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Abstract  

 

Mathematical models of HIV/blood interactions were formulated by several researchers. Those models suffered some setbacks 

because they lacked actual experimental data to validate them.  As a solution, values were arbitrary assigned by mathematicians 

and model developers to both biological processes of infectivity and control infectivity in viral dynamics. Genetic factor in HIV 

infectivity that assures disease progression as in reality expressed from adhesive interfacial free energy concept following the 

successes recorded by researchers on the role of surface thermodynamics in HIV-blood interactions is estimated from simulated 

infection time-course that shows a disease progression obtainable in practice. The methodology involved analytical establishment 

of range for genetic factors in viral dynamics since there is direct evidence of genetic factor in HIV infectivity, importing values 

to quantify infectivity parameter expressed through surface thermodynamics and simulating an adopted viral dynamics model 

incorporated with various adopted genetic factor using MATLABTM function ode 45 in ninety different simulations. The 

MATLABTM function ode 45 makes use of an explicit Runge-Kutta formula by numerical integration of the model. Genetic factor 

ɛ was seen to be within the range of 0 ≤ ɛ ≤ 1. From the simulations the value of infectivity of 3 ∗ 10−4  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  was 

obtained which is within the range of infectivity values of  5.0 ∗ 10−10 ≤ 𝛽 ≤ 1)  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  arbitrarily chosen by various 

researchers and comparable with values that show actual disease progression. Average infectivity value obtained from the 

literature was used for simulation and then compared with that obtained in this study. ANOVA tests showed for uninfected cell, 

computed F ratio as 0.000104 which is less than the critical F ratio 4.351244, hence there was no significant difference between 

the average infectivity value from the literature and the HIV infectivity obtained in this study.This understanding on genetic 

factor in HIV infectivity would contribute potentially to stronger prevention strategies for a possible and appropriate vaccines and 

or more efficient drug for AIDS patients. In clinical trials and in pharmaceutical industries where drug design, drug dosing and 

treatment regimen depend on the infectivity, this finding will certainly be fancied. 
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1. Introduction 

There are currently twenty one families of viruses known to cause diseases in humans, including human 

immunodeficiency virus (HIV), Hepatitis, Herpes Simplex, Measles and they have continued to plague humans (Lai, 

2014). Viruses are found in almost every ecosystem on earth and known to infect most types of organisms, including 

bacteria, fungi, plants, vertebrates, etc.   The mechanisms by which viruses cause diseases in an organism depend 

largely on the viral species (Smith, 1972).  Viruses can usually cause damage in the host via cell lysis, production of 

toxic substances and cell transformation (Doitsh & Greene, 2016).  When a virus enters a cell and completes its 

normal replication cycle, the host cell may undergo lysis due to a physical internal pressure exerted by multiplying 

virus or immune response. During the course of virus replication, many cytotoxic viral components as well as by-

products of viral replication accumulate in the cell (Klatt, 2015).  Cell lysis and cytotoxic components cause death of 

the cell (Lai, 2014). If enough cells die, the whole organism will start to suffer the effects.  Some viruses can cause 
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lifelong or chronic infections where viruses continue to replicate in the body despite the host’s defence mechanisms. 

Ronsard et al cited in Santoro & Perno, (2013), noted that a rate-limiting factor in the management of HIV 

infections, is the plethora of genetic variations in infectivity leading to failure of clinical trials. 

 

Variability in response to therapy has made some individuals experience virologic failure on therapy that is highly 

effective on others. Under the use of Highly Active Anti Retroviral Therapy (HAART), transient rebounds of 

plasma viremia have also remained a problem (Jeffry, 2006). Most viral diseases have the ability to develop 

resistance. About ten billion new viral particles of HIV can be generated daily, in chronic cases (Omenyi, 2005). 

Ronsard et al cited in (Santoro & Perno, 2013), noted that a rate-limiting factor in the management of HIV 

infections, is the plethora of genetic variations in infectivity leading to failure of clinical trials. Virus infectivity in 

HIV infection is observed to vary (Ganusov, Neher & Perelson, 2012). Clinical solution to the problem of HIV is 

hampered by the rapid genetic mutation of HIV. Mathematician researchers made choice of infectivity values based 

on the values needed to generate the dynamics of the virus and infected cells that agree with the current knowledge 

of HIV infection. These values were obtained either by some mere choice of values and or by using models to 

estimate the undefined, unexpressed interaction parameter. None of the researchers attempted to explain and give 

physical meaning to their “infectivity” parameters in viral dynamics. 

 

This work intends to approach the problem by expressing and quantifying the “infectivity” through thermodynamic 

interfacial energetics and estimation of genetic factor through simulation such that there will be no arbitral choice of 

values for infectivity as approached by mathematician researchers. Infectivity parameter components values are 

imported and substituted in the proposed expression for infectivity and the value of infectivity quantified. 

 

1.2 Literature Survey 

HIV, as one of the most intensively studied viral infections, now has massive drug development efforts starting soon 

after identification of the virus with twenty seven (27) different antiretroviral drugs (Hill, Rosenbloom, Nowark, & 

Siliciano, 2018), capable of halting viral replication and preventing transmission and progression to AIDS but still 

without a cure. Chukwuneke, Achebe, Senibe & Ugwuegbu (2017) in one of the recent studies, observed that HIV 

has the tendency to reduce the interaction energy by 13% with the consequences of increased viral loads and 

decreased immune systems in HIV patients suffering from Tb.  Achebe (2010) had earlier established a solution to 

HIV infection using absorbance data to derive A33 ≥0.9763 ∗ 10−21joule as a condition for a negative A132 which 

implies net negative van dar Waals indicating repulsion between the virus and the lymphocyte. Furthermore, Ani, 

Omenyi & Nwigbo (2015), in their research which assert that their findings suggest a thermodynamic criterion for 

HIV-blood-drug interaction prediction, confirms the existence of some relationship between drug coating of surface 

of blood cell and the cell surface free energy by observing that the drug 1 which has highest coating effectiveness 

also has the highest surface free energy (47.5 MJ/m
2
). 

 

Mathematical modeling of viral dynamics, and hence HIV dynamics, provides understanding of the underlying 

mechanisms that influence the spread of the disease and, in the process, it suggests control strategies. The 

phenomenon of disease modeling can be easily accomplished through mathematical framework (Geetha, & 

Balamuralitharan, 2018). Since the discovery of HIV as the etiological agent of AIDS, numerous advances have 

been made in the understanding of the molecular biology, pathogenesis, and epidemiology of the virus, and the host 

immune response to it (Klatt, 2015). Not least among these has been the knowledge obtained by mathematical 

analysis and within-host modelling of changes in viral load and T-cell counts after initiation of potent antiretroviral 

therapy in individual subjects. 

In the virus life cycle (replication cycle) the most crucial stage is the first stage, the binding (attachment) stage. It is 

a stage without which the HIV life cycle would be cut short. Now at entry to the body, the viral particle is attracted 

to a cell (lymphocyte) with the appropriate CD4 receptor molecules where it attaches (binds) and by fusion to a 

susceptible cell membrane or by endocytosis (an energy using up process) and then enters the cell. Fusion of the 

viral and host membranes is a critical step during infection by membrane enclosed viruses like HIV and influenza. 

The probability of infection is a function of both the number of infective HIV virions in the body fluid which 

contacts the host as well as the number of cells available at the site of contact that have appropriate CD4 receptors 

(Klatt, 2015: Sundquist & Kraussilich, 2012). This probability could only be attained as a result of the unavoidable 

contact between the virion and the lymphocyte. The interaction between a virus and the surface of the lymphocyte is 

controlled by a balance between electrostatic repulsion – van der Waals attraction mechanism, resulting in an 

adhesive energy which can be expressed as equation (1) (Omenyi, 1978). 
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∆𝐹𝑃𝐿𝑆
𝑎𝑑ℎ 𝑑0 = 𝛾𝑃𝑆 − 𝛾𝑃𝐿 − 𝛾𝑆𝐿      (1) 

Where ΔF
adh

 is the thermodynamic free energy of adhesion, integrated from infinity to the equilibrium separation 

distance do; 𝛾𝑃𝑆 is the interfacial free energy between P (representing the virus) and S (lymphocyte),𝛾𝑃𝐿  is that 

between P and L(where L is the plasma) and 𝛾𝑆𝐿 is that between S and L. 

 

Similar equations can be obtained for interactions between the individual components as equation (2) (Omenyi, 

1978). 

∆𝐹𝑖𝑗
𝑎𝑑ℎ 𝑑0 = 𝛾𝑖𝑗 − 𝛾𝑖𝑣 − 𝛾𝑗𝑣      (2) 

 

For all given combinations, ∆𝐹𝑎𝑑ℎ  could be expressed in terms of van der Waals energy thereby making surface free 

energy or energy of interaction a function of attraction between particles suspended in a liquid medium. 

1.2.1 Infectivity and Genetic Factor in HIV Infection 

 

An approach to developing effective anti-HIV intervention is to identify and understand the molecular mechanism 

by which natural genetic variations provide protection from infection or disease progression. Human gene alleles 

that confer resistance or increased susceptibility to HIV infection are identified by this approach (Donfack, 

Buchinsky, Post, & Garth, 2006). Increasing data support host genetic factor as important determinants of human 

immunodeficiency virus type 1 (HIV-1) susceptibility (Singh & Spector, 2009). A recent evidence has indicated that 

natural variations in host genes can influence the outcome of HIV infection and its transmission (Lama & Planelles, 

2007). Genes play a major role in determining the susceptibility or resistance to HIV-1 infection (Kumar, Prakash, 

Manpreet, Sumedh, & Medhi, 2006). Susceptibility to HIV infection and AIDS progression is variable among 

individuals and populations, and in part genetically determined (Arenzana-Seisdedos & Parmentier, 2006). There 

have been reports of people who were completely resistant to infection with HIV and a group of others who 

progressed to AIDS at a much slower rates since HIV discovery (Al-Jabri, 2007). 

 

Anacleto et al. (2019) in their study in genetic differences in host infectivity, an infectivity study whose result 

showed that individuals can evolve different disease response types affecting epidemic survival rates, opined that 

there is a direct evidence for genetic variation in host infectivity. Virus infectivity in HIV infection is observed to 

vary (Ganusov, Neher & Perelson, 2012).  

Increasing evidence however shows that risks and severity of disease depend on infectivity, which is the host ability 

to transmit infections. Also, in the genetic analysis of infection, host resistance to becoming infected or host ability 

to survive when exposed to infection is under genetic control and correlated (Anacleto et al. 2019). 

Again, in static-dynamic infectivity relationship, it is important at this point to state as observed by Chazal, 

Nzounza, Pique & Ramirez (2014) in the result of their work, loss of infectivity of HIV-1 particles produced by 

mobile lymphocytes, that alteration of the functionality and the composition of HIV-1 particles produced by mobile 

lymphocyte very likely contribute to poor efficiency of HIV-1 replication in shaken T-cell cultures. Their result 

showed a tenth of infectivity of mobile lymphocytes when compared with the static ones. They showed that 

infectivity rate at static condition is about 10 times the ideal situation, where blood in the circulatory system is in 

constant motion (shaking). The relationship between infectivity at static and mobile condition of lymphocyte is such 

that infectivity at mobile condition is one-tenth of that at static condition.  

 

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑀 = 𝜓𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆       (3) 

Where 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑀  is infectivity under ideal condition, that is when the blood is mobile resulting to mobile 

lymphocyte and 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆  is infectivity under static condition when the blood is static and not circulating. 

Worthy of note is that effect of genetic variation in host infectivity (genetic variance) is already felt in the infectivity 

under static condition, that is 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆  is a function of genetic variation. 
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1.2.2 Basic Viral Dynamics 

 

In the solution of HIV viral dynamics (a field of applied mathematics) which is a set of complex nonlinear 

differential equations (see eq. 4) that describe changes over time in the populations of cells targeted by the virus and 

viral load, numerical technique is resorted to, due to challenges of lack of analytical technique on non-linear 

differential equation since numerical technique provides approximate solutions.Magnitude of data involved also 

posed a challenge. 

 

The healthy cells are infected by the virus at a rate that is proportional to the product of their population size and the 

amount of free virus particles with a constant that is an indication of the effectiveness of the infection process 

(Bonhoeffer, May, Shaw, and Nowak, 1997; Hill, Rosenbloom, Nowark, & Siliciano,2018). It is known that from 

pathogenesis of HIV infection that retroviruses are unable to replicate outside of living host cells and do not contain 

deoxyribonucleic acid (DNA). The pathogenesis of HIV infection is a function of the virus life cycle, host cellular 

environment, and quantity of viruses in the infected individual. In the virus life cycle (replication cycle) the most 

crucial stage is the first stage, the binding (attachment) stage. It is a stage without which the HIV life cycle would be 

cut short. Now at entry to the body, the viral particle is attracted to a cell (lymphocyte) with the appropriate CD4 

receptor molecules where it attaches (binds) and by fusion to a susceptible cell membrane or by endocytosis (an 

energy using up process) and then enters the cell.  These reasonings enabled researchers, notably Bonhoeffer, et al., 

(1997), to propose a basic model of viral dynamics as: 

 

𝑥 = 𝜆 − 𝑑𝑥 − 𝛽𝑥𝑣, 
𝑦 =  𝛽𝑥𝑣 − 𝑎𝑦, 

𝑣 = 𝑘𝑦 − 𝑢𝑣.                                                                                    (4) 

 

Where 𝑥 is susceptible cells, 𝑦 is infected cells, 𝑣 is virus particle, 𝜆 is rate of production of susceptible cells, 𝑑 is 

death rate of susceptible cells, 𝛽 is infectivity (interaction parameter), 𝑎 is death rate of infected cells, 𝑘 is rate of 

virus production and 𝑢 is clearance rate of virus particles.  

The true infection time course situations are presented in figures 1a to 1d for time course of uninfected cells in a 

typical infection progression obtainable in a typical uncontrolled infection. In each of the plots, there is an initial 

wave-like oscillation in few days to about six weeks with not less than five hundred cells per μL, 500  𝑐𝑒𝑙𝑙𝑠 µ𝐿   

which later experience some dampening effects by converging to equilibrium which is within the range of CD4
+
 T 

cell count between two hundred and four hundred and ninety-nine (200-499) cells per μL (mm
-3

) representing the 

stage two known as the asymptomatic or clinical latency or chronic infection stage. 

 

 

Figure 1a:Uninfected cell in  𝒄𝒆𝒍𝒍𝒔 µ𝑳   time-course (Moyosis & Kafetzis, 2016) 
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Figure 1b:Uninfected cell time-course(Wang & Zhou, 2010) 

 

Figure 1c:Uninfected cell in  𝒄𝒆𝒍𝒍𝒔 𝒎𝑳  time-course(Xu, Tian & Zhang, 2018) 
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Figure 1d: Uninfected cell time-course for thirty days (Hill et al, 2018) 

 

Figures 1a to 1d show normal disease progression in reality from zero day of infection period. The figures are what 

the expected simulation result is expected to look like. Little or no effort has been put into the understanding of the 

promoters of the virus binding effects on the lymphocytes in the studies on mathematical modelling as reported so 

far. In this paper therefore, the virus/blood interaction parameter required for complete solution of the model 

equations, will be expressed using interfacial energetics concepts and simulations made to estimate the infectivity 

parameter. 

 

1.3 Scope and Justification of the Work Done 

In this work, only HIV/human blood interactions is considered with the use of van der Waals forces as analytical 

tool, in the absence of antiretroviral drugs environment. Data is imported from available literature to quantify 

surface energetics and interfacial free energy. Existing basic viral dynamics models is adopted for the study. The 

mathematical models will be solved using MATLAB FUNCTION ODE 45 solution tools. Time dependent 

interaction parameter, genetic variation factor and mutation problems shall not be sought for in this study as genetic 

variation factor is estimated. Surface thermodynamics of the antiretroviral drugs used in HIV treatment is definitely 

beyond the scope of this work. Those in the pharmaceutical industry who are involved in antiretroviral drug design 

and production will value this work. The success of the research, when it leads to appropriate drug design and 

production, based on appropriate information of surface thermodynamics of HIV infectivity will be of benefit to 

pharmaceutical industries, clinicians and HIV/AIDS patients. 

 

2.0 Material and methods 

2.1 Material and data 

The data used to study the models of interaction include those of the Antiretroviral drugs as quantified by (Ilo, 

2021). Equipment include a HP laptop model HP 620 while software is a computerized program for solving sets of 

complex nonlinear differential equations that makes use of explicit Runge-Kutta formula in MATLAB
TM 

function 

ode 45 in numerical integration of the model. 

 

2.2 Model Solution Procedure 

The methodology involved expressing infectivity in viral dynamics through surface thermodynamics, importing data 

for adhesion driven parameter from (Ilo, 2021), analytical establishment of range for genetic factors in viral 

dynamics since there is direct evidence of genetic factor in HIV infectivity, and simulating an adopted viral 

dynamics model (eqn 4) incorporated with various adopted genetic factorusing MATLAB
TM 

function ode 45 in 

ninety different numerical simulations for a progression or infection time course as in reality. The MATLAB
TM 

function ode 45 makes use of an explicit Runge-Kutta formula by numerical integration of the model. The 

infectivity value is obtained from the numerical simulation plot with progression as in reality and the expression for 

infectivity equation (5).  
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2.3 Infectivity (Virus Mechanism of Action ) Expressed as Adhesion Coefficient 𝜷𝟎𝑻 

From literature, HIV infection is a function of genetic factor and the infection driving factor (adhesion driven 

parameter) and that since data for infectivity parameter was taken at static condition, the static to dynamic 

conversion factor of equation (3) was introduced. Thus expressed infectivity is as shown in equation (5), 

 

𝛽0𝑇 = ɛ 
𝜓 𝛾𝑃𝑆 

𝛾𝑃𝐿 + 𝛾𝑆𝐿
  0 < 𝛽0𝑇 ≤ 1               (5) 

Equation (5) shows a direct evidence of genetic factor ɛ in infectivity and direct variation with the infection 

adhesion driven parameter 
𝛾𝑃𝑆

(𝛾𝑃𝐿 + 𝛾𝑆𝐿)  from equation (1), bearing in mind that in the HIV particle/blood cell 

interaction, infectivity is adhesion driven, and so the infectivity which invariably is a function of efficiency of the 

adhesion has a maximum value of one (1) and is therefore termed adhesion coefficient with notation 𝛽0𝑇with the 

unit of 𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  . 

2.4 Genetic Factor Range 

From literature review, it is evident that genetic factor provides either resistance or susceptibility to HIV infection. 

In other words, protection from HIV infection which is resistance or disease progression which is susceptibility to 

disease is enabled or assured by genetic factor. This genetic factor according to Ilo (2021) is denoted with the 

symbol ɛ. As observed by (Anacleto et al. 2019) that there is direct evidence of genetic factor in HIV infectivity, in 

principle it would mean that at complete resistance to HIV infection, the genetic factor ɛ has a value of zero (0), on 

the other hand, when the resistance by the genetic factor is completely lost for disease progression that is 

susceptibility, then in principle, the genetic factor ɛ allows the disease to progress hundred per cent (100%) 

according to infectivity parameter, hence the genetic factor has a value of one (1), meaning complete susceptibility. 

Table 1 gives values for components of infectivity, expectedgenetic factor range and adhesion driven parameter 

utilised in numerical simulation. The unit of 𝛾𝑃𝑆  is  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  .  
𝑚𝐽

𝑚2  , for 𝛾𝑃𝐿  and 𝛾𝑆𝐿  is  
𝑚𝐽

𝑚2  , and adhesion 

driven parameter unit is  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  . 

Table 1:Computed infectivity parameter components (Ilo, 2021) 

𝜸𝑷𝑺 

 

 𝒎𝑳
𝐜𝐨𝐩𝐢𝐞𝐬. 𝒅   

𝒎𝑱
𝒎𝟐   

𝜸𝑷𝑳 

 

 
𝒎𝑱

𝒎𝟐   

𝜸𝑺𝑳 

 

 
𝒎𝑱

𝒎𝟐   

Genetic 

factor range, ɛ 

 
- 

Adhesion 

driven 

parameter 

 𝒎𝑳
𝒄𝒐𝒑𝒊𝒆𝒔. 𝒅   

39.10 19.87 19.67 0-1 1 ∗ 10−1 
 

To determine genetic factor that assures a disease progression that is real, ninety different simulations were made 

with a set of adopted viral dynamics complementary parameters from the literature and ninety different genetic 

factor values in conjunction with equation (5). For reference purposes, the ninety different simulations are reported 

and could be accessed in (Ilo, 2021). 

 

3.0 Results and Discussions 

 

3.1 Results of Infection Time-Course from Numerical Simulations of Viral Dynamics 

 

Sample for the population of the ninety simulations results are shown in figure 2, 3, 4, 5 and 6. In the interpretation 

of figure 2, one could see a disease progression that is far from what obtains in reality. It is not comparable to the 

findings and simulation progression of Moyosis & Kafetzis (2016), Wang & Zhou (2010), Xu, Tian & Zhang (2018) 

and Bill et al., (2018) which are all shown in the referenced plots of figures 1a to 1d. Here, the system converges to 

equilibrium with infected cells and infective virus particles. In less than a day, there is a very sharp rise in both the 
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number of infected cells and virus particles which causes a corresponding sharp decrease in the number of 

susceptible cells. After this the infected cells and virus particles decline and then tend to their equilibrium values. 

This equilibrium is reached very quickly in just about six days where uninfected cells dropped to about 0 cells per 

μL, 0  𝑐𝑒𝑙𝑙𝑠 µ𝐿  in less than a quarter of a day. Figures 3 to 5 do not follow the same trend as in figure 1 as 

explained earlier. Therefore, figures 3 to 5 are not comparable to the findings and simulation progression of Moyosis 

& Kafetzis (2016), Wang & Zhou (2010), Xu, Tian & Zhang (2018) and Bill et al., (2018) which are all shown in 

the referenced plots of figures 1a to 1d. In the next, figure 3, uninfected cells dropped to about 0cells per μL, 0 

 𝑐𝑒𝑙𝑙𝑠 µ𝐿  in about a quarter of a day. In figure 4, uninfected cells first dropped to about 0 cells per μL, 0 

 𝑐𝑒𝑙𝑙𝑠 µ𝐿  in less than three days. In figure 5,uninfected cells dropped to about 0 cells per μL, 0  𝑐𝑒𝑙𝑙𝑠 µ𝐿  in about 

one and half days. All these, figures 3 to 5 are therefore not accepted for estimation of infectivity value because they 

do not follow the trend of figures 1a to 1d hence are not comparable to the findings and simulation progression of 

Moyosis & Kafetzis (2016), Wang & Zhou (2010), Xu, Tian & Zhang (2018) and Bill et al., (2018) which are all 

shown in the referenced plots of figures 1a to 1d. All the simulations for estimation of genetic factor are reported by 

Ilo, (2021). 

 

In contrast to progression, figure 6 is a replica of figures 1a to 1d which shows simulated time-course of uninfected 

cells in a typical infection progression obtainable in a typical uncontrolled infection. In figure 6, there is an expected 

initial wave-like oscillation of uninfected cells which later experience some dampening effects by converging to 

equilibrium which is within the range of CD4
+
 T cell count which occurs from two hundred to four hundred and 

ninety-nine, i.e., from 200-499 𝑐𝑒𝑙𝑙𝑠 µ𝐿  . This represents the stage two known as the asymptomatic or clinical 

latency or chronic infection stage. The simulation results of figure 6 are comparable to the findings and simulation 

progression of Moyosis & Kafetzis (2016), Wang & Zhou (2010), Xu, Tian & Zhang (2018) and Bill et al., (2018) 

which are all shown in the referenced plots of figures 1a to 1d.  

Discussions above from results of the ninety different numerical simulations show that figure (6) established disease 

progression that is obtainable in reality, hence the infectivity value of 3 ∗ 10−4  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  is obtained and 

accepted for this study using equation (5). Again, the obtained infectivity value is also within the established range 

(0 < 𝛽0𝑇 ≤ 1)  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  as seen in Ilo (2021) and (5.0 ∗ 10−10 ≤ 𝛽 ≤ 1)  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  chosen or assigned 

by various researchers. 

 

Figure 2, 3, 4, 5 and 6 are shown below. 
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Figure 2: Trial simulation with genetic factor value of 1 for infectivity of 𝟏 ∗ 𝟏𝟎−𝟏  𝒎𝑳
𝒄𝒐𝒑𝒊𝒆𝒔. 𝒅  . 

 

 

 

Figure 3: Trial simulation with genetic factor value of 0.1 for infectivity of 𝟏 ∗ 𝟏𝟎−𝟐  𝒎𝑳
𝒄𝒐𝒑𝒊𝒆𝒔. 𝒅  . 
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Figure 4: Trial simulation with genetic factor value of 0.01 for infectivity of 𝟏 ∗ 𝟏𝟎−𝟑  𝒎𝑳
𝒄𝒐𝒑𝒊𝒆𝒔. 𝒅  . 

 

Figure 5: Trial simulation with genetic factor value of 0.03 forinfectivity of𝟑 ∗ 𝟏𝟎−𝟑  𝒎𝑳
𝒄𝒐𝒑𝒊𝒆𝒔. 𝒅  . 
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Figure 6: Trial simulation with genetic factor value of 0.003 forinfectivity of 𝟑 ∗ 𝟏𝟎−𝟒  𝒎𝑳
𝒄𝒐𝒑𝒊𝒆𝒔. 𝒅  . 

 

Figures 1a to 1d show disease progression with varied genetic factor hence the infectivity. The effect of genetic 

factor in each figure is clearly evident. 

 

3.2 Validation of Results 

This work involved the determination of HIV infectivity in viral dynamics by simulations for genetic factor using 

the viral model equation and comparing the same with HIV infectivity in viral dynamics reported in the literature. 

For validation purposes, numerical simulations with genetic factor characterized infectivity values obtained in this 

work were plotted alongside those from average infectivity values obtained from the literature Ilo(2021) and are 

shown in figures 7 and 8 for uninfected and infected cells respectively. Series A represent genetic factor 

characterized infectivity obtained in this study while series B is one with literature average infectivity value. 

For Uninfected cells: 

In figure 7, the progression of uninfected cell time-course of series A and series B shows a coincidence for the two 

series. This coincidence is an indication that the uninfected cell time-courses resulting from simulation of the 

adopted viral dynamics with genetic factor characterized infectivityand reviewed infectivity averagecorrespond 

essentially in all aspects. 
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Figure 7: Comparative plots of uninfected cell time-course with genetic factor characterized infectivity, series 

A and that with average literature infectivity value, series B.   

Figure 7: shows uninfected cell time-course of uncontrolled Infectiondynamics of series A alongside uninfected cell 

time-course of uncontrolled Infection dynamics of being series B both for 300 and 50 days. Common parameters 

are𝜆 = 100(𝑐𝑒𝑙𝑙𝑠 𝜇𝐿 𝑑  ), 𝑘 = 250(𝑐𝑜𝑝𝑖𝑒𝑠 𝑐𝑒𝑙𝑙 𝑑)  , 𝑑 = 0.1 𝑑−1 , 𝑎 = 1 𝑑−1 , 𝑢 = 25 𝑑−1 , 𝑥 0 =

𝜆
𝑑 (𝑐𝑒𝑙𝑙𝑠𝜇𝐿−1), 𝑦 0 = 10−3(𝑐𝑒𝑙𝑙𝑠𝜇𝐿−1) and 𝑣 0 = 0(𝑐𝑜𝑝𝑖𝑒𝑠𝑚𝐿−1). Uncommon parameters are, 

𝜓(𝛾𝑃𝑆 )

𝛾𝑃𝐿 +𝛾𝑆𝐿
 =

0.1  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  , 𝛽 = 3.00539 ∗ 10−4  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  . 

For Infected cells 

In figure 8, the progression of infected cell time-course of series A and series B shows a coincidence for the two 

series. This coincidence is an indication that the infected cell time-courses resulting from simulation of the adopted 

viral dynamics with both genetic factor characterized infectivity and reviewed infectivity average correspond in 

essential respect. 
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Figure 8: Comparative plots of infected cell time-course with genetic factor characterized infectivity, series A 

and that average literature infectivity value, series B.      

 

Figure 8 shows infected cell time-course of uncontrolled Infection dynamics of series A alongside infected cell time-

course of uncontrolled Infection dynamics of series B both for 300 and 50 days. Common parameters are 𝜆 =

100(𝑐𝑒𝑙𝑙𝑠 𝜇𝐿 𝑑  ), 𝑘 = 250(𝑐𝑜𝑝𝑖𝑒𝑠 𝑐𝑒𝑙𝑙 𝑑)  , 𝑑 = 0.1 𝑑−1 , 𝑎 = 1 𝑑−1 , 𝑢 = 25 𝑑−1 , 𝑥 0 = 𝜆
𝑑 (𝑐𝑒𝑙𝑙𝑠𝜇𝐿−1), 

𝑦 0 = 10−3(𝑐𝑒𝑙𝑙𝑠𝜇𝐿−1) and 𝑣 0 = 0(𝑐𝑜𝑝𝑖𝑒𝑠𝑚𝐿−1). Uncommon parameters 

are, 
𝜓(𝛾𝑃𝑆 )

𝛾𝑃𝐿 +𝛾𝑆𝐿
 = 0.1  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  ,𝛽 = 3.00539 ∗ 10−4  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  . The data used to plot figures 7 and 8 

were also subjected to ANOVA tests and it was found that in the twocases, there was no significant difference 

between these data. 

 

4.0. Conclusion  

Explanations to the plethora of genetic variations in infectivity leading to failure of clinical trials has been traced to 

wide range of genetic factor values and adhesion driven parameter in HIV infectivity hence plethora of HIV disease 

progression. Concluding this work therefore, an option of preventing or counteracting HIV-blood interaction could 

be achieved by actually quantifying adhesion driven parameter and the genetic factor in HIV infectivity hence the 

infectivity. Infectivity value of 3 ∗ 10−4  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  was obtained which is within the range of infectivity values 

(5.0 ∗ 10−10 ≤ 𝛽 ≤ 1)  𝑚𝐿 𝑐𝑜𝑝𝑖𝑒𝑠. 𝑑  chosen or assigned by various researchers. Comparative plots of simulation 

results with reviewed average infectivity show that the simulation with estimated genetic factor gave an infectivity 

that gave a disease progression that is obtainable as in reality.  Attention in future should be geared towards use of 

this approach to determine the infectivity hence the disease state of patients for appropriate drug regimen. Issues 

concerning time dependent interaction parameter and genetic factor in HIV infection expression will be sought for in 

future. 

 

5.0 Recommendation 

Quantification of infectivity through surface thermodynamics (adhesion driven parameter) and genetic factor in HIV 

infectivity is also a novel one. This understanding on adhesion driven parameter and genetic factor resistance against 

HIV would contribute potentially to stronger prevention strategies for a possible and appropriate vaccines and or 



449 Ilo  et al./Journal of Engineering and Applied Sciences, 19(1), 436-450 

 

JEAS   ISSN: 1119-8109 

 
 

more efficient drug for AIDS patients. This will lead to an effective control mechanism approach. The application of 

this study in pharmaceutical industries, in the area of drug design and in clinical studies cannot be overemphasized. 

The findings of this work could be used in any other approach used to define or express HIV infectivity where 

adhesion driven parameter and genetic factor are needed to quantify infectivity especially in clinical trials and in 

pharmaceutical industries where drug design, drug dosing and treatment regimen depend on the infectivity. Drug 

dosing should rely much on the result of this research. Clinicians should explore the potentials of these findings. 
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