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Abstract  

This study applied the finite element method to analyse the internal flow induced vibration in a pinned-pinned pipe, while 

studying the effects of increasing the length of the pipe span and the pipe bore diameter, on the critical flow velocity. The pipe is 

undamped, and of rigid polyvinylchloride material. However, the fluid-pipe system experiences a gyroscopic damping arising 

from Coriolis force. The analysis was carried out on pipe span lengths of 2m, 3m, 4m, 5m, and 6m, with corresponding 20, 24, 

30, 42, and 50 elements respectively. Further analysed was the 2m pipe span length with the following respective bore diameters: 

0.0389m, 0.0570m, 0.0697m, 0.0856m, 0.111m. All pipes maintained a uniform thickness of 0.00165m. The fluid is water, an 

incompressible, non-volatile fluid, flowing at room temperature. The results are shown by graphical plots. For  the  2m, 3m, 4m, 

5m, and 6m pipes span lengths, the values of critical velocity obtained were 17.80 m/s , 10.00 m/s, 7.80 m/s, 6.20 m/s, and 5.90 

m/s respectively, while 2m length pipes of  bore diameters, 0.0389m, 0.0570m, 0.0697m, 0.0856m, and 0.111m each, produced 

the following respective values of critical velocity, 17.80 m/s, 20.50 m/s, 22.50 m/s, 24.70 m/s, and 27.89 m/s. Generally, the 

finite element method showed that critical velocity reduces with increasing pipe span length and increases with increasing pipe 

bore diameter. 
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1. Introduction 

Vibration problems due to fluid flow occur in many industrial applications. Internal flow induced vibration in pipes 

can occur due to high velocity steady flow speeding up to the critical velocity or due to the presence of unsteady 

flow such as pulsating turbulent flow in the piping, thereby generating vibration excitation forces. The study of these 

phenomena draws on three disciplines: structural mechanics, mechanical vibration and fluid dynamics. The dynamic 

behaviour of fluid conveying pipes are more complicated than their non-fluid conveying counterparts owing to 

internal forces developed from fluid-structure interaction in the former. In the course of its flow, the flowing fluid 

imposes pressure on the walls of the pipe which impacts stresses on the pipe material. (Ubani et al. 2013). The 

resultant vibration of the pipe produced by lateral momentum of flowing fluid pushes the pipe to a point of 

instability beyond which it may fail. Durrani (2001) developed a finite element methodology for the application of 

Coriolis force on a fluid filled pipeline. He presented nine case studies using finite element method and actual 

industrial project data. The data from his results showed noticeable gyroscopic damping effects of Coriolis force at 

relatively higher flow velocities.  

Paıdoussis et al. (2002) studied the linear dynamics as well as the non-linear dynamics of cylindrical cantilever pipes 

conveying axially flowing fluid. They identified flow velocity increase, as the primary reason for the divergent form 

of loss of stability in the pipe. Using the homotopy perturbation method, Xu et al. (2010) proposed an analytical 

expression of natural frequencies of fluid conveying pipes. They showed that the natural frequency of vibration 

reduces with increase in fluid velocity for the first three modes of the pinned-pinned pipe. Ojetola et al. (2011) while 

considering the effects of fluid mass and coriolis  acceleration reported an analytical solution for the determination 

of natural frequencies, mode shapes, modal loss factors and stability conditions of the pipe. Ali et al. (2013) 

analysed the free vibration of pipes transporting fluid while resting on an elastic support. They calculated three eigen 

values of the Timoshenko beam for various values of stiffness and found that natural frequency parameter was 
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decreased with increasing values of mass ratio. Dagh and Sinir (2015) modelled the dynamical behaviour of the 

pipes using Euler-Bernoulli theory and found that the value of natural frequencies was higher under tensile effect 

due to the immovable end conditioned. Kokare and Paward (2015) in their study of velocity and pressure 

distributions in fluid flow found that natural frequencies of pipe decreases with increasing thickness of cantilever 

pipe and increases with thickness of clamped pipes. Chellapilla et al. (2016) investigated the weld tension effect on 

the flexural frequencies of guided pipes with a simple support, and concluded that the pipe was more stable at at 

lower fluid velocity and steady state conditions. Wen et al. (2016) considered the effect of pipe wall thickness, fluid 

pressure and fluid velocity while studying the fluid structure interaction (FSI) behaviour of pipelines, and presented 

several pipeline schemes illustrating the application of the proposed method. Jweeg and Ntayeesh (2016) developed 

a new approach using experiment, for estimating the buckling critical velocities in pipes conveying fluid, for 

increase in fluid pressure and have found fluid pressure to reduce critical velocity, as it increases, for clamped-

pinned, pinned-pinned, and clamped-clamped pipes. 

From literature, several portions of pipe and fluid parameters, and imposed conditions have been studied. The 

objective of this paper is to apply finite element modelling in the study of the effect of increasing the pipe span 

length and the pipe bore diameter on the critical velocity of fluid flow in a simply supported pipe. Possibly, a higher 

value of critical velocity may be attained by either or both of these pipe geometry modifications, to the end that the 

pipe may remain stable at higher flow velocities than its initial critical velocity. 

2.0 Material and methods 

The fluid conveying pipe is considered to be a uniform pipe of:  

Length L, Internal perimeter S, transverse moment of inertia I, and internal cross sectional area A, conveying fluid 

of mass per unit length 𝑀 = 𝜌𝐴 with a mean axial flow velocity U. 

The equation of motion governing the vibration of the fluid-pipe system is: 
𝐸𝐼  𝜕4𝑌

    𝜕𝑥4  +
𝐴𝑈2𝜕2𝑌

𝜕𝑥2 + 
2𝐴𝑈𝜕2𝑌

𝜕𝑥𝑑𝑡
+ 

 𝐴+𝑚 𝜕2𝑌

                𝜕𝑡2 = 0                                                                                                                        (1) 

Where 

ρA = Fluid Mass per unit length (fluid density x internal cross sectional area) 

and 

𝑚 = Mass of pipe per unit length 

 
𝐸𝐼  𝜕4𝑌

       𝜕𝑥4is the stiffness term, a force acting on the pipe due to its bending. 

𝐴𝑈2𝜕2𝑌

𝜕𝑥2 is the curvature term, a force acting on the pipe and conforming the flow of fluid to its curvature in bend. 

2𝐴𝑈𝜕2𝑌

𝜕𝑥𝑑𝑡
is the coriolis force term, a force required to rotate the fluid element as each point in the pipe span rotates 

with an angular velocity . 
 𝐴+𝑚 𝜕2𝑌 

               𝜕𝑡2 is the inertia force term, a force acting on the pipe due to the inertia of the pipe and the fluid flowing 

through it. 

 

 

2.1 Finite Element Modelling 

The finite element procedure is given as follows: 

1. Selection/Choice of Element. 

2. Discretization of the domain into finite sub domains (elements).  

3. Selection of interpolation function (the value of field variables at specific points referred to as nodes).  

4. Development of the element matrix for the sub domains (elements).  

5. Matrix Assembly of the element matrices of each sub domain to obtain the global matrix for the entire 

domain.  

6. Application of the boundary conditions.  

7. Solution of equations. 

8. Display of results. 
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2.1.1 Selection/Choice of Element Type 

The Euler-Bernoulli beam element with four degrees of freedom, two displacement (w) and two rotational 

(θ)respectively as shown in Figure 1, is chosen. 

 

 
  Grant (2010) 

Figure 1: Euler-Bernoulli beam elements illustrating displacement and rotational degrees of freedom 

2.1.2 Discretization 

The pipe is discretized into finite beam elements connected by nodes as shown 

 

 

 

 

 

 

Figure 2: A Discretized Beam Model with Two Elements and Three Nodes 

2.1.3 Selection of interpolation functions (Shape Functions) 

The lateral displacement can be expressed in terms of shape functions as: 

𝑌 𝑥, 𝑡 = 𝑊 𝑥, 𝑡 =  𝑁 𝑥   𝑊 𝑡  𝑒                                                                                                                                  (2) 

𝑁 𝑥 is the shape function identical to 𝑁𝑤  and  𝑊 𝑡  𝑒  is the nodal displacement at the node points. 

The shape functions are given by: 

 

𝑁1 = 1 − 3  
𝑥

𝑙
 

2

+ 2  
𝑥

𝑙
 

3

                                                                                                                                                     (3) 

  

𝑁2 = 𝑥[1 − 2  
𝑥

𝑙
 +  

𝑥

𝑙
 

2

]                                                                                                                                                     (4) 

  

𝑁3 = 3  
𝑥

𝑙
 

2

− 2  
𝑥

𝑙
 

3

                                                                                                                                                              (5) 

  

𝑁4 = 𝑥[− 
𝑥

𝑙
 +  

𝑥

𝑙
 

2

]                                                                                                                                                             (6) 

 

2.1.4  Development of Element Matrices 

Integrating over the entire length of the pipe (L)  

  
𝐸𝐼  𝜕4𝑌

       𝜕𝑥4

𝐿

0
+  𝜌𝐴𝑈2𝐿

0

𝜕2𝑌

𝜕𝑥2 +  2𝜌𝐴𝑈
𝐿

0

𝜕2𝑌

𝜕𝑥𝜕𝑡
+   𝜌𝐴 + 𝑚 

𝜕2𝑌

𝜕𝑡2

𝐿

0
 𝑑𝑥 = 0                                                                      (7)                         

Rewriting 7 in terms of  𝑾 𝑥, 𝑡  (recall that 𝒀 𝑥, 𝑡 =  𝑾 𝑥, 𝑡  from 2) we have: 

1 
2 3 

2 1 

Y 

X 
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𝐸𝐼 𝜕4𝑾 𝑥 ,𝑡 

       𝜕𝑥4

𝐿

0
+  𝜌𝐴𝑈2𝐿

0

𝜕2𝑾 𝑥 ,𝑡 

𝜕𝑥2 +  2𝜌𝐴𝑈
𝐿

0

𝜕2𝑾 𝑥 ,𝑡 

𝜕𝑥𝜕𝑡
+   𝜌𝐴 + 𝑚 

𝜕2𝑾 𝑥 ,𝑡 

𝜕𝑡2

𝐿

0
 𝑑𝑥 = 0                                         (8) 

Substituting equation 2 into 7 we have: 

  
𝐸𝐼 𝜕4 𝑁 𝑥  {𝑊 𝑡 }

       𝜕𝑥4

𝐿

0
+  𝜌𝐴𝑈2𝐿

0

𝜕2 𝑁 𝑥  {𝑊 𝑡 }

𝜕𝑥2 +  2𝜌𝐴𝑈
𝐿

0

𝜕2 𝑁 𝑥  {𝑊 𝑡 }

𝜕𝑥𝜕𝑡
+   𝜌𝐴 + 𝑚 

𝜕2 𝑁 𝑥  {𝑊 𝑡 }

𝜕𝑡2

𝐿

0
 𝑑𝑥 =

0                                                                                                                                                                                                  (9)  

The substitution and integration over the pipe length yields, in simple terms of 𝑁 𝑎𝑛𝑑 𝑊, the following equation 

(𝜌𝐴 + 𝑚)  𝑆1 W + 2𝜌𝐴𝑈 𝑆3 W +  𝐸𝐼 𝑆2 + 𝜌𝐴𝑈2 𝑆4  W =  0                                                                           (10)  

Where 

 𝑆1 =   N 𝑇[N]
𝐿

0
 𝑑𝑥                                                                                                                                                            11   

 

 𝑆2 =   N′′ 𝑇[N′′]
𝐿

0
 𝑑𝑥                                                                                                                                                      (12) 

    

 𝑆3 =   N′ 𝑇[N]
𝐿

0
 𝑑𝑥                                                                                                                                                          (13)  

   

 𝑆4 =   N′  𝑇 N′  
𝐿

0
 𝑑𝑥                                                                                                                                                        (14)  

 

 

So that equation 10 expands to  

       

(𝜌𝐴 + 𝑚)𝑙

420
 

156 22𝑙 54 −13𝑙
22𝑙 4𝑙2 13𝑙 −3𝑙2

54 13𝑙 156 −22𝑙
−13𝑙 −3𝑙2 −22𝑙 4𝑙2

 

 
 
 
 
 
𝑊 

1

𝜃 1
𝑊 

2

𝜃 2  
 
 
 
 

+  
𝐴𝑈

30
 

−30 6 30 −6
6 0 6 −1

−30 −6 30 6
6 1 −6 0

 

 
 
 
 
 
𝑊 

1

𝜃 1
𝑊 

2

𝜃 2  
 
 
 
 

+  
𝐸𝐼

𝑙3
 

12 6𝑙 −12 6𝑙
6𝑙 4𝑙2 −6𝑙 −2𝑙2

−12 −6𝑙 12 −6𝑙
6𝑙 2𝑙2 −6𝑙 4𝑙2

 +  
ρA𝑈

30𝑙

2

 

36 3 −36 3
3 4 −3 −1

−36 −3 36 −3
3 −1 −3 4

   

𝑊1

𝜃1

𝑊2

𝜃2

 =   

0
0
0
0

  

 

This is the matrix equation of motion for a single element of the pipe. 

It is a second order ordinary differential equation of the form 

 𝑀 𝑒 𝑊  +  𝐶 𝑒 𝑊  +   𝐾𝑠 
𝑒 +   𝐾𝑓 

𝑒
  𝑊 = {0}                                                                                                   (15) 

Where  
 𝑀 𝑒   is the Mass matrix. 
 𝐶 𝑒   is the Coriolis force matrix. 
 𝐾𝑠 

𝑒   is the Pipe Stiffness matrix. 

 𝐾𝑓 
𝑒
  is the Centrifugal Force matrix 

The matrices of Mass or Inertia, Coriolis force, Pipe Stiffness, and Centrifugal force, are respectively given by: 

 𝑀 𝑒 =  
(𝜌𝐴+𝑚 )𝑙

420
 

156 22𝑙 54 −13𝑙
22𝑙 4𝑙2 13𝑙 −3𝑙2

54 13𝑙 156 −22𝑙
−13𝑙 −3𝑙2 −22𝑙 4𝑙2

                                                                                                           (16) 

    

Mass or Inertia Matrix 

 𝐶 𝑒 =  
𝐴𝑈

30
 

−30 6 30 −6
6 0 6 −1

−30 −6 30 6
6 1 −6 0

                                                                                                                                (17) 

   

Coriolis Force Matrix 
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 𝐾𝑠 
𝑒 =  

𝐸𝐼

𝑙3  

12 6𝑙 −12 6𝑙
6𝑙 4𝑙2 −6𝑙 −2𝑙2

−12 −6𝑙 12 −6𝑙
6𝑙 2𝑙2 −6𝑙 4𝑙2

                                                                                                                         (18) 

      

Stiffness matrix 

 𝐾𝑓 
𝑒

=  
ρA𝑈

30𝑙

2
 

36 3 −36 3
3 4 −3 −1

−36 −3 36 −3
3 −1 −3 4

                                                                                                                         (19) 

     

Centrifugal Force matrix 

 

2.1.5  Assembly of the Elements Matrices (Assembly Process) 

First the zero assembly matrix, a matrix of zeros for all degrees of freedom is written as follows; 

 

 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 

 
 
 
 
 

 

Assembling 𝐾𝑠 
1 and  𝐾𝑠 

2 into the zero assembly matrix 

 

𝐾𝑠=
𝐸𝐼

𝑙3

 
 
 
 
 
 

12 6𝑙 −12 6𝑙 0 0
6𝑙 4𝑙2 −6𝑙 2𝑙2 0 0

−12 −6𝑙 12 + 12 −6𝑙 + 6𝑙 −12 6𝑙
6𝑙 2𝑙2 −6𝑙 + 6𝑙 4𝑙2 + 4𝑙2 −6𝑙 2𝑙2

0 0 −12 −6𝑙 12 −6𝑙
0 0 6𝑙 2𝑙2 −6𝑙 4𝑙2  

 
 
 
 
 

 

 

In a similar way, assembled matrices are obtained from the assembly of the matrices of the centrifugal force term, 

coriolis force (damping) term and mass (inertia) term respectively: 

 

𝐾𝑓 =
𝜌𝐴𝑈2

30𝑙

 
 
 
 
 
 

36 3 −36 3 0 0
3 4 −3 −1 0 0

−36 −3 72 0 −36 3
3 −1 0 8 −3 −1
0 0 −36 −3 36 −3
0 0 −3 −1 −3 4  

 
 
 
 
 

 

 

𝐶 =
𝜌𝐴𝑈

30𝑙

 
 
 
 
 
 
−30 6 30 −6 0 0

6 0 6 −1 0 0
−30 −6 0 12 30 −6

6 −1 0 0 6 −1
0 0 −30 −6 30 6
0 0 6 1 −6 0  

 
 
 
 
 

 

 

𝑀 =
𝜌𝐴 + 𝑚

420

 
 
 
 
 
 

12 6𝑙 −12 6𝑙 0 0
6𝑙 4𝑙2 −6𝑙 2𝑙2 0 0

−12 −6𝑙 24 0 −12 6𝑙
6𝑙 2𝑙2 0 8𝑙2 −6𝑙 2𝑙2

0 0 −12 −6𝑙 12 −6𝑙
0 0 6𝑙 2𝑙2 −6𝑙 4𝑙2  
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2.1.6  Imposition of the boundary conditions  

 

Applying Pinned-Pinned Boundary Condition 

at        𝑥 =  0      ∶   𝑊 =  0&
𝜕2W

𝜕𝑥
= 0 ;                                                                                                     (20)  

   

at           𝑥 =  0      ∶   𝑊 =  0          &
𝜕2𝑊

𝜕𝑥
= 0 ;                                                                                         (21)  

   

So that after applying the boundary conditions we have the matrix reduced equation  

𝜌𝐴+𝑚

420
 

4𝑙2 13𝑙 −3𝑙2 0
13𝑙 312 0 −13𝑙
−3𝑙2 0 8𝑙2 −3𝑙2

0 −13𝑙 −3𝑙2 4𝑙2

 

 
 
 
 
 
𝜃 1
𝑊 

2

𝜃 2
𝜃 3  

 
 
 
 

+
𝐴𝑈

30
 

0 6 −1 0
−6 0 12 −6
1 0 0 −1
0 6 1 0

 

 
 
 
 
 
𝜃 1
𝑊 

2

𝜃 2
𝜃 3  

 
 
 
 

+
𝐸𝐼

𝑙3  

4𝑙2 −6𝑙 2𝑙2 0
−6𝑙 24 0 −6𝑙
2𝑙2 0 8𝑙2 2𝑙2

0 6𝑙 2𝑙2 4𝑙2

  

𝜃1

𝑊2

𝜃2

𝜃3

 +

𝜌𝐴𝑈 2

30𝑙
 

4 −3 −1 0
−3 72 0 3
−1 0 8 −1
0 3 −1 4

  

𝜃1

𝑊2

𝜃2

𝜃3

 =  

𝑴1

𝑭2

𝑴2

𝑴3

 =  

0
0
0
0

                                                                                         (22)    

    

2.1.7 Solution of Equation 

The equation of motion, equation (15), in finite element formulation, can be written according to Meitrovich (1980) 

as  

 𝑀 𝑒 𝑊  +  𝐶 𝑒 𝑊  +   𝐾𝑡𝑜𝑡𝑎𝑙    𝑊 =   0                                                                                         (23) 

Where 

[𝐾𝑡𝑜𝑡𝑎𝑙 ] =  𝐾𝑠 
𝑒 −  𝐾𝑓  

𝑒
 

 𝐾𝑡𝑜𝑡𝑎𝑙  is an inconsistent matrix because the two matrices contained in it  𝐾𝑠 
𝑒and [Kf]

e
 produce contrary 

component effects because  𝐾𝑓 
𝑒
acts to weaken the overall stiffness of the pipe. Also, given that the above equation 

(23) has a gyroscopic damping phrase with an attribute of skew symmetry, /𝐶𝑇/=/−𝐶/= (−1)𝑛/𝐶/ (for an n × n 

matrix), the eigenvalue problem can be solved according to the characteristic [Ω] equivalent to Meitrovich (1980), 

which is 

 𝛺 =  
− 𝑚 + 𝜌𝐴 −1 𝐶 − 𝑚 + 𝜌𝐴 −1 K𝑡𝑜𝑡𝑎𝑙  

 𝐼  0 
                                                                                              (24)  

The results of the eigen value problem yield complex roots. The fundamental natural frequency of the system is 

described by the imaginary part of the roots while the real part indicates the rate of decay (Mohammed et al., 2016). 

This solution is implemented in the post processing of the finite element model done with MATLAB. 

 

3.0 Results and Discussions 

In the post processing, the following pipe and fluid parameters were defined: pipe length, pipe density, elastic 

modulus of the pipe, fluid density, pipe internal diameter, fluid flow velocity and number of finite elements. This 

allowed more freedom for the study to evaluate the relationship between the fundamental frequency of vibration and 

fluid velocity for pipes of various pipe span lengths and pipe bore diameters, each of which terminated at the point 

where the critical velocity was reached. 

 

In each case, the fundamental frequency at U=0 is obtained as the natural frequency of the system, and the velocity 

at which the fundamental frequency ω=0, is obtained as the critical velocity of the system. With respect to this 

information, the values of critical velocity which is the data of utmost interest in this thesis were collected at each of 

these pipe span lengths and bore diameters, so that results and graphs are obtained showing the collective profile of 

the critical velocity as the pipe span length and pipe bore diameters were increased. 

 

The analysis was carried out on the following span lengths of pipe: 2m, 3m, 4m, 5m, and 6m which were discretized 

into 20, 24, 30, 42, and 50 elements respectively and on  2m pipes of the following bore diameters: 0.0389m, 

0.057m, 0.0697m, 0.0856m, 0.111m respectively discretized  into 20 elements each. Figure (3) displays fundamental 

frequency versus fluid velocity plots of the 2m, 3m, 4m, 5m, and 6m pipe span lengths, while figure (4) displays the 

plot of fundamental frequency against fluid velocity  for the 0.0389m, 0.057m, 0.0697m, 0.0856m, 0.111m pipe 

bore diameters  respectively. 
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Figure 3: Plots of fundamental frequency against fluid velocity for the pipe span lengths 

 

Figure (3) shows a consistent reduction in the value of critical velocity with increasing pipe span length from 17.8 

m/s for a 2m pipe span length to 5.90m/s for a 6m pipe span length. In this case the slenderness ratio of the pipe 

generally increases with the increasing lengths at a constant diameter; the apparent consequence is that the bending 

resistance offered by the pipe due to its flexural rigidity against fluid momentum forces is slightly inhibited. Hence, 

the critical velocity is reached at lower velocities with increasing length. Notice also that the number of discretized 

elements increased with increased pipe span lengths, this is because the longer pipes required more discrete elements 

for the finite element solution to converge. 

 

 
Figure 4:  Plots of fundamental frequency against fluid velocity for the pipe bore diameters 
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Figure (4) on the other hand shows an overall increase in critical velocity with increasing pipe bore diameter from 

18m/s at a bore diameter of 0.0389m to 28m/s at a bore diameter of 0.111m. In this case there is a slight reduction in 

the slenderness ratio of the pipe, an increase in the mass per unit length of the pipe and of the fluid, and then an 

overall increase in the mass ratio of the system, offering significant resistance to fluid momentum forces producing 

vibration. Therefore higher velocities are required with increasing pipe bore diameters to reach the zero fundamental 

frequency where the critical velocity is attained. 

 

In general, both figures (3) and (4) show a consistent reduction in fundamental frequency from the natural   

frequency at zero fluid velocity to the critical velocity at a fundamental frequency of 0 rad/s. This is due to the fact 

that at zero fluid velocity, the pipe vibrates strictly under its own weight, depending solely on its mass and stiffness 

(Jweeg & Ntayeesh 2016) without the influence of the lateral momentum of the fluid, which is fluid velocity 

dependent, and takes effect as soon as the fluid in the pipe gains velocity up until the critical point of instability at 

the critical flow velocity. 

 

4.0. Conclusion  

From the results of the analysis of internal flow induced vibration of a pinned-pinned pipe carried out using the 

Finite Element Method; the following conclusions can be drawn: 

1. There is a steady reduction in the fundamental frequency of the pipe with increase in flow velocity up to the 

critical velocity where the fundamental frequency eventually drops to zero. 

2. Increasing the pipe span length reduces the critical velocity; therefore, longer pipe-spans have a lower range of 

stability, in terms of flow velocity, than the shorter pipes of the same bore diameter. 

3. Increasing the pipe bore diameter raises the critical velocity value, therefore, for the same pipe span length; 

pipes with larger bore diameters have a higher stability range in terms of fluid flow velocity. 

4. The slenderness ratio of the pipe affects critical flow velocity. The higher the slenderness ratio, the lower the 

critical velocity. Conversely, lower the slenderness ratio together with an increased mass ratio yields a higher 

critical flow velocity. 

 

5.0 Recommendation 

In this paper, the effect on critical velocity has been studied and analysed for changes in pipe specification while 

considering internal flow within the pipe. For a more comprehensive grasp of the subject, further studies should be 

carried out in the following areas: 

 

1. Effect of roughness of pipe walls on the critical flow velocity in the pipe. 

2. Effect of fluid/pipe temperature on the critical flow velocity of a pipe in thermal applications. 

3. Vibration control system modelling of a fluid conveying pipe. 

 

Nomenclature  

L = Length of the pipe (m) 

S = Internal perimeter of the pipe cross section (m)  

A  = Cross sectional area of the pipe (m
2
) 

F  = Pressure force per unit length of the pipe (N/m) 

ρ = Density of the fluid (kg/m
3
) 

M = Mass of the fluid per unit length (kg/m) 

m = Mass of pipe per unit length (kg/m) 

𝑃 = Fluid applied pressure (kg/m
2
) 

𝑌(𝑥, 𝑡) =              𝑾 𝑥, 𝑡 =  𝑾= lateral displacement of  pipe 

Q = Transverse shear force (N) 

T = Longitudinal tension (N) 

M = Bending moment in the pipe (Nm) 

E = Young’s Modulus (GPa) 

I  = Area moment of inertia 

U = Fluid Velocity (m/s) 

𝜔 = frequency of vibration (rad/s) 

Ni = Shape function of element at node i 

N = Shape function 
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𝐖     = the displacement vector 

𝐖    e
 = vector of nodal displacement of an element 

[M]
e
 = Elemental Mass matrix. 

[C]
e
 = Elemental Coriolis force matrix. 

[Ks]
e
 = Elemental Pipe Stiffness matrix. 

[Kf]
e
 = Elemental Centrifugal Force matrix 

W𝑖   = Nodal displacement/lateral displacement at node i 

F = Nodal Force 

𝑴 = Nodal Moment 
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