed by Nguyen et al. (2008) was integrated in this work with 

a GA optimization to optimize the PM frequency. 

 

2.0 Material and methods 

To execute the work, the following assumptions were made that: 

i)  the gen-set performs as in its initial design and manufacturing conditions. 

ii) maintenance is carried out at the end of every inspection of the system. 

iii) every failed components of the system is repaired or replaced. 

iv) the rotating parts of the system on the gen set must be properly timed; and 

v) replacement parts must be in serviceable condition and replaced with genuine spares. 

 

2.1 Condition Assessment Scale 

Presented in Table 1 is the physical assessment of the conditions of the gen-set and its ratings as adapted from Wang 

(2002a) with some other modifications by the present researchers. The generator from the table was assumed to be 

in different states as time went on. The condition of the generator was also described by the rate of damages done in 

percentage (%) during the running of the engine. 

  

     Table 1: Physical assessment of the conditions of the generating set and its ratings 

Condition rating of the 

gen set 

Condition/state description of 

the gen set 

Extent of damage of the 

engine at different states (%) 

1 Excellent 0-10 

2 Very good* 11-20 

3 Good 21-30 

4 Very fair* 31-40 

5 Fair 41-55 

6 Poor 56-70 

7 Very poor* 71-85 

8 Failed >85 

       Source: Wang (2002a); and „*‟modified by the present researchers. 

 

 

     Table 2: Downtime maintenance due to various faults on the generator 

Task Total downtime, 𝑇𝑛  (hr) 

Battery failure 5.40 

Leakages 5.50 

Connectors  5.65 

Air cleaner 5.70 

Radiator flush 5.80 

Fan tension 6.25 

Filters 6.10 

Noise 8.91 

 

Also, the downtime maintenance employed at MOUAU due to various faults (tasks) developed on the gen-set is as 

shown in Table 2. 
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2.2 Description of the Machine State and Formulation of the Markovian Chain Predictive Model 

𝑥1 ,  𝑥2 , 𝑥3 , … , 𝑒𝑡𝑐 is a stochastic process representing a collection of condition ratings of a gen-set based on a three-

year inspection data. At any time 𝑡, the condition of a generating set can be described in exactly one of a finite 

number of mutually exclusive and exhaustive categories or states. Eight states, associated with the condition ratings 

1 to 8 presented in Table 1, with 1 being the optimal generator condition, and 8 corresponding to critical (worst) 

generator condition were used. Consequently, the state diagram describing the states of the gen-set and the 

efficiencies which represented the stated problem as a Markov chain is presented in Fig.1.  

 

 
Fig.1: State diagram for the efficiencies of the gen-set 

 

A stochastic process is said to be a Markov chain, if it has the Markovian property (i.e., the conditional probability 

of any future event, given any past event and the present state where: 𝑋𝑡  = 𝑖, is independent of the past event and 

depends only upon the present state). This property can be expressed as represented in Eqn 1.   

 

P (𝑋𝑡+1= 𝑖𝑡+1 | 𝑋𝑡  =𝑖𝑡 , 𝑋𝑡−1= 𝑖𝑡+1,..., 𝑋1= 𝑖1, 𝑋0 = 𝑖0) = P (𝑋𝑡+1= 𝑖𝑡+1| 𝑋𝑡  =𝑖𝑡)                             (1) 

 

In order to reduce the complexity of the analysis, the future condition of generators was assumed to depend only on 

the present state, and independent of the past condition. It was further assumed that for all states, 𝑖 and 𝑗, and all 

𝑡, 𝑃(𝑋𝑡+1 = 𝑖𝑡+1|𝑋𝑡  = 𝑖𝑡) were independent of 𝑡. The probability 𝑃𝑖𝑗  represented in Eqn 2 thus, indicate that the 

generator condition was in a state 𝑖 at time 𝑡, and will remain in a state 𝑗 at time, 𝑡 + 1 without changing (i.e., it 

would remain stationary) over time (unless rehabilitation was performed, or other external factors did change). 

Hence, 𝑃𝑖𝑗  represents otherwise the probability of the process going from state 𝑖 to 𝑗. This stationary assumption is 

expressed by Eqn 2 as: 

 

P (𝑋𝑡+1 =  j | 𝑋𝑡  = 𝑖) = 𝑃𝑖𝑗           (2) 

 

The transition probabilities are commonly displayed as an "𝑚 × 𝑚" matrix called the transition probability matrix, P 

(Wang 2002a). The term transition is used when the system moves from state 𝑖 during one period to state 𝑗 during 

the next period. Accordingly, the probabilities, 𝑃𝑖𝑗 ‟s, are referred to as the transition probabilities. Hence, eight 

states (Table 1) associated with the eight possible conditions of the generators were established. To simplify the 

computation, it was assumed that the generator deteriorated by one state in one transition period. Thus, the transition 

probability matrix 𝑃 becomes Eqn 3: 

 

   

   

   

   

   

  (3) 

 

where  𝑃 𝑖𝑗 = 1                            (3b) 

 

Eqn 3b indicates that the sum of each row probability must be equal to 1.  

Based on the assumptions made, the transition rate (λ) of the probability matrix 𝑃, otherwise the rate of transition 

from one state to the other, λ𝑖𝑗  given in Eqn 4 were developed using Eqns 5-6h following the state diagram for the 

efficiencies of the gen-set as established in Fig.1.  
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      (4) 

 

λij = 
𝑇𝑛  – 𝑁 (𝑡𝑖)

𝑡𝑚
                                                      (5) 

 

 λ 11 + λ12 = 1; and  λ11 = 1 – λ12                      (6) 

 

Similarly:  

λ 22 + λ23 = 1; and λ22 = 1 – λ23                     (6b) 

λ 33 + λ34 = 1; and λ33 = 1 – λ34                                          (6c) 

λ44 + λ45 = 1; and λ44 = 1 – λ45                                                         (6d) 

λ55 + λ56 = 1; and λ55 = 1 – λ56                     (6e) 

λ66 + λ67 = 1; and λ66 = 1 – λ67                    (6f) 

λ77 + λ78 = 1; and λ77 = 1 – λ78; and                     (6g) 

λ88 = 1                       (6h) 

where 𝜆11  to 𝜆88  and 𝜆12  to 𝜆78  respectively represent the rates of retention of the system or the efficiencies of the 

gen-set at each state, and the corresponding losses due to the system. 

 

2.3     Determination of Transition Rate (λ) 

The field data collected on the 800kVA MOUAU gen-set maintenance history from the generator Unit maintenance 

Catalogue for a period of one year and three months (15months) revealed that the device usually breaks down from 

time to time. To reduce the number of breakdowns, 𝑛𝑡ℎ inspections were made ‘𝑁𝑡ℎ’ times a year, after which, 

preventive maintenance was carried out. The field data as collected for the preventive and the corrective 

maintenances carried out on the gen-set for various faults developed (Table 2) are shown in Tables 3. 

 

Table 3: Maintenance data (hrs) for MOUAU 800kVA generator set in the years 2014 and 2015 

Month Preventive maintenance (𝑡𝑝𝑚 )  Corrective maintenance (𝑡𝑐𝑚 ) 

Feb. 2014 4.00 0.00 

Mar. 2014 5.00 0.30 

April 2014 0.50 0.45 

May 2014 13.00 3.80 

June 2014 9.00 1.30 

July 2014 8.00 1.30 

Aug. 2014 12.00 2.20 

Sept. 2014 12.00 3.20 

Oct. 2014 14.00 4.60 

Nov. 2014 7.00 0.60 

Dec. 2014 8.00 1.10 

Jan. 2015 5.00 0.45 

Feb. 2015 9.00 0.55 

Mar. 2015 10.00 2.55 

April 2015 7.00 3.00 

Total 123.5 25.40 

  

Consequently, the total downtime 𝑇𝑛  (hrs) caused by the generator for each activity or task in a given state 𝑛 as 

presented in Table 2, and the minimum time 𝑡𝑚  taken for one maintenance of the system (hrs) are evaluated using 

the Eqns 7 and 7b respectively.  

 

              𝑇𝑛 = 𝑡𝑚 λ𝑖𝑗  + 𝑡𝑖 𝑁                                (7) 

and      𝑡𝑚 = 𝑡𝑟 + 𝑡𝑐                                              (7b) 
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According to the views of Experts (CAT
TM

 2014) in the service line, if an average time taken for an engine 

inspection 𝑡𝑖 , being 8mins or 0.133hrs as obtained from the MOUAU gen-set Unit (which also was taken to be the 

average duration of one inspection) can be attained, the number of years projected for the engine to generate power, 

otherwise, the shelf-life of the engine 𝑁, could extend to 40years. Hence, the average durations of one preventive 

(repair), 𝑡𝑟  and one corrective, 𝑡𝑐  maintenances (hrs) are respectively given as: 

 

            𝑡𝑟 =
𝑡𝑝𝑚 − 𝑡𝑖  𝑥 𝑁 

𝑁
                           (7c) 

 

and    𝑡𝑐 =
𝑡𝑐𝑚

𝑁
            (7d) 

 

Moreso, from the state vector time at step 𝑛, 𝑄𝑛  (used to output the results generated from “𝑃” matrix when ran on 

the Matlab interface), the failure frequency per year, 𝐾 and the failure rate occurrence per year, 𝜆𝑛  respectively, the 

optimal value for the policy, 𝑛𝑜𝑝𝑡𝑖𝑚𝑎𝑙  presented in Eqn 7h was estimated using Eqns 7e-7g.  

    

     𝑄𝑛 =  𝑟𝑝𝑛                                         (7e) 

   𝐾 =  
𝑛

λ+1
 =   

𝑡𝑟

𝑡𝑐
            (7f) 

 

    𝜆𝑛 =  
𝑛

𝐾+1
       (7g) 

 

   𝑛𝑜𝑝𝑡𝑖𝑚𝑎𝑙  =  
𝐾𝑡𝑟

𝑡𝑖
 
𝑛

                   (7h) 

 

3.0 Results and Discussions 

The parametric results for the values of the transition matrix, 𝑃 obtained using Eqns 5-6h (where: λ11 = 0.9777, λ22 = 

0.9532, λ33 = 0.9081, λ44 = 0.8941, λ55 = 0.8663, λ66 = 0.7409; and λ77 = 0.7827 respectively) are presented in Eqn 8. 

The state vectors as reconciled with the Table 1 and the transition matrix of Eqn 8 show that 0.977 represented the 

state vector of the condition or state of the gen-set that is excellent, followed by 0.9532 as very good, and 0.9081 as 

good, in that order, upto…1.0000 as failed. To predict the future condition of the generator from the probability of 

failure, the calculated results (Eqn 8) obtained from the Markov models (Eqns 3 and 4) being representative of the 

efficiencies of the gen-set in Fig.1, were simulated using the Matlab program (Eqns 9-9g) and subsequently 

analysed, employing the Markovian matrix model presented in Eqn 10. 

  

       (8) 

E = (S0*P)P^2                (9) 

F = (S0P^2*P^3)P^3               (9b) 

G = (S0P^2*P^3)P^7               (9c) 

H = (S0P^2*P^3)P^12               (9d) 

I  =  (S0P^2*P^3)P^18               (9e) 

J =  (S0P^2*P^3)P^25               (9f) 

K = (S0P^2*P^3)P^33               (9g) 

 

          (10) 
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The Eqns 9-9g are of the Markovian process since they are probabilistic and not stochastic. The calculated values of 

Eqn 8 conforming to such process, when in-putted into the MATLAB interface utilizing the program and ran, gave 

rise to the state vector time at step 𝑛.  

 

The prediction utilized the argument shown in Eqn (11), which indicated that, at the initial state (𝑆𝑂), the system is 

unity (i.e. perfect or excellent). Thus, the resulting probability matrix, 𝑃 (Eqn 8) when executed using the predicted 

results from the Matlab program (Eqn 10), gave the state vector time at step 𝑛   𝑄𝑛 , presented in Eqn 12. 

 

  𝑆𝑂 =   1   0  0   0   0   0   0   0                   (11) 

 

        (12) 

 

Based on the Markov predictive model (Wang 2002b), the optimal maintenance policy for such a generating set can 

always be described “when the system hits state 𝑖, and recovers itself back to state 𝑗”. In this regard, Eqns 8 and 10 

as representatives of Eqn 3 indicate that at an excellent state stage (𝑉𝑖𝑗 = 𝑉11) of Eqn 10, the system was in its 

perfect condition without deterioration. However, if not maintained at any interval but allowed to hit stage 3 

(𝑉𝑖𝑗 = 𝑉33), the system deration is inevitable, otherwise, it would be restored to a state in good condition (𝑉𝑖𝑗 =

𝑉42 = 𝑉𝑖𝑗 = 𝑉22). This thus, enabled the system performance to be predicted with Qn  (Eqn 12), which was the state 

vector time at step 𝑛.  

 

Also, the maintenance strategy chart results of the 800kVA generator for the period of 15 months are shown in 

Fig.2. From the figure, it was evident that the maintenance strategy taken for maintaining the generator was high 

with preventive maintenance duration of 14hrs in the month of October 2014. Similarly, due to this nature of the 

maintenance strategy adopted, the corresponding corrective maintenance was also high (about 5.30hrs) for the same 

month. Consequently, the greatest downtime observed (Fig.3) was caused by noise with a total downtime of about 

9hrs, while the least task was the battery fault with a total downtime value of about 5 to 6 (5.40) hrs.  

 

Invoking the values of 𝑡𝑝𝑚  = 123.5hrs and 𝑡𝑐𝑚  = 25.40hrs from Table 3, and those of 𝑡𝑟  = 2.9545hrs and 𝑡𝑐  = 

0.6350hrs obtained from Eqns 7c-7d respectively, the value of 𝑡𝑚  was evaluated as 3.5895hrs applying Eqns 7-7b. 

Based on Assumption 1, and for a 95% of the time before transiting to the succeeding condition state, the optimal 

value for the policy, 𝑛𝑜𝑝𝑡𝑖𝑚𝑎𝑙  was estimated from Eqn 7h as 10.17 weeks, utilizing the values of 𝐾 = 4.6528, 𝜆𝑛  = 

0.0885 from Eqns 7f-7g respectively, and 𝑡𝑖 = 0.133, employing the 𝑛 factor of 0.5 at 95% significant level of 

confidence. Hence, the system performance (Qn) from Eqns 7e and 12 as predicted, has an optimal value of 10.17 

weeks. Consequently, with Qn  = 10.17 weeks, which represents the optimal maintenance policy value for the system 

under review, the generator should be maintained every 10 weeks and 2 days (outmost, every 11 weeks).  
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Fig.2: Maintenance strategy chart result on the 800kVA generator set for the period of 15months 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: Total downtime chart result due to various faults (identified activity) from the generator 

  

 

4.0. Conclusion  

The use of Markov chain models for developing an optimal maintenance policy for electrical generating sets under 

break down conditions was presented. It was demonstrated that the magnitude of uncertainty had significant impact 

in the selection of maintenance policies, which is necessary for rational decision making in this field. The optimal 

maintenance period of 10.17 weeks obtained indicates that for every 10 to 11 weeks of using a Perkins Electrical 

Generating set, maintenance should be carried out on the system.  

 

Although this research focused on the method under the context of a generating system, it can also be easily 

extended to other fields of generating components. In this direction, suggestions for future work focusing on 

integrating the maintenance policy with automated generator condition assessment models, as well as the 

management systems are proffered. To fully optimize the usefulness of the optimal maintenance policy on 

generators, it is recommended that extension should be made to other generator types like the Caterpillar, Cummins, 

Damen engines, etc. Overall, optimal maintenance policy if gainfully implemented will assist maintenance engineers 

and plant operators improve the performance of the gen-set, and make more accurate predictions of the condition of 

generating sets. This would be a good step towards preventive rather than the reactive maintenance. 

 

 

 

 



Ugwu et al./ Journal of Engineering and Applied Sciences       87 

 

JEAS   ISSN: 1119-8109 

 
 

References 

 

CAT
TM

, 2014. Caterpillar Service Information System (SIS) PDF, ePub eBook Catalog. http://book.onepdf.us/sis-

caterpillar.pdf. Accessed: 23/05/2018.   

Cerny, V; 1985. Thermo dynamic approach to the travelling salesman problem: an efficient simulation algorithm. J. 

Optim. Theory Appl; 45, 41-52.  

Dhillon, B.S; 2002. Engineering Maintenance, CRC Press, Boca Raton, USA. 

Dopazo, J.F; Merrill, H.M; 1975. Optimal generator maintenance scheduling using integer programming. IEEE 

trans. power apparatus and syst; 94, 5, 1537-1545.  

Egan, G.T; Dillon, T.S; Morsztyn; 1976. An experimental method of determination of optimal maintenance 

schedules in power systems using the branch-and-bound technique. IEEE Trans. Syst. Man Cybernet. 6, 

538-547. 

Giftson, G.S; Rajan, C.A; 2013. Hybrid particle swarm optimization: evolutionary programming approach for 

solving generation maintenance scheduling problem. Scientific Research and Essays, 8, 35, 1701-1713.   

Goldberg, D.E; 1989. Genetic Algorithms in Search, Optimization and Machine Learning, 1
st
 Ed. Addison-Wesley 

Longman Publishing Co; Inc. Boston, MA, USA. 

Kirkpatrick, S; Gelatt, C.D; Vecchi, M; 1983. Optimization by simulated annealing. Science, 220, 671-680. 

Nguyen, D.Q; Brammer, C; Bagajewicz, M; 2008. New tool for the evaluation of the scheduling of preventive 

maintenance for chemical process plants. Ind. Eng. Chem. Res, 46, 6, 1910-1924. 

Rajan, C.C.A; Mohan, M.R. 2004. An evolutionary programming based Tabu search for solving the unit 

commitment problem. IEEE Trans. Power Syst; 19, 577-589.                                         

Saab, Y.G; Rao, V.B; 1991. Combinatorial optimization by stochastic evolution. IEEE Trans. Computer-Aided Des; 

10, 525-535. 

Saranga, H; 2004. Opportunistic maintenance using genetic algorithms. Journal of Quality in Maintenance 

Engineering, 10, 1, 66-74. 

Shum, Y.S; Gong, D.C; 2006. Application of genetic algorithm in the development of preventive maintenance 

analytic model. International Journal of Advanced Manufacturing Technology, 32, 169-183. 

Tan, J.S; Kramer, M.A; 1997.  A general framework for preventive maintenance optimization in chemical process 

operations. Computers and Chemical Engineering, 21, 12, 1451-1469. 

Wang, H; Pham, H; 2006. Reliability and Optimal Maintenance. Springer Series in Reliability Engineering, 

Springer-Verlag, London. 

Wang, H.Z; 2002a. A survey of maintenance policies of deteriorating systems. European Journal of Operations 

Research, 139, 3, 469-489. 

Wang, X.J; 2002b. Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955-968. 

Yamayee, Z.A; Sidenblad, K; Yoshimura, M; 1983. A computationally efficient optimal maintenance scheduling 

method. IEEE Trans. Power Apparatus Syst; 102, 330-338.  

Zurn, H.H; Quintana, V.H; 1975. Generator maintenance scheduling via successive approximations dynamic 

programming. IEEE Trans. Power Apparatus Syst; 94, 665-671. 

 


