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Abstract  

This paper investigates the effects of number of terms of characteristic coordinate polynomial functions in approximating the 

deformation characteristics- deflections and moments- of a uniformly-loaded thin isotropic rectangular plate with all edges 

simply supported. Polynomial deflection function series satisfying the prescribed boundary conditions of the plate were 

developed. First, second, truncated third and third approximations of the polynomial series were used in the Galerkin method to 

work out maximum deflection and maximum span moment coefficient values for each approximation corresponding to different 

aspect ratios (p = b/a) ranging from 1.0 to 2.0. The results were compared with the results from previous works in literature and 

their accuracy and pattern of convergence observed. Inferences were drawn based on the observed response patterns. The results 

of the short span moment coefficient values for instance, showed average percentage differences of 6.83, 5.04, 25.17 and 279.89 

for the first, second, truncated third and third approximations respectively when compared with the results of the classical 

solution.  Hence, it is concluded that beyond the second approximation, the present formulation showed a notable divergence 

with the results of the classical solution for the mid-span coefficient values. 

Keywords: Boundary conditions, Coordinate polynomial, Deflection function, Galerkin method, Rectangular plate  

Symbols 

A                   surface area of plate p   aspect ratio ( p = b/a ) 

a   primary axis of plate q                   external load 

b   secondary axis of plate w (.) 𝑤  (.)     deflection function, trial function 

D                   flexural rigidity α  maximum deflection coefficient 

E                   Young modulus β                  maximum moment coefficient 

h  plate thickness ν  Poisson’s ratio 

M                 bending moment  

 

1. Introduction 

Rectangular plates, due to their geometry, have found diverse applications in engineering. They are characterized 

with edge restraints, among which are: free edge, simply supported edge, clamped edge etc. The simply supported 

edge is one of the most common cases in engineering. This paper analyses the effects of number of terms of 

characteristic coordinate polynomial deflection functions in approximating the deflected middle surface of a 

uniformly-loaded thin rectangular isotropic plate with all edges simply supported. A plate is called thin when its 

thickness is at least ten times smaller than the span of the plate in a plane (Ventsel& Krauthammer 2001). The 

bending and buckling of rectangular plates have been a subject of study in solid mechanics for more than a century. 

Many scholars and analysts have investigated the bending of thin rectangular plates using many techniques. But due 

to the fact that rectangular plates bear applied load as a single unit, it is imperative to understand their bending 

behaviour in terms of how the number of terms in its deflection function affects the convergence of the solution.  
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Previous solutions have used trigonometric, hyperbolic, polynomial functions or a combination of these for the 

deflection function of plates. Szilard (2004) gave the Navier solution for the governing differential equation of all 

round simply supported plate using double trigonometric infinite series. Aginam, Chidolue and Ezeagu (2012) used 

different approximations of polynomial deflection functions in the direct variational method in Ritz method for the 

solution of two cases of uniformly loaded thin isotropic rectangular plates, namely: a plate whose two opposite 

edges are simply supported and the other two clamped, and a plate whose three edges are simply supported and the 

other clamped. Imrak and Gerdemeli (2007) used a series of trigonometric and hyperbolic deflection functions for 

the deflection of a clamped rectangular plate under uniform load. Wang and El-sheikh (2005) applied von karman 

equations relating the lateral deflections to the applied load for all edges simply supported and clamped using 

trigonometric functions.  

In addition, some researchers have argued that the solutions of plate problems lie in the one-term domain; others 

have argued that the solutions lie in the multi-term domain. Baraigi (1986) and Lekhnitskii (1968) in their separate 

works used a one-term polynomial approximation for the deflected surface of the plate using the Ritz method. 

Mikhlin (1964) used the Ritz method to derive the corresponding one-term solution for a rectangular plate and the 

three- term solution for a square plate but without calculating the associated moments. Timoshenko and 

Woinowsky-krieger (1959) presented solutions for the deflection function of a square plate corresponding to both a 

one-term and a four-term approximation based on the Galerkin method. Hutchinson (1992) used the solution 

presented in Timoshenko and woinowsky-krieger (1959) and tabulated deflections for uniformly loaded rectangular 

plates. Vanam, Rajyalakshmi and Inala (2012) used a twelve-term polynomial deflection function for the static 

analysis of an isotropic rectangular plate using finite element method. Ragesh, Mustafa and Somasundaran (2014) 

employed a twelve-term polynomial function in Galerkin method for analysis of an integrated Kirchhoff plate 

element on elastic foundation. Ajagbe, Rufai and Labiran (2014) used a twelve-term polynomial deflection function 

in finite element method for the analysis of orthotropic plate problems. Zhong and Xu (2017) utilized Fourier series 

for the bending solution of clamped rectangular thick plates using Midlin’s higher-order shear deformation plate 

theory. It is often assumed that increase in number of terms of the deflection function increases the accuracy of 

solutions. However, no researcher has investigated the effects of number of terms of characteristic coordinate 

polynomial deflection functions on the accuracy and convergence of results in comparison with the classical solution 

for all round simply supported isotropic rectangular plate under uniform load using the Galerkin method. 

Nevertheless, this research work gives a numerical solution of all round simply supported rectangular plate under 

uniformly distributed load using the Galerkin method. The deflected middle surface of the plate is approximated by 

means of one-term, three-term, four-term and six-term characteristic coordinate polynomial functions corresponding 

to the first, second, truncated third and third approximations respectively. The unknown maximum deflection and 

maximum moment coefficient values are determined using the Galerkin method. The results are compared with the 

results from previous works found in literature (Timoshenko &woinowsky-krieger 1970). The expansion of the 

deflection function is given in a systematic form. The calculation is performed for rectangular plate of uniform 

thickness. 

2.0 Material and methods 

2.1 Theory 

The classical plate theory assumes that the material is elastic and that the stress normal to the middle plane 𝜎𝑧  is 

small and may be neglected. Hence, Hooke’s law is obeyed two-dimensionally. The stress and displacement 

relations can be stated as (Birman 2011): 

𝜎x =  −
𝐸𝑧

1 − ν2
 
𝜕2𝑤

𝜕𝑥2
+  𝜈

𝜕2𝑤

𝜕𝑦2
                                                                                                   (1𝑎) 

𝜎y =  −
𝐸𝑧

1 − ν2
 
𝜕2𝑤

𝜕𝑦2
+  𝜈

𝜕2𝑤

𝜕𝑥2
                                                                                                   (1𝑏) 

𝜏𝑥𝑦 = −
𝐸𝑧

1 + ν

𝜕2𝑤

𝜕𝑥𝜕𝑦
                                                                                                                         (1𝑐) 

The moment-stress relations are calculated thus, 
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Mx

My

Mxy

  =     

σx

σy

τxy

  𝑧𝑑𝑧                                                                                                               (2)    

+ℎ/2

−ℎ/2

 

Integrating equation (2) over the thickness of the plate gives: 

Mx =  −D  
∂2w

∂x2
+  ν

∂2w

∂y2
                                                                                                       (3a) 

My =  −D  
∂2w

∂y2
+  ν

∂2w

∂x2
                                                                                                        (3b) 

Mxy =  M𝑦𝑥 = −D  1 − ν 
∂2w

∂x ∂y
                                                                                                (3c) 

Where D = Eℎ3/12 1 − ν2  is the flexural rigidity of the plate, E is the Young modulus, G is the shear modulus and 

ν is the Poisson’s ratio. 

But the general equation of plate is given as (Szilard 2004): 

∂2Mx

∂x2
+
∂2Mxy

∂x ∂y
+
∂2My

∂y2
=  −𝑞 𝑥, 𝑦                                                                                                  (4) 

Substituting equations 3 (a-c) into the general equation of plate element yields the governing differential equation of 

isotropic plate as: 

∂2w

∂x4
+ 2

∂4w

∂x2 ∂y2
+
∂4w

∂y4
=  

𝑞 𝑥, 𝑦 

𝐷
                                                                                                 (5) 

Where q is the applied lateral load. 

2.2  Galerkin Method 

The approximation method adopted for this research is Galerkin. However, the Galerkin formulation of plate 

bending problem for an isotropic rectangular plate is given in Cartesian coordinate as follows (Szilard 2001): 

  𝐷
∂4w

∂x4
+ 2D

∂4w

∂x2 ∂y2
+ D

∂4w

∂y4
− q 

A

w 1 x, y dxdy = 0 

  𝐷
∂4w

∂x4
+ 2D

∂4w

∂x2 ∂y2
+ D

∂4w

∂y4
− q 

A

w 2 x, y dxdy = 0 

                                 . 

                                 . 

                                 . 

  𝐷
∂4w

∂x4
+ 2D

∂4w

∂x2 ∂y2
+ D

∂4w

∂y4
− q 

A

w N x, y dxdy = 0                                                                 (6) 

 

The integrals are evaluated over the entire surface area A of the plate and 𝑤 1….𝑁 𝑥, 𝑦 are the linearly independent 

displacement functions that satisfy all the prescribed boundary conditions but not necessarily equation (5). w(x,y) is 

the plate deflection function which is being approximated in this study as an n-term polynomial, thus: 

W(x,y) = C1X1 x Y1 y + C2X2 x Y2 y + C3X3 x Y3 y …+ CnXn x Yn y                                         (7) 

Where X1,X2 , X3…Xn  and Y1,Y2, Y3 , … Yn  are derived coordinate functions in x and y axes respectively. 

Equation (7) could be simplified further by putting 

 

w 1 = X1 x Y1 y  
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w 2 = X2 x Y2 y  
w 3 = X3 x Y3 y  

. 

. 

 . 

w n = Xn x Yn y                                                                                                                                   (8) 

 

Substituting equation (8) into equation (7), we obtain 

w(x,y) = C1w 1 + C2w 2 + C3w 3 …+ Cnw n                                                                                                       (9𝑎) 

w(x,y) = w C                                                                                                                                                             (9𝑏) 

wherew =   w 1w 2w 3w 4w 5w 6  and C =   C1C1C1C1C1C1  
 

Substituting equation 9 (a-b) into equation (6) and differentiating accordingly gives: 

a11 =
D

a4
  

∂4w 1

∂x4
+ 2

∂4w 1

∂x2 ∂y2
+
∂4w 1

∂y4
 w 1 x, y dxdy                                                                      

A

 

a12 =
D

a4
  

∂4w 1

∂x4
+ 2

∂4w 1

∂x2 ∂y2
+
∂4w 1

∂y4
 w 2 x, y dxdy                                                                      

A

 

a13 =
D

a4
  

∂4w 1

∂x4
+ 2

∂4w 1

∂x2 ∂y2
+
∂4w 1

∂y4
 w 3 x, y dxdy                                                                      

A

 

. 

. 

 . 

anm =
D

a4
  

∂4w n

∂x4
+ 2

∂4w n

∂x2 ∂y2
+
∂4w n

∂y4
 w m x, y dxdy                                                                 (10)

A

 

 

Similarly, the eternal load gives: 

b1 =  qw 1 x, y dxdy                                                                                                                        
A

 

b2 =  qw 2 x, y dxdy                                                                                                                        
A

 

b3 =  qw 3 x, y dxdy                                                                                                                        
A

 

. 

 . 

 . 

   bn =  qw n x, y dxdy                                                                                                                 (11) 
A

 

 

In matrix form, the above formulation gives: 

 
 
 
 
 
 
𝑎1,1𝑎1,2      .       .        . 𝑎1,m

𝑎2,1𝑎2,2      .       .        . 𝑎2,m

 .  
.
.

𝑎n,1𝑎n,2      .       .        . 𝑎n,m  
 
 
 
 
 

 
 
 
 
 
 
C1

C2

.

.

.
Cn 
 
 
 
 
 

 =  

 
 
 
 
 
 
𝑏1

𝑏2

.

.

.
𝑏n 
 
 
 
 
 

𝑞

𝐷
𝑎4                                                          (12) 

Where C1, C2, . . . . Cn  are unknown coefficients to be determined. 

 

2.3   Analysis of Plate and results 

 

Figure 1 shows a thin rectangular isotropic plate with all edges simply supported subjected to a uniformly distributed 

load. The value of the Poisson’s ratio is taken as ν = 0.3. A grid work of beams can be used to represent the 

deformation surface.  
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Figure 1: All edges simply supported rectangular plate subjected to a uniformly distributed load q. 

The appropriate deflection function must satisfy at least two prescribed conditions at each boundary point. For the 

plate shown in Figure 1, the boundary conditions are: 

w x =
∂2w

∂x2
 x = 0             at  x = 0, 1                                                                                   (13a) 

w y =
∂2w

∂y2
 y = 0              at  y = 0, 1                                                                                     (13b) 

It is assumed that the deflection function w can be represented in the form of polynomials as follows: 

w x =  Gm xm

∞

m=0

                                                                                                                         (14a) 

w y =  Hnyn

∞

n=0

                                                                                                                              (14b) 

Where xm  and yn  denote complete sets of independent continuous functions suitable for the representation of the 

deflected surface. Coefficients Gm and Hnare determined from the prescribed boundary conditions of the plate while 

m and n are determined by the type of loading on the plate. 

The deflection function is given as the product of the two beam functions in x and y axes, thus: 

w  x, y  =  w x . w y  15  

2.4  First approximation 

For this approximation, the deflection function is given as follows: 

w x, y =  C1w 1                                                                                                                                  (16) 

Where C1 is the unknown coefficient, 

w 1 =   X − 2X3 +  X4  Y − 2Y3 + Y4                                                                                      (17) 

0 X 

Y b 

a 

a 

b 

q 

q 
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The solution is found by substituting equation (16) into equations (10) and (11) and evaluating the integrals over the 

entire area A of the plate. The resulting linear equation is solved for the unknown coefficient, C1. Then, C1 is 

substituted into equation (16) to get the deflection of the plate at any arbitrary point (x,y). The associated moments 

are determined by substituting corresponding values of deflection into equations (3a) and (3b) and solving 

accordingly. Different values of deflection and the corresponding moment coefficients at the center of the plate are 

evaluated for aspect ratios 1.0 ≤ 𝑝 ≤ 2.0 and the results are tabulated in Tables 1, 2 and 3 for the deflection, short-

span moment and long-term moment coefficient values respectively. 

2.5   Second approximation 

Here a three-term polynomial for the deflection function is derived as follows: 

w x, y =  C1w 1 + C2w 2 +   C3w 3                                                                                                          (18) 

wherew 1 has been defined in equation (17) while 

 
w 2 =  w 1X2 =  X − 2X3 +  X4  Y − 2Y3 +  Y4 X2

w 3 =  w 1Y2 =  X − 2X3 +  X4  Y − 2Y3 +  Y4 Y2

                                                                                  (19) 

Therefore, 

w x, y =  C1 X − 2X3 +  X4  Y − 2Y3 + Y4  +  C2 X
3 − 2X5 +  X6  Y − 2Y3 + Y4 

+ C3 X − 2X3 + X4  Y3 − 2Y5 + Y6                                                                       (20) 

First, we substitute equation (20) into equations (10) and (11), the resulting 3 x 3 algebraic equation is solved for the 

unknown coefficients C1, C2, and C3 .The determined coefficients are substituted into equation (20) to get the 

deflection coefficient values at any arbitrary point of the plate. The moment coefficient values are obtained by 

substituting the deflection values into equations 3 (a-b) and solving accordingly. The results for aspect ratios 

1.0 ≤ 𝑝 ≤ 2.0 are shown in Tables 1, 2 and 3 for the deflection, short-span moment and long-term moment 

coefficient values respectively. 

2.6   Truncated third approximation 

The deflection function for this approximation will be represented by a four-term polynomial as follows: 

w x, y =  C1w 1 + C2w 2 +   C3w 3 +  C4w 4                                                                                               (21) 

where  w 1, w 2andw 3  are defined by equations (17)  and (19) while 

w 4 =  w 1X2Y2 =  X − 2X3 + X4  Y − 2Y3 + Y4 X2Y2                                                                             (22) 

Therefore, 

w x, y =  C1 X − 2X3 +  X4  Y − 2Y3 +  Y4  +  C2 X
3 − 2X5 + X6  Y − 2Y3 +  Y4  

+ C3 X − 2X3 + X4  Y3 − 2Y5 +  Y6 +  C4 X
3 − 2X5 +  X6  Y3 − 2Y5 +  Y6                                  (23) 

The unknown coefficients C1, C2, C3 and C4 are determined by solving the 4 X 4 algebraic equations obtained by 

substituting equation (23) into equations (10) and (11). The maximum deflections and moments are determined as 

before by substituting the obtained coefficients into equation (23) for the deflection. Substituting the deflection into 

equations 3 (a-b) and solving accordingly gives the moments. The results for aspect ratios 1.0 ≤ 𝑝 ≤ 2.0 are 

tabulated in Tables 1, 2 and 3 for the deflection, short-span moment and long-term moment coefficient values 

respectively. 

2.7   Third approximation 

For this approximation, the deflection function is written as follows: 
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w x, y =  C1w 1 + C2w 2 +   C3w 3 +   C4w 4 + C5w 5 + C6w 6                                                    (24) 

where w 1, w 2, w 3 andw 4  are defined by equations (17), (19) and (22) while 

 
w 5 =  w 1X4 =  X − 2X3 +  X4  Y − 2Y3 +  Y4 X4

w 6 = w 1Y4 =   X − 2X3 +  X4  Y − 2Y3 +  Y4 Y4

                                                                            (25) 

Therefore, 

w x, y =  C1 X − 2X3 +  X4  Y − 2Y3 +  Y4  +  C2 X
3 − 2X5 + X6  Y − 2Y3 +  Y4  

+C3 X − 2X3 +  X4  Y3 − 2Y5 +  Y6 + C4 X
3 − 2X5 +  X6  Y3 − 2Y5 + Y6  

+ C5 X
5 − 2X7 + X8  Y − 2Y3 + Y4 + C6 X − 2X3 +  X4  Y5 − 2Y7 + Y8                                (26) 

Finally, equation (26) is substituted into equations (10) and (11) and the ensuing 6 X 6 algebraic equation is 

evaluated for the unknown coefficients in the deflection function. Subsequently, the determined coefficients are put 

in equation (26) to evaluate the deflection at any point of the plate. The moment coefficient values are in turn 

determined from equations 3 (a) and 3 (b). The results so obtained for aspect ratios 1.0 ≤ 𝑝 ≤ 2.0 are tabulated in 

Tables 1, 2 and 3 for the deflection, short-span moment and long-term moment coefficient values respectively. 

3.0 Results and Discussions 

3.1  Deflection 

Table 1 shows the deflection coefficient values for the different approximations considered for plate aspect 

ratios 1.0 ≤ p(b a ) ≤ 2.0 together with the results of the classical solution. The accuracy of the results obtained 

from the first approximation is good and the response pattern is also good. The percentage difference compared with 

the classical solution increased from 1.97 (at p = 1.0) to 4.54 (at p = 2.0). This shows minor divergence as the aspect 

ratio increases from 1.0 to 2.0. The deflection coefficient values are all in upper-bound. Remarkably, the second 

approximation does not yield more accurate results than the preceding one-term approximation. This shows that the 

response pattern is poor. Furthermore, it is observed that the percentage difference for deflection coefficient values 

range from 6.98 (at p = 1.0) to 21.41 (at p = 2.0). This indicates a sustained divergence as the aspect ratio increased 

from 1.0 to 2.0. A mix of lower-bounded and upper-bounded values is obtained by means of the truncated third 

approximation. The percentage difference with literature range from 4.42 (at p =1.0) to 0.7 (at p =1.3) and 1.01 (at p 

= 1.4) to 11.54 (at p = 2.0), showing a convergence from aspect ratio 1.0 to 1.3 and a divergence from 1.4 to 2.0. 

This is an improvement over the three-term deflection function. The first, second and truncated third 

approximations, just like the classical solutions, have their peak values at aspect ratio 2.0.  The third approximation 

shows a marked difference from both the previous approximations and the classical solution. It equally, shows a 

very poor response pattern as the values deviate widely across the different aspect ratios considered. 

3.2  Short Span Moment  

The short span moment coefficient values as well as the results of the classical solution are shown in Table 2 for 

aspect ratios 1.0 ≤ 𝑝 ≤ 2.0. The first approximation gave coefficient values that are all upper-bounded. As would 

be expected, the deflection coefficient values are evaluated to a higher degree of accuracy than the moment 

coefficient values. This is due to the fact that the stress couples are proportional to the second derivatives of the 

deflection functions. As a result, the percentage difference for the first approximation ranges from 7.79 (at p = 1.0) 

to 6.27 (at p = 1.5) and from 6.46 (at p = 1.6) to 7.44 (at p = 2.0). This shows the coefficient values converged from 

aspect ratio 1.0 to 1.5 and the diverged from 1.6 to 2.0. However, the second approximation moment coefficient 

values did show a mixed response compared to the one-term approximation- some lower-bounded, others upper-

bounded. The percentage difference ranges from 2.42 (at p = 1.0) to 0.41 (at p =1.4) and from 2.4 (at p =1.5) to 

13.19 (at p = 2.0). This shows a convergence from aspect ratio 1.0 to 1.4 and a divergence from 1.5 to 2.0. For the 

truncated third approximation, all the coefficient values are lower-bounded. The percentage difference ranges from 

22.6 (at p = 1.0) to 25.51 (at p = 2.0) having its highest divergence at aspect ratio 1.7 (26.39%). This is not an 

improvement over the second approximation. The third approximation shows a mix of lower and upper-bounded 

coefficient values. All aspect ratios indicate a wide divergence from the results of classical solution. 
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Table 1:  Mid-span (X =0.5, Y =0.5) Deflection Coefficient Values, α, for All Edges Simply Supported 

Rectangular Plate at Varying Aspect ratios (𝐖𝐦𝐚𝐱 = (𝛂𝐪𝐚𝟒 𝑫 ). 

*values in bracket are the percentage difference between the present study and the classical solution. 

 

Table 2:  Short Span Moment Coefficient Values, 𝛃𝐱, at Mid-Span (X =0.5, Y =0.5)  for All 

Edges Simply Supported Rectangular Plate at Varying Aspect ratios ( 𝐌𝐱 𝐦𝐚𝐱 =  𝐪𝐚𝟐𝛃𝐱). 

Aspect 

ratio, P 

Present Study 
Classical 

Solution 

Mx1 Mx2 Mx3 Mx4 Mx 

First 

Approximation 

Second 

Approximation 

Truncated Third 

Approximation 
Third Approximation 

Timoshenko and 

Woinowsky-

Krieger (1970) 

1 0.05163(7.79%) 0.04906(2.42%) 0.03704(-22.67%) -0.26397(-651.08%) 0.04790 

1.1 0.05943(7.27%) 0.05702(2.93%) 0.04253(-23.23%) -0.23126(-517.44%) 0.05540 

1.2 0.06686(6.63%) 0.06410(2.23%) 0.04756(-24.15%) -0.20821(-432.07%) 0.06270 

1.3 0.07383(6.38%) 0.07016(1.09%) 0.05213(-24.89%) -0.18432(-365.60%) 0.06940 

1.4 0.08031(6.37%) 0.07519(-0.41%) 0.05628(-25.46%) -0.15520(-305.57%) 0.07550 

1.5 0.08629(6.27%) 0.07925(-2.40%) 0.06007(-26.03%) -0.11808(-245.42%) 0.08120 

1.6 0.09177(6.46%) 0.08242(-4.38%) 0.06357(-26.26%) -0.07058(-181.88%) 0.08620 

1.7 0.09677(6.57%) 0.08481(-6.60%) 0.06683(-26.39%) -0.01023(-111.27%) 0.09080 

1.8 0.10134(6.90%) 0.08651(-8.74%) 0.06993(-26.24%) 0.06578(-30.61%) 0.09480 

1.9 0.10549(7.10%) 0.08764(-11.02%) 0.07289(-26.00%) 0.16087(63.32%) 0.08850 

2 0.10927(7.44%) 0.08829(-13.19%) 0.07576(-25.51%) 0.27921(174.54%) 0.10170 
*values in bracket are the percentage difference between the present study and the classical solution. 

 

3.3  Long Span Moment Coefficients 

Table 3 shows the results of the long span moment coefficients for the present formulation along with the results of 

the classical solution. The results of both the first and second approximation coefficient values are upper-bounded. 

The percentage difference for the first approximation ranges from 7.79 (at p = 1.0) to 20.50 (at p = 2.0). The 

percentage difference for the second approximation ranges from 53.89 (at p = 1.0) to 103.8 (at p = 1.6) and from 

103.63 (at p =1.7) to 95.76 (at p = 2.0). This means the coefficient values diverged from aspect ratio 1.0 to 1.6 and 

then converged from 1.7 to 2.0. This is not an improvement over the one-term approximation. The truncated third 

approximation coefficient values did show an improvement over the second approximation as the percentage 

difference ranges from 1.37 (at p = 1.1) to 54.06 (at p= 2.0). The coefficient values are mainly upper-bounded. The 

third approximation shows the worst response pattern of all the approximations considered with a percentage 

difference as much as 1205.22 at aspect ratio 2.0. All coefficient values for this approximation are widely divergent. 

Aspect 

ratio, P 

Present Study 
Classical 

Solution 

W1 W2 W3 W4 W 

First 

Approximation 

Second 

Approximation 

Truncated Third 

Approximation 
Third Approximation 

Timoshenko 

&Woinowsky-

Krieger 

(1970) 

1.0 0.00414(1.97%) 0.00434(6.98%) 0.00388(-4.42%) -0.00215(-153.04%) 0.00406 

1.1 0.00496(2.27%) 0.00533(9.95%) 0.00470(-3.00%) -0.00169(-134.80%) 0.00485 

1.2 0.00576(2.13%) 0.00632(12.09%) 0.00553(-2.00%) -0.00087(-115.44%) 0.00564 

1.3 0.00653(2.35%) 0.00728(14.17%) 0.00634(-0.70%) 0.00044(-93.16%) 0.00638 

1.4 0.00726(2.98%) 0.00820(16.30%) 0.00712(1.01%) 0.00235(-66.70%) 0.00705 

1.5 0.00793(2.72%) 0.00905(17.29%) 0.00788(2.08%) 0.00498(-35.46%) 0.00772 

1.6 0.00856(3.13%) 0.00984(18.59%) 0.00861(3.76%) 0.00848(2.19%) 0.00830 

1.7 0.00913(3.40%) 0.01056(19.60%) 0.00932(5.53%) 0.01302(47.43%) 0.00883 

1.8 0.00966(3.76%) 0.01121(20.38%) 0.01000(7.40%) 0.01880(101.95%) 0.00931 

1.9 0.01015(4.21%) 0.01179(21.00%) 0.01066(9.43%) 0.02610(167.97%) 0.00974 

2.0 0.01059(4.54%) 0.01230(21.41%) 0.01130(11.54%) 0.03525(247.97%) 0.01013 
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Table 3:  Long Span Moment Coefficient Values, 𝛃𝐲, at Mid-Span (X =0.5, Y =0.5)  for All Edges Simply 

Supported Rectangular Plate at Varying Aspect ratios ( 𝐌𝐲 𝐦𝐚𝐱
= 𝐪𝐚𝟐𝛃𝐲). 

Aspect 

ratio, p 

Present Study 
Classical 

Solution 

My1 My2 My3 My4 My 

First 

Approximation 

Second 

Approximation 

Truncated Third 

Approximation 
Third Approximation 

Timoshenko 

and 

Woinowsky-

Krieger (1970) 

1 0.05163(7.79%) 0.07372(53.89%) 0.04344(-9.32%) -0.35267(-836.26%) 0.04790 

1.1 0.05364(8.80%) 0.08338(69.13%) 0.04863(-1.37%) -0.22930(-565.12%) 0.04930 

1.2 0.05502(9.82%) 0.09083(81.29%) 0.05311(6.01%) -0.13988(-379.20%) 0.05010 

1.3 0.05591(11.15%) 0.09602(90.89%) 0.05692(13.17%) -0.06142(-222.10%) 0.05030 

1.4 0.05643(12.41%) 0.09912(97.45%) 0.06013(19.78%) 0.01466(-70.80%) 0.05020 

1.5 0.05668(13.82%) 0.10043(101.67%) 0.06282(26.15%) 0.09269(86.12%) 0.04980 

1.6 0.05673(15.30%) 0.10027(103.80%) 0.06510(32.31%) 0.17557(256.85%) 0.04920 

1.7 0.05664(16.54%) 0.09896(103.63%) 0.06704(37.94%) 0.26575(446.81%) 0.04860 

1.8 0.05645(17.85%) 0.09680(102.08%) 0.06871(43.45%) 0.36564(663.33%) 0.04790 

1.9 0.05620(19.32%) 0.09402(99.62%) 0.07018(49.00%) 0.47790(914.65%) 0.04710 

2 0.05591(20.50%) 0.09083(95.76%) 0.07148(54.06%) 0.60562(1205.22%) 0.04640 
*values in bracket are the percentage difference between the present study and the classical solution. 

 

4.0. Conclusion  

This study has considered four different polynomial approximations having one, three, four and six terms 

respectively for the deflection function of the all-round simply supported rectangular isotropic plate subjected to a 

uniformly distributed load. The Galerkin method was used for the analysis of the plate for aspect ratios 1.0 ≤ 𝑝 ≤
2.0. It is note-worthy that the increase in the number of terms of the polynomial deflection functions did not always 

give an improved accuracy and convergence of the present formulation. The one-term deflection function of the first 

approximation gave coefficient values that were upper-bounded for all aspect ratios considered for the maximum 

deflection and maximum span-moment coefficient values.  

 

The second approximation showed upper-bounded values for the maximum deflection and maximum long span 

moment coefficient values while the maximum short span moment coefficient values showed a mix of upper and 

lower-bounded coefficient values. The truncated third approximation showed a mix of upper and lower-bounded 

coefficient values for the maximum deflection and the two maximum span moment coefficient values with notable 

percentage difference with the classical solution. The third approximation showed wide divergence for the 

maximum deflection and maximum span moment coefficient values considered. The one-term deflection function of 

the first approximation gave the best accuracy of all the different approximations undertaken in this study followed 

by the three-term deflection function of the second approximation. Therefore, it is concluded that it cannot be taken 

for granted that an increase in the number of terms yields a better accuracy and convergence of the solutions. 

Nevertheless, the results of the first and second approximations are useful for majority of engineering purposes and 

should be applied with confidence in any engineering problem as the need arises. 

 

5.0 Recommendation 

Further research work should explore different approximation technique on characteristic coordinate 

polynomialsand compare the results with that of classical solution. 
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