
JEAS   ISSN: 1119-8109 

 

 

 

 

Journal of Engineering and Applied Sciences, Volume 16, Number 1, January 2020, 22-32 

Development of Condition Based Self Diagnostic System for Manufacturing 

Industries  
Nwandu E. E

1
, Inyiama H. C

2
, Nwalozie G. C

3 

1
Department of Electronic & Computer Engineering, Nnamdi Azikiwe University Awka 

2
Department of Electronic & Computer Engineering, Nnamdi Azikiwe University Awka 

3
Department of Electronic & Computer Engineering, Nnamdi Azikiwe University Awka 

*
Corresponding Author’s E-mail: ethelarubalueze@gmail.com 

Abstract  

In this work generic Multiprocessor Base Self-Diagnostic Process Control System has been developed. It features an 

Operator’s console that facilitates easy fault identification and maintenance and is robust enough to simplify system 

attendance. In order to demonstrate how a process can be regulated through a multiprocessing self-diagnostic 

procedure, a soap production process for quality soap manufacture was used. The prototype was realized using 

homogenous multiprocessor system for different stages of the manufacturing process. Industrial thermocouples 

(sensors) and solid state relays were used to achieve the precision desired. A self-diagnostic algorithm was 

developed in C programming language using Mikro C Pro platform and implemented in the system. The current 

status of the product is a functional prototype which has been successfully tested in real production conditions. The 

system was able to monitor and control the temperature and duration of each of the various stages in the soap 

production process and present identified errors to the operator via a remote display with a wireless computer 

interface. Results obtained show that the system availability is 98.7% compared to about 70% before the 

multiprocessor system was introduced. This means that the system has very low failure rate and very low 

maintenance time because of the self-diagnostic features incorporated in it. Not more than one maintenance action 

was required per month and the quality of the output and effectiveness of the system is quite good. 

Keywords: Diagnosis, multiprocessors, temperature control, sensors and soap manufacturing. 

1. Introduction 

Increased utilization of manufacturing systems is an ever present industrial challenge. Demands on improved 

productivity combined with reduced tied up capital and fewer employees are constantly increasing. All in order to 

match the global competition and survive as a world class company. One straightforward approach for increasing the 

production rate with the same or higher availability is to reduce system downtime, by implementing an effective 

fault diagnosis process. However, in industry today, fault diagnosis in automated manufacturing systems is mostly 

manual, highly empirical and error-prone procedure, which may vary widely from person to person and from shift to 

shift.  Fault diagnosis in automated manufacturing systems, including both material processing and material 

handling with fast motions, is particularly hard because of the time critical synchronization between a number of 

control tasks and the production equipment. 

 

As the complexity of a network increases, diagnosis of fault becomes a difficult task for network operators. 

Typically, one fault in the communication system produces large amount of alarm information, which is called 

alarm burst. Because of the huge information, manual cause identification becomes time consuming and error-prone. 

Therefore, automated fault diagnosis in computer networks is a problem. The consequences of faults in systems 

could be disastrous in terms of human mortality and environmental impact. To a less extent, fault detection in 

process and manufacturing industries is also crucial in order to improve production efficiency, quality of the product 

and cost of production. Current computer networks are becoming much larger and more complex. One single fault 

that occurs in one network component might cause considerably high volume of alarms to be reported to network 

operators, which is called alarm burst. Alarm burst may be as a result of fault reoccurrence, multiple invocations of a 

JOURNAL OF ENGINEERING 
AND 

APPLIED SCIENCES 



Nwandu et al. /Journal of Engineering and Applied Sciences, Volume 16, Number 1, January 2020, 22-32 23 

 

JEAS   ISSN: 1119-8109 

 
 

service provided by a faulty component, generating multiple alarms by a device for a single fault. It can also be in 

the form of detection of and issuing a notification about the same network fault by many devices simultaneously, 

error propagation to other network devices causing them to fail and, as a result, generate additional alarms. Thus, it 

is a challenge for network operators to quickly and correctly identify the root cause, by analyzing those large 

amounts of alarms arising from these possible causes. 

 

Due to the complexity of computing systems and difficulty of formalizing the scope of the diagnosis task itself, 

diagnosis has historically been a large manual process requiring significant human input. However, techniques to 

automate as much of the process as possible have significantly grown in importance. In domains such as 

communication networks and Internet services, the sheer scale of modern systems and the high volumes of 

impairments they face drive such trends.  While in domains such as embedded systems and spacecraft, its increasing 

complexity together with the need for autonomic operation (i:e:, selfhealing) when human expertise is not available, 

that are the drivers (Agarawala et al 2007). Due to the diversity of the domains, a variety of failure diagnosis 

techniques drawing from diverse areas of computing and mathematics such as artificial intelligence, machine 

learning, statistics, stochastic modeling, Bayesian inference, rule-based inference, information theory, and graph 

theory have been studied in the literature. Finally, when automated techniques fail, approaches that assist humans 

perform diagnosis more efficiently via the use of visualization aides have also been widely deployed. 

 

System-level diagnosis is a technique for fault tolerance that strives to identify the faulty elements in a system. This 

is done by deduction, based on information in the form of results of tests applied to the elements. Once the faulty 

elements have been identified, the system is able to isolate them, ignore their output and to initiate a repair operation 

such that the reliability of the system can be maintained in the long run. Ultimately the expected reliability of a 

system depends on what happens when the system behaves inappropriately. If lives of humans or large sums of 

money are at stake, then the system must be very reliable. Examples of ultra-reliable multiprocessor systems include 

the control systems for an airplane, a space ship or a nuclear reactor. Other systems, such as automated bank tellers 

or airline reservation systems, can be out of service for small periods of time without harm. Nonetheless the 

distributed information in these systems is expected to remain consistent despite any down time that may occur. The 

more complex a system is, the more difficult it is to achieve reliability. Fortunately multiprocessor systems have 

built-in redundancy. The multitude of processors and the equipment that allows connections between them can allow 

the system to perform more work than a single-processor system.  More importantly, it is also this redundancy of 

equipment that enables the system to continue to function as needed, though one or more of the processors have 

stopped working correctly or there are problems in the network connecting the processors. 

 

1.1 Literature Survey  

Cherkasova et al (Cherkasova et al 2008) use queues to model the relationship between CPU usage and transaction 

response times for a transaction mix. They also exploited regression to define an application performance signature 

that allows them to detect software upgrades by monitoring changes in the application signature. Stewart, Kelly and 

Zhang, (2007) model the relationship between multiple physical resources, namely CPU, disk and network, and 

response times for a transaction mix. These models need to be re-trained to cope with new transaction types. They 

also ignored interaction effects across transaction types and implicitly assume that queuing is the only manifestation 

of congestion. 

 

Sherlock (Bahl et al 2007) and Khanna et al. (Khanna et al 2007) extended on Shrink and SCORE to deal with 

multi-level dependencies and with more complex operators that capture load-balancing and failover mechanisms. 

These techniques infer the root-cause by computing the probability that errors propagate from a set of possible root-

cause nodes to the observation nodes. They indicted the root-cause nodes that best explain the symptoms at the 

observation nodes, and scale by assuming that there can only be a small number of concurrent problems in the 

system at a given time. Rish et al. (2004) proposed an active probing approach that exploits a dependency matrix to 

represent the failed components that each probe, e.g. server ping, detects. Active probing allows probes to be 

selected and sent on-demand, in response to one’s belief about the state of the system. At each step the most 

informative next probe was computed and sent. As probe results were received, belief about the system state is 

updated using probabilistic inference. This process continues until the problem was diagnosed. They extended their 

active probing approach to cope with dynamic systems presented by Rish et al (2005), where problems may occur 

and disappear, by maintaining two sets of probes: one set for repair detection to monitor nodes that are known to 

have failed, and another set for failure detection to monitor nodes that are known to be working. Their approach 

assumes a sequential fault model in which only one fault or repair can occur at a time. Joshi et al. (2005) used a 



24 Nwandu et al. / Journal of Engineering and Applied Sciences 

 

JEAS   ISSN: 1119-8109 

 

Bayesian approach to diagnose problems in systems with different types of monitors, or probes that have differing 

coverage and specificity characteristics. They use a dependency matrix to represent the probability that a monitor 

detects a failure in a component, and incrementally update their belief about the set of failed components based on 

the observed monitor output. 

 

Agarwal et al (2006) used change-point detection and problem signatures to detect performance problems in 

enterprise systems. They detect abrupt changes in system behavior by monitoring changes to the mean value of 

performance counters over consecutive windows of time. This technique does not scale well if the number of nodes 

and metrics is large. NetMedic developed by Kandula et al (2009) diagnosed propagating problems in enterprise 

systems by analyzing dependencies between nodes, and correlations in state perturbations across processes to 

localize problems. NetMedic represents state for each system component as a vector that indicates whether each 

metric was anomalous or normal by assuming that each metric obeys a normal distribution and flagging anomalies 

based on deviation from the mean. If two components which depend on each other are anomalous, NetMedic 

searches for time periods where the source component’s state is similar to its current state, and searches for 

destination states that have experienced significant changes in the same period. These destination states are the 

likely culprits.  

 

Draco developed by Kavulya et al (2011) performed statistical diagnosis of problems in large Voice-over-IP (VoIP) 

systems by comparing differences in the distributions of attributes, such as hostnames and customer IP addresses, in 

successful and failed calls. Draco assumed that these attributes were drawn from a Beta distribution and localized 

problems by identifying attributes that were most correlated with failed calls. By comparing successes and failures 

over the same window of time, Draco avoided the need for separate learning passes, and can thus diagnosed 

problems that have never been seen before.  

 

Distributed architecture for monitoring and diagnosis (DIAMOND) system architecture is a set of distributed 

cooperating tasks. Each task was associated with a specialized agent, namely the monitoring agent, which was 

interfaced to the industrial application, a set of diagnostic agents to identify the functional state of the plant, a 

conflict resolution agent to investigate whether the diagnostic results were contradicting or complementing each 

other, a facilitator agent to manage networking and mediating between different agents, a blackboard agent for 

storing the diagnoses, and a user interface agent for presenting the results to the operator (Worn 2004). The 

DIAMOND system was implemented using the KQML-CORBA- (Knowledge Query and Manipulation Language) 

based architecture, in which the different agents were implemented as distributed CORBA objects. The system 

prototype was evaluated while monitoring and diagnosing the water stream cycle chemistry of a coal-fired power 

plant (Worn 2004). 

 

2.0 Material and methods 

In this work a multiprocessor based self-diagnostic process control system for quality soap production was 

developed. The operation of this system was automated and computerized. The temperature of the various stages of 

soap making process was controlled through the signal obtained from the thermocouple, embedded in the system 

which sends microvolt signals to the computer. The signal was amplified through the micro controller program. 

Controlled temperature was needed for each stage of the process machine, this was achieved by using a single 

microprocessor to monitor and control each of the various stages. These microprocessors would report their status to 

a central microprocessor that would process the data and store it in a database and equally perform the diagnostic 

and effecting control using the data. To produce quality soap, every section of the continuous process plant has its 

own different temperature value range. The final soap quality considered in this work was the soap physical 

appearance or the soap hardness (texture) assuming that accurate chemical variables and compositions are used. 

 

2.1 Mathematical Modeling of the System 
In the temperature controlled soap quality model presented, two major factors; temperature and duration of heating 

or cooling are used to control the quality of the finished soap. As shown in Figure 2, let: 

SR = raw soap properties, 

Ss = saponified soap properties 

ts = saponification time 

ϴ1 = saponification heating rate  

Sc = chilled soap properties 

tc = chilling time 



Nwandu et al. /Journal of Engineering and Applied Sciences, Volume 16, Number 1, January 2020, 22-32 25 

 

JEAS   ISSN: 1119-8109 

 
 

Ø1 = chilling rate 

Sm = milled soap properties 

tm = milling time  

Sp = plodded soap properties 

tp = plodding time 

Ø3 = plodding rate of cooling 

S = finished soap percentage characteristic 

tn = duration of time at nose cone 

ϴ2 = nose cone rate of heating 

Generally, using Fourier’s law of heat conduction for one-dimensional heat conduction equation, 

 

𝑄 = −𝑘𝐴
𝜕𝑇

𝜕𝑥
= 𝜌𝐶

𝜕𝑇

𝜕𝑡
   (1) 

 

Where, k, A, ρ, and C are the properties of the material and are given as: 

Q = rate of change of energy content (heat rate). 

k = inverse of specific heat of the material 

A = thermal conductivity of the material 

ρ = density of material 

C = specific heat capacity of the material 

T = temperature 

t = time 

From equation (1), it implies that: 

 

𝑇 =
1

𝜌𝐶
 𝑄𝑑𝑡
𝑡2

𝑡1
                         (2) 

 

Using figure 2 and applying equation (2), then it becomes that: 

 

𝑆𝑠 = 𝑆𝑅  𝛳1
𝑡𝑠
𝑡0

𝑑𝑡                                     (3) 

𝑆𝑐 = 𝑆𝑠  Ø1
𝑡𝑐2

𝑡𝑐1
𝑑𝑡                      (4) 

 

Putting equation (3) into (4) 

𝑆𝑐 =  𝑆𝑅  𝛳1
𝑡𝑠
𝑡0

𝑑𝑡  Ø1
𝑡𝑐2

𝑡𝑐1
𝑑𝑡 =  𝛳1

𝑡𝑠
𝑡0

𝑑𝑡  Ø1
𝑡𝑐2

𝑡𝑐1
𝑑𝑡       (5) 

Again, 

𝑆𝑚 = 𝑆𝑐  Ø1
𝑡𝑚2

𝑡𝑚1
𝑑𝑡                     (6) 

 

Substituting for Sc in equation (6), 

𝑆𝑚 =  𝑆𝑅  𝛳1

𝑡𝑠

𝑡0

𝑑𝑡 Ø1

𝑡𝑐2

𝑡𝑐1

𝑑𝑡  Ø1

𝑡𝑚2

𝑡𝑚1

𝑑𝑡 

= 𝑆𝑅  𝛳1
𝑡𝑠
𝑡0

𝑑𝑡  Ø1
𝑡𝑐2

𝑡𝑐1
𝑑𝑡  Ø1

𝑡𝑚2

𝑡𝑚1
𝑑𝑡                (7) 

Also, we have that: 

𝑆𝑝 = 𝑆𝑚  Ø3
𝑡𝑝2

𝑡𝑝1
𝑑𝑡                  (8) 

Putting equation (7) into equation (8), we have: 

 

𝑆𝑝 =  𝑆𝑅  𝛳1

𝑡𝑠

𝑡0

𝑑𝑡 Ø1

𝑡𝑐2

𝑡𝑐1

𝑑𝑡 Ø1

𝑡𝑚2

𝑡𝑚1

𝑑𝑡  Ø3

𝑡𝑝2

𝑡𝑝1

𝑑𝑡 

= 𝑆𝑅  𝛳1
𝑡𝑠
𝑡0

𝑑𝑡  Ø1
𝑡𝑐2

𝑡𝑐1
𝑑𝑡  Ø2

𝑡𝑚2

𝑡𝑚1
𝑑𝑡  Ø3

𝑡𝑝2

𝑡𝑝1
𝑑𝑡            (9) 

Now, 

𝑆 = 𝑆𝑝  𝛳2
𝑡𝑛2

𝑡𝑛1
𝑑𝑡                                (10) 

 



26 Nwandu et al. / Journal of Engineering and Applied Sciences 

 

JEAS   ISSN: 1119-8109 

 

Substituting equation (9) into equation (10) therefore, 

 

𝑆 =  𝑆𝑅 𝛳1

𝑡𝑠

𝑡0

𝑑𝑡 Ø1

𝑡𝑐2

𝑡𝑐1

𝑑𝑡 Ø2

𝑡𝑚2

𝑡𝑚1

𝑑𝑡 Ø3

𝑡𝑝2

𝑡𝑝1

𝑑𝑡  𝛳2

𝑡𝑛2

𝑡𝑛1

𝑑𝑡 

=  𝛳1

𝑡𝑠

𝑡0

𝑑𝑡 Ø1

𝑡𝑐2

𝑡𝑐1

𝑑𝑡 Ø2

𝑡𝑚2

𝑡𝑚1

𝑑𝑡 Ø3

𝑡𝑝2

𝑡𝑝1

𝑑𝑡 𝛳2

𝑡𝑛2

𝑡𝑛1

𝑑𝑡 

𝑆 = 𝑆𝑅   𝛳1
𝑡𝑠
𝑡0

 Ø1
𝑡𝑐2

𝑡𝑐1
 Ø2
𝑡𝑚2

𝑡𝑚1
 Ø3
𝑡𝑝2

𝑡𝑝1
 𝛳2
𝑡𝑛2

𝑡𝑛1
 𝑑𝑡        (11)                                  

 

By analogy with equation (2), 𝑆𝑅 =
1

𝜌𝐶
. Therefore, 

 

𝑆 =
1

𝜌𝐶
  𝛳1

𝑡𝑠
𝑡0

 Ø1
𝑡𝑐2

𝑡𝑐1
 Ø2
𝑡𝑚2

𝑡𝑚1
 Ø3
𝑡𝑝2

𝑡𝑝1
 𝛳2
𝑡𝑛2

𝑡𝑛1
 𝑑𝑡           (12) 

 

Equation (12) could therefore be used to characterize the quality of soap to be produce. Adjusting the heating rate at 

each stage of production will help determine the required temperature at the various stages as well as that of the 

finished soap. To do this, the soap content temperature must be monitored with time for effective control, using a 

single microprocessor to monitor and control each of the various stages. These microprocessors would report their 

status to a central microprocessor that would process the data and store it in a database and equally perform the 

diagnostic and effecting control using the data. 

 

2.2 Diagnostic Procedure 

From the model developed when a failure or an error occurs in the system, the microprocessor attached in that stage 

would identify the failure and processes the failure before informing the central control unit of the type of failure or 

error. The central control unit would inform and instruct the microprocessor based on the standard operating 

condition available on its memory, to carry certain specified actions and when that is done and the system is 

restored, the central control unit will append a corresponding action code to the action that resolved the identified 

failure. The central control unit would communicate this operation to the base station that would help the system to 

learn the failures and the action taken to resolve them and stores the same information on the database. This 

information was used to develop a diagnosis algorithm using “IF-Then rule” that would help the system to identify 

failures or errors in the future that have occurred in the past (using the error code) and immediately apply that 

specific action (using the action code) that resolved the failure then without any human intervention.     

   

2.3 Failure Detection 

As soon as failure are detected the knowledge base is notified and data concerning its duration and number of 

occurrences so far are recorded and transmitted. Detectable failures are either caused by the increase or decrease in 

temperature of a particular stage or a stage exceeding its expected duration. When a detectable failure occurs on the 

production system, the central processor increments its counter for that particular failure and records its duration. 

Once the alarm is acquitted, the information collected previously is sent to the knowledge base for determining the 

failure’s frequency. Some of the detectable failures (which are functions of temperature and time) in the soap 

manufacturing system are listed below; 

 Clogging in the machine 

 Breakup of soap noddles 

 Milling valve gap (roughness and grit) 

 Soap sticking in the plodder barrel 

 Gramage inconsistency 

 Poor texture of the soap  

 Soap sticks on ejection actuator 

 

2.4 Diagnosis 
The diagnosis method adopted in this work is the condition based self-diagnosis. This is based on the principle of 

monitoring the condition of machinery and repairing it just prior to failure or an unacceptable level of performance 

degradation. The diagnostics program uses the failure tree to make a list with the components that have the highest 

probability to have failed. For the failures already treated in the past, “if … then” rules were used and combined to 

failure trees to determine the cause of the failure and their associated maintenance procedure which was then stored 



Nwandu et al. /Journal of Engineering and Applied Sciences, Volume 16, Number 1, January 2020, 22-32 27 

 

JEAS   ISSN: 1119-8109 

 
 

in the knowledge base with an action code. If after this step no cause for the failure is found, then a manual 

diagnosis method is initiated which will guide the technician to determine the failed component(s). Once the repairs 

are made, the operator creates an intervention report which contains the procedure he used or created to eliminate 

the failure. Then from this report an “if … then” rule is created and stored in the knowledge base for future usage. 

 

3.0 Results and Discussions 

The implementation and testing of the condition based self-diagnostic system for quality manufacturing was carried 

out on a continuous soap manufacturing plant. The soap manufacturing belongs to Chidioka & Sons Ltd, a local 

soap manufacturing company in Onitsha, Onitsha south local government area of Anambra State, South East 

Nigeria.  The developed model was used to monitor and control the quality of the soap produced and the setup is as 

shown in figure 1.  

 

In the implementation of the multiprocessors based self-diagnostic system, the various microprocessors attached to 

the various units of the soap manufacturing machine would take the time and temperature readings of their 

respective stages continuously and compare the readings with a preset temperature range for that stage. These 

microprocessors report their current status periodically to the central processing unit till the end of the production, 

the central processing unit would then display the information and stores the same in the database. In the course of 

taken these temperature readings if an error or failure is discovered in any of the stage, the corresponding 

microprocessor will attend to the error and report both the error and action taken to resolve the error to the central 

processing unit using the error codes and action codes. But when an error that cannot be handled by the unit 

microprocessor occurs, it would append a new error code and report immediately to the central processing unit that 

would then alert the operator with the information about the unit where there was discovered error. The operator 

would attend to the error and through the attached keypad enter into the PC the action taken to resolve the error and 

the central processing unit would assign a new action code to the solution for future use and stores same in the 

database of the system. 

 

Saponification 

Chamber

Chilling 

Chamber
Miller Plodder

Nose 

cone

Chiller

Heater

Ss Sc Sm SpSR S

ϴ1 ϴ2

Ø1 Ø3Ø2

ts

tc tm tp

tn

 
Figure 1: Block Diagram of the Automated Soap Manufacturing Process 

 

3.1 PC-Side Graphical User Interface (GUI)  

A  PC-side  graphical  user  interface was  developed  to make  interaction with multiprocessor based system 

possible  via  a  computer. This application defines a graphical user interface (GUI) through which users can feed 

data, send commands for data acquisition and as well view resolved failures. The level and extent of this application 

was designed according to the need of the organization and could be developed in any high level software language   

The GUI as shown in figure 2 was developed by Microsoft Visual Studio IDE and written in Visual Basic.NET. 

 



28 Nwandu et al. / Journal of Engineering and Applied Sciences 

 

JEAS   ISSN: 1119-8109 

 

 
Figure 2: Screen shot of the GUI for data acquisition 

 

 

3.2 Diagnosis Algorithm Development 

When a failure or an error occurs in the system, the microprocessor attached in that stage identified the failure and 

process the failure (by appending a specific error code) before informing the central control unit of the type of 

failure or error. The central control unit then informed and instructed the microprocessor based on the standard 

operating condition available on its memory, to carry certain specified actions and when that is done and the system 

is restored, the central control unit then appended a corresponding action code to the action that resolved the 

identified failure. The central control unit would communicate this operation to the base station that would help the 

system to learn the failures and the action taken to resolve them and stores the same information on the database. 

This information was used to develop a diagnosis algorithm using “IF-Then rule” that would help the system to 

identify failures or errors in the future that have occurred in the past (using the error code) and immediately apply 

that specific action (using the action code) that resolved the failure then without any human intervention. If new 

failures or errors are identified in the future the microprocessor attached to that unit will append new error code to it 

and notify the central control which in turn will alert the operator using the Buzzer system. Then the operator would 

check the system to restore the system and afterwards saves the action taken in the system which would append new 

action code to the action. This would help the system to learn of the new identified and resolved failure for future 

operations. The pseudo code is given hereunder. 

 

1. Start. 

2. Initialize. 

3. Start timer. 

4. Receive temperature readings from all five chambers. 

5. Compare temperature readings with predefined readings for error. 

6. If error exist then, 

7. Check database for its error code. 

8. Else, move down to number 14. 

9. If error code is present in the database then, 

10. Use corresponding action code to resolve the error. 

11. Check if error is resolved. 

12. If yes then, 

13. Update database and close database. 

14. Display system status, temperature details and actions taken. 



Nwandu et al. /Journal of Engineering and Applied Sciences, Volume 16, Number 1, January 2020, 22-32 29 

 

JEAS   ISSN: 1119-8109 

 
 

15. Else, alert user or operator using display and sound. 

16. Operator enters details of new error in database. 

17. Return to number 2. 

End 

 

 
Figure 3: Temperature and Time relationship in soap production process 

 
 

Figure 4: Average temperature variation in the saponification chamber 

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180
Temperature and Time variation in Soap Making Process

T
e
m

p
e
ra

tu
re

 (
d

e
g

C
)

Time (minutes)

 

 

Saponification stage

Chilling stage

Milling stage

Plodder stage

Noise cone stage

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180
Temperature variations in Saponification chamber

T
e
m

p
e
ra

tu
re

 (
d

e
g

C
)

Time (minutes)

 

 

S1

S2

S3

S4



30 Nwandu et al. / Journal of Engineering and Applied Sciences 

 

JEAS   ISSN: 1119-8109 

 

 
 

Figure 5: Average temperature variation in the Milling chamber 

 

Figures 3, 4, and 5 show the results obtained during the testing of the developed model using the local soap 

manufacturing company. During the testing of the designed system, which involved the complete production of soap 

from the raw material to the finished soap. It was discovered that the system monitored and controlled the soap 

manufacturing machine and ensured that the quality of soap produced met the stated expectations, as shown in 

figure 3 where the self-diagnostic system was able to diagnose and self-corrected the soap manufacturing operations 

and returned the operating conditions to the standard stated and/or observed conditions.  Similarly, figures 4 and 5 

show the fluctuations and corrections of the operating conditions in some of the chambers of the continuous soap 

manufacturing plant.  Equally, there were some discovered errors that required the attention of the operator and the 

solution rendered was also recorded. The entire process was completed normally on average of about 3 hours. 

 

3.3 Evaluation of the Diagnosis Algorithm 

The performance of specific detection and diagnostic algorithm or subsystems of a CBM system are measured with 

Performance Metrics. The functionality of the diagnostic algorithm or subsystems directly contributes to the overall 

effectiveness of the entire system. However, the ability to assess the accuracy and robustness of particular 

algorithms is often more straightforward when the technologies making up the system are checked separately. Also, 

from a design and development point of view, it is often more logical to work on the improvements to specific 

algorithms or processes at the elemental level rather than the overall systems level. 

 

 Metrics of performance for diagnostic/prognostic algorithms or subsystems are arranged into three categories; 

 Detection,  

 Isolation,  

 Prognosis.  

Detection metrics measure the ability of diagnostic tools to correctly classify production operation as either normal 

or anomalous. Isolation metrics measure the ability of diagnostic tools to accurately identify the root cause and 

corrective action for a fault. Prognosis metrics measure the ability of prognostic systems to accurately forecast the 

future condition of a production system. Scores from the individual performance metrics are combined according the 

hierarchy to produce summary scores for each category, and for overall performance. The ability of diagnostic 

system to detect and isolate faults or to predict failures is measured as a function of the fault severity. Fault severity 

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120
Temperature variations in Milling chamber

T
e
m

p
e
r
a

tu
r
e

 (
d

e
g

C
)

Time (minutes)

 

 

M1

M2

M3

M4



Nwandu et al. /Journal of Engineering and Applied Sciences, Volume 16, Number 1, January 2020, 22-32 31 

 

JEAS   ISSN: 1119-8109 

 
 

must be established by objective and irrefutable measures to ensure that the assessments based upon it are accurate 

and impartial. In this work, a set of experiments and an experimental analysis method (using multiple regression 

analysis) were used to test the significance of the experimentally controlled parameters in producing quality of soap. 

One subset of parameters which are identified as potentially affecting soap quality consists of heating rate, cooling 

rate and duration of each stage. These significant parameters that affect the quality of the soap are first established 

within a feasible parameter space and are given in Table 1. 

 

Table 1: Summary of the variables for the soap 

Stage Parameter Coded level of Variable 

Low High 

Heating rate 𝜃 (Deg C) 50 105 

Cooling rate ∅ (Deg C) 0 25 

Duration 𝑡 (mins) 0 60 

 

4.0. Conclusion  

A condition based fault diagnosis process control system was designed for quality manufacturing. This work used a 

continuous soap manufacturing plant as an example of an industrial machine using sensor signals along with 

methods and algorithms. The approach is based on sensor readings and a relevant feature identification and 

extraction process based on those sensor signals. The approach is mainly based on the condition based monitoring 

methodology and it enables the collection of valuable sensor data from machine on a regular basis for use in fault 

diagnosis and for storage for future use. Evaluations have shown that the proposed approach has been proven 

successful and reliable in diagnosing faults in the soap manufacturing machine. 

 

References 

Agarwal .M.K, Gupta .M, Mann .V, Sachindran .N,  Anerousis .N, and Mummert .L.B,  2006.Problem 

determination in enterprise middleware systems using change  point  correlation of time series data. In 

IEEE/IFIP Network Operations and Management Symposium, pages 471-482, Vancouver, Canada. 

Agarwala .S, Alegre .F, Schwan .K, and Mehalingham .J, 2007. E2eprof: Automated end-to-end performance                           

management for enterprise systems. In IEEE Conference on Dependable Systems and Networks, pages 

749-758,  

Bahl .P, Chandra .R, Greenberg .A, Kandula .S, Maltz .D, and Zhang .M, 2007.  Towards highly reliable enterprise 

network services via inference of multi-level dependencies. In ACM Conference on Applications, 

Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM), pages 13-24, 

Kyoto, Japan. 

Cherkasova .L, Ozonat .K, Mi .N, Symons .J, and  Smirni .E, 2008. Anomaly? Application change? or workload 

change?  Towards automated detection of application performance anomaly and  change. In IEEE 

Conference on Dependable Systems and Networks, pages  452-461, Anchorage, Alaska. 

Joshi .K, Sanders .W, Hiltunen .M, and Schlichting  D, 2005. Automatic model-driven recovery in distributed 

systems. In IEEE  Symposium on Reliable Distributed Systems, pages 25-38, Orlando, Florida 

Kandula .S, Katabi .D, and Vasseur .J.P, 2005. Shrink: A Tool for Failure Diagnosis in  IP Networks. In ACM 

SIGCOMM Workshop on mining network data (MineNet-05), Philadelphia, PA. 

Kandula .S, Mahajan .R, Verkaik .P, Agarwal .S, Padhye .J, and Bahl .P, 2009. Detailed  diagnosis in enterprise 

networks. In ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer 

Communications  (SIGCOMM), pages 243-254, Barcelona, Spain. 

Khanna .G, Laguna .I, Arshad .F, and Bagchi .S, 2007. Distributed diagnosis of failures  in a three tier e-commerce 

system. In IEEE  Symposium on Reliable Distributed Systems, pages 185-198, Beijing, China. 

Kavulya .S, Joshi .K, Hiltunen .M, Daniels .S, Gandhi .R, and Narasimhan .P, 2011. Practical experiences with  

chronic discovery in large telecommunications systems. In ACM Workshop on Managing Systems via Log 

Analysis and Machine Learning Techniques  (SLAML), Cascais, Portugal, October. 

Qeethara K. S, 2011. Artificial Neural Networks in Medical Diagnosis. IJCSI International Journal of Computer  

Science Issues, vol. 8, issue 2, pp 150-154. 



32 Nwandu et al. / Journal of Engineering and Applied Sciences 

 

JEAS   ISSN: 1119-8109 

 

Rish .I, Brodie .M, Ma .S, Odintsova .N, Beygelzimer .A, Grabarnik G, and Hernandez .K, 2005. Adaptive diagnosis   

in distributed systems. IEEE Transactions on Neural Networks, 16(5):1088-1109. 

Rish .I, Brodie .M, Odintsova .N, Ma .S, and  Grabarnik .G, (2004). Real-time problem determination in 

distributed systems using  active probing. In IEEE/IFIP Network Operations and Management Symposium, 

pages 133-146, Seoul, South Korea. 

Stewart .C, Kelly .T, and Zhang .A, 2007.  Exploiting nonstationarity for performance  prediction. In European 

conference on Computer systems (EuroSys), pages 31-44,  Lisbon, Portugal. 

Worn, H. (2004). DIAMOND: Distributed multi-agent architecture for monitoring and  diagnosis, journal of 

Production Planning and Control 15: 189–200. 


