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Abstract  

This paper aimed at optimizing the process parameters and intelligence modelling of tensile strength response of 

mild steel plate weldments obtained using Gas Tungsten Arc Welding (GTAW) process. Taguchi robust design and 

intelligent modelling techniques (artificial neural networks and extreme learning machine) were used to model the 

experimental results. In designing the experimental runs for this research, Taguchi design of experiment which 

consists of four controllable parameters at 3-levels of design for which we chose the L9 orthogonal array was used. 

Signal- to- noise ratio (S/N) which is an important quality characteristics of Taguchi method employed the larger-

the-better criterion for tensile strength response. Minitab 16 Software was used for analysis of signal-to-noise ratio 

and ANOVA was used to validate the results at 95% confidence level.  The ANN and ELM model simulations were 

carried out in the MATLAB 2018a environment at three different hidden neural nodes of 10, 20 and 30 neurons for 

the twenty (20) experimental runs. ELM algorithm showed a very good model  fit at 30 neural nodes with a 

coefficient of determination (R
2
) value of 98.4% which is far better than that of ANN algorithm and regression 

model which has R
2
 values of 94.1% and 92.8% respectively. By comparing the experimental results with those 

obtained using ANN and ELM models, it can be concluded that the ELM model is more efficient in predicting 

tensile strength of mild steel plate weldments. 
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1. Introduction 

The American Welding Society (2004) defined welding as a localized coalescence of metals or non-metals produced 

by either heating of the materials to a suitable temperature with or without the application of pressure or by the 

application of pressure alone with or without the use of a filler material.  It is a process that involves localized heat 

generation from a moving heat source. The welded structures are heated rapidly up to the melting temperature, and 

followed by rapid cooling which causes micro-structural and property alterations (Devaraju 2015). Arc welding 

processes use a welding power supply to create and maintain an electric arc between an electrode and the base 

material to melt metals at the welding point.  

 

Gas Tungsten Arc Welding (GTAW) uses a non-consumable tungsten electrode to heat and melt the workpiece and 

a separate filler metal with an inert shielding gas to protect the arc. A GTAW process set utilizes suitable power 

source, a cylinder of inert gas, a welding torch having connections of cable for current, tubing for shielding gas 

supply, and tubing for water for cooling the torch. The shape of torch is characteristic, having a cap at the back end 

to protect the rather long tungsten electrode against accidental breakage. Filler metal can be fed and molten puddle is 

shielded from the atmosphere with an inert gas supply feeding from the torch cup. 
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GTAW process welds different types of metals and alloys (carbon steel, stainless steel, nickel steels, copper, brass, 

bronze, etc). Unlike metals can be welded to each other like mild steel to stainless steel, brass to copper, etc. Heat-

affected zone (weak area for failure of sound weld) is very low. Filler metal need not pass through the superheated 

electric arc. It requires no clean up after welding due to absence of slag or spatter (Jain 2013). 

 

Machine Learning (ML) is a branch of Artificial Intelligence (AI) which focuses on the use of data and algorithms to 

imitate the way that humans learn, gradually improving its accuracy (Dietterich 1990; Okafor, Okafor & Ikebudu 

2021). Machine learning algorithms build a model based on sample data known as "training data" in order to make 

predictions or decisions without being explicitly programmed to do so. Artificial Neural Networks (ANN) and 

Extreme Learning Machine (ELM) are the two main classes of non-symbolic machine learning tools applied in this 

research. 

 

ANN is an interconnected assembly of simple processing elements, units or nodes whose functionality is loosely 

based on the animal neuron. The processing ability of the network is stored in the inter-unit connection or weights, 

obtained by a process of adaptation to or learning from a set of training patterns (Gurney 1997).  ANN can be 

‘trained’ to model relationships between input and output parameters from examples of the known inputs and their 

corresponding outputs. In the training process, a set of examples of input-output pairs are passed through the model 

and the weights are adjusted in order to minimize error between the answers from the network and the desired 

outputs (Reed & Marks, 1998). This weight alteration procedure is controlled by the learning algorithm. These 

inputs and outputs are presented to the network using neurons located in input and output layers respectively as 

shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Neural Network Architecture 

Ravisankar et al. (2014) developed a series of neural networks to predict the  influence of welding speed and power 

on residual stress during gas tungsten arc welding (GTAW) of thin sections with constant heat input. They found 

that the neural network approach out-performed traditional regression techniques. Taguchi method and ANN were 

used by Saravanan and Senthilkumar (2015) for predicting wear rate and coefficient of friction for rice husk ash 

reinforced Al-Si alloy. The results of Taguchi method were used to train the ANN model with the following input 

parameters: applied load, sliding speed, particle size and weight percentage of reinforcement. The composite was 

produced by stir casting method and its tribological behaviour was tested on pin-on-disc tribometer in dry sliding 

conditions. The authors concluded that the developed ANN model can predict wear rate and coefficient of friction 

up to 95 % accuracy, thus the time consuming and costly experimental process can be avoided. Haque and Sudhakar 

(2000) developed a neural network model used for predicting the number and depth of pits in heat exchangers. The 

evolution of the pit depth and the number of pits were effectively modeled and demonstrated a good comparison of 

the experimental results. 

Extreme learning machine (ELM) is a new Artificial Intelligence (AI) learning theory that is capable of learning 

without iteratively tuning hidden neurons is general architectures (Cao, Lin & Huang 2010). ELM not only proves 

the existence of the networks but also provides learning solution. The entire hidden node parameters can be 

randomly generated without training data. This recent innovative data-driven tool makes use of an updated single 

layer feed forward network (SLFN) algorithm to offer a closed form solution with respect to the output weight via a 

least squares solution (Ding, Xu & Nie 2014) . This is achieved after resolving the hidden layer weights and biases 

generated from a continuous probability distribution function instead of utilizing an iterative solution that is being 

used in artificial neural network model which operates on the feed-forward principle. The time efficiency of the 

Input 
layer 
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ELM at resolving regression or classification issues is one of its main distinctive features.  This feature is beneficial 

because the weights and biases which are hidden in the neurons are randomized, while the unique least-square 

solution of the output can be solved using the Moore-Penrose inverse function.  

Because traditional neural networks have had wide uses in system prediction and modelling, ELM also has great 

potential in the development of accurate and efficient models for these applications. Xu et al. (2013) proposed an 

ELM based predictor that can be used in the actual frequency stability assessment of power systems. The predictor’s 

inputs are the power system operational parameters, while the output is set as the frequency stability margin. This 

margin measures the power system’s stability degree, subject to a contingency. ELM was also utilized for electricity 

price forecasting (Cheng & Ou 2011) and temperature predication of molten steel (Tian & Mao 2010). Based on past 

literature, we can witness its successful applications in control system design, text analysis, chemical process 

monitor, mechanical properties prediction, clustering and ranking. 

 

Mechanical properties of materials are one of the main factors that determine their applications and should be taken 

into account during the design and manufacturing of different products. Although successful progress has been 

achieved in the development of better welding techniques that minimize heat input and residual stresses, 

considerable effort is still required to develop efficient and cost-effective methods by selecting appropriate input 

parameters that gives better mechanical properties of weldments. Selection of appropriate current, voltage and 

welding speed for a given material is essential in obtaining a quality weld (Gery, Long & Maropoulos 2005).  

The application of intelligent modelling techniques ANN and ELM in the prediction of mechanical properties of 

weldments with up to 95 % accuracy saves time and costly experimental process. Knowledge of material properties 

like tensile strength, hardness, residual stress, and texture as well as phase composition is essential for the later 

usage of metal parts as they have a direct influence on the capacity to resist loads and other mechanical and physical 

strains. 

 

Hence, this research focused on optimization and intelligence modelling of tensile strength response of mild steel 

plate weldments obtained using gas tungsten arc welding process. Specifically, the objectives of this research are: to 

statistically design experiment for evaluation of welding variables and responses, to determine the effects of welding 

variables on the tensile strength response of mild steel plate weldments, to develop intelligent models of welding 

variables and to compare the capabilities of the intelligent models in the prediction of tensile strength response. 

 

2.0 Material and methods 

2.1 Material Used  
The principal material used in this research is AISI 1018 mild steel plate. Steel is made up of carbon and iron, with 

much more iron than carbon. Mild steel is one of the most commonly used construction materials because it is very 

strong and can be made from readily available natural materials. It is known as mild steel because of its relatively 

low carbon content. Mild steel is very strong due to the low amount of carbon it contains. As opposed to higher 

carbon steels, mild steel is quite malleable even when cold and has high resistance to breakage. This means that it 

has high tensile and impact strength. Higher carbon steels usually shatter or crack under stress, while mild steel 

bends or deforms. Mild steel is especially desirable for construction due to its weldability and machinability. It can 

be instantly welded by all the conventional welding processes.   

2.1.1 Design of Experiment (DOE): Taguchi Approach 

The modern day approach to find the optimal output over a set of given inputs can be easily carried out by the use of 

Taguchi method rather than using any other conventional method.  The Taguchi method emphasizes the selection of 

the most optimal solution over the set of given inputs with a reduced cost and increased quality. The optimal 

solution so obtained is least affected by any outside disturbances like the noise or any other environmental 

conditions (Rao et al, 2008). This method has a wide scope of use varying from the agricultural field to medical 

field and various fields of engineering and sciences. In the field of Science and engineering, it is used for obtaining 

optimal results based on the various engineering inputs.  

 

Okafor, Ihueze and Nwigbo (2013) viewed Taguchi robust design as a method of designing experiments in order to 

investigate how different parameters affect the mean and variance of a process performance characteristic that define 

how well the process is functioning.  The Taguchi method emphasizes the use of loss function, which is the 

deviation from the desired value of the quality characteristics. Based on loss function, the Signal-to-Noise ratio for 

each experimental set is evaluated and accordingly the optimal results are derived. The signal-to -noise ratio 
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measures the sensitivity of the quality investigated to those uncontrollable factors (error) in the experiment. S/N 

ratio is based upon the larger-the-better criterion for tensile strength response which is calculated using equation 1. 

 
𝑆

𝑁
 =  −10𝑙𝑜𝑔

1

𝑛
  

1

𝑦𝑖
2
                                 (1) 

Where n = number of measurements,  

yi = response value for each measurement. 

 

In order to optimize the tensile strength response, four process parameters (current I, voltage V, welding speed S and 

plate thickness t) were considered. Equally spaced three levels within the operating range of the process parameters 

were selected as presented in table 1. Based on Taguchi method, an L9 (3
4
) Orthogonal Array (OA) which has nine 

different experiments was conducted and the result is shown in table 3.  

 

Table 1: Process parameters, Codes, and Level values 

 

Process Parameter 

 

Code 

                              Levels 

1 2 3 

     

Welding Current (A)  I 100 130 160 

 

Welding Voltage (V) 

 

V 

 

24 

 

28 

 

32 

 

Welding Speed (mm/min) 

 

S 

 

90 

 

120 

 

150 

 

Plate Thickness (mm) 

 

t 

 

6 

 

8 

 

10 

 

 

2.1.1.1 Sample Production  
For each weldment, two plates of dimension 300×120×10mm, 300x120x8mm, and 300x120x6mm in each case were 

cut and welded to make a weld specimen plate of 300×240×10mm, 300×240×8mm, and 300×240×6mm respectively 

with a 300 mm weld length. Prior to welding, the plates were cleaned from water, dust and oil to enable proper 

deposition of electrodes. 60
o
 V-groove was cut by abrasive cutting on one side of the plates and the plates were tack-

welded at both ends in order to eliminate distortion during welding. All necessary precautions were taken to 

eliminate welding defects. The 60
o
 V-groove butt joint was made employing symmetric welding sequence as shown 

in figure 2. Table 2 show the welding consumables and machine settings used during welding. 

 

 

 

 

 

 

 

Figure 2: Plate set-up prior to welding 

 

 

 



523 Achike et al. /Journal of Engineering and Applied Sciences, 19(1), 519 - 532 

 

JEAS   ISSN: 1119-8109 

 
 

Table 2: GTAW Parameters  

S/N Parameter 6mm plate 8mm plate 10mm plate 

1 Electrode type 2%Thoriated W (red)  

2.0mm 

2%Thoriated W (red)  

2.5mm 

2%Thoriated W (red)  

3.0mm 

2 Filler rod Mild steel 2.0mm Mild steel 2.5mm Mild steel 3.0mm 

3 Included angle 60
o
 60

o
 60

o
 

4 Root face 1.0mm 1.5mm 2.0mm 

5 Root gap 1.0mm 1.2mm 1.5mm 

6 Gas flow rate 5l/min 7.5l/min 10l/min 

7 Current (A) 100, 130, 160 100, 130, 160 100, 130, 160 

8 Voltage (V) 24, 28, 32 24, 28, 32 24, 28, 32 

9 Number of runs 3 3 3 

10 Shielding gas Helium Helium Helium 

 

2.2 Tensile Test  

Tensile testing is a fundamental materials science  test in which a sample is subjected to a controlled tension until 

failure. Properties that are directly measured through a tensile test are ultimate tensile strength, breaking strength, 

maximum elongation and reduction in area. From these measurements the following properties can also be 

determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile 

testing is the most commonly used method for obtaining the mechanical characteristics of isotropic materials; hence 

it was employed in this research. The tensile test on the weldments was conducted as per ASTM Standard E8. 

Ametek EZ 250 Digital Compression/Tension Tester was used for conducting the tensile test. Three samples were 

tested in each case and the average value was recorded. Tensile strength was calculated using equation (2).  

            σ
t = 

F

wt

                                                                                                                                 (2) 

Where 𝜎t  is the ultimate tensile strength, F is the peak force, w is the width of the sample, and t is the thickness. 

3.0 Results and Discussions 

 

Table 3: Tensile Strength Response for GTAW 

 

S/N Input Parameters Tensile Strength 

(MPa) Current (I) 

A 

Voltage (V) 

V 

Welding Speed (S) 

mm/min 

Plate Thickness (t) 

mm 

1 100 24 90 6 396.5 

2 100 28 120 8 382.4 

3 100 32 150 10 378.5 

4 130 24 120 10 394.6 

5 130 28 150 6 383.6 

6 130 32 90 8 426.5 

7 160 24 150 8 392.8 

8 160 28 90 10 422.8 

9 160 32 120 6 432.6 
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3.1 Taguchi Analysis for Tensile Response  

 

Table 4: Response Table for Signal to Noise Ratio 

 Current Voltage Welding Speed Plate Thickness 

Level (A) (V) (mm/min) (mm) 

1 51.73 51.92 52.36 52.12 

2 52.07 51.95 52.10 52.04 

3 52.38 52.29 51.71 52.00 

Delta  0.65 0.37 0.65 0.12 

Rank  2 3 1 4 

 

Table 5: Response Table for Means 

 Current Voltage Welding Speed Plate Thickness 

Level (A) (V) (mm/min) (mm) 

1 385.8 394.6 415.3 404.2 

2 401.6 396.3 403.2 400.6 

3 416.1 412.5 385.0 398.6 

Delta  30.3 17.9 30.3 5.6 

Rank  2 3 1 4 

 

Table 6: Analysis of Variance for SN Ratio 

Source DF Seq SS Adj SS Adj MS F          P 

Current (A) 2 0.63510 0.635097 0.317549 0.08      0.003 

Voltage (V) 2 0.25566 0.25656 0.127828 0.02      0.002 

Welding Speed (mm/min) 2 0.65075 0.650752 0.325376 0.13      0.010 

Plate Thickness (mm) 2 0.02188 0.021878 0.010939 0.00      0.000 

Residual Error 0 0.00000    

Total  8 1.56338    

S = 0.4426                R
2 
= 92.8%      R

2
 (Adj) = 36.2% 

Table 7: Analysis of Variance for Means 

Source DF Seq SS Adj SS Adj MS F           P 

Current (A) 2 1374.91 1374.91 687.454 12.42     0.312 

Voltage (V) 2 587.68 587.68 293.841 7.38       0.104 

Welding Speed (mm/min) 2 1396.15 1768.45 698.074 13.35     0.422 

Plate Thickness (mm) 2 48.54 48.54 24.271 2.65       0.105 

Residual Error 0 0.00    

Total  8 3407.28    

S =1 5.8486                R
2 
= 92.4%      R

2
 (Adj) = 36.0% 

The estimated model for S/N ratio is obtained as: 

𝑦 = 52.0559 − 0.3304𝐼 + 0.0104𝐼 − 0.1321𝑉 − 0.1057𝑉 + 0.3060𝑆 + 0.0425𝑆 + 0.0654𝑡
− 0.0119𝑡                                                                                                                    (3) 

The estimated model for Means is obtained as: 

𝑦 = 401.144 − 15.344𝐼 + 0.422𝐼 − 6.511𝑉 − 4.878𝑉 + 14.122𝑆 + 2.056𝑆 + 3.089𝑡
− 0.578𝑡                                                                                                                    (4) 
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Figure 3: Main Effects Plot for SN Ratio  
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Figure 4: Main Effects Plot for Means  

 

3.1.1 Interpreting Result of Tensile Strength Response 

The response tables for signal-to-noise ratio and means for levels of each factor are shown in table 4 and table 5. 

The ranks in these response tables indicate that welding speed has the greatest influence on tensile response of mild 

steel plate weldments obtained using gas tungsten arc welding process. This was followed by welding current, 

welding voltage and plate thickness respectively. In the analysis of variance, the coefficient of determination (R
2
) at 

this point was 92.8% and 92.4% for S/N ratio and mean respectively. This indicates that the linear models of S/N 

ratio and mean were able to show 92.8% and 92.4% of the variation observed in the dependent variable as captured 

by the explanatory variables in the linear regression model. These models were completely linear; they did not show 

interaction effects of the variables.  

The main effects plots for S/N ratio and that of means (Figs. 3 and 4) respectively indicate the same outcome of 

optimum. They show that the optimal tensile strength for gas tungsten arc welding was achieved at a welding current 
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of 160A, welding voltage of 32V, welding speed of 120mm/min and plate thickness of 6mm. The main effect plots, 

ranks of factors, values of sum of squares from ANOVA tables are all in conformity with coefficients of the linear 

models produced for this response. The absolute value of these coefficients shows the importance of each factor to 

this response; hence, welding speed remains the most significant factor. Based on equations (3) and (4), the optimal 

tensile strength was obtained as 434.2MPa and 428.6MPa for S/N ratio and for means respectively. 

3.2 Intelligence Modelling 

The machine learning algorithms applied in this research are artificial neural networks (ANN) and extreme learning 

machine (ELM) which are both feed-forward neural networks. The ANN and ELM model simulations were carried 

out in MATLAB 2018a environment at three different hidden neural nodes of 10, 20 and 30 neurons for the thirty 

(30) experimental runs. The optimum ELM model was determined using the Sigmiod hidden transfer function while 

the optimum ANN model was determined using Levenberg-Marquart back propagation training algorithm. 

The original dataset was split into training, cross-validation and test data sets, where; 

 70% of the exemplars were presented to the network for training. 

 15% of the exemplars concurrent with the training set were used for cross validation. 

 15% of the exemplars were used for testing the trained network. 

The following termination criteria were used to determine convergence of the training algorithm: 

 Number of runs before termination. 

 Maximum number of runs. 

 Non-improvement of cross-validation error with training. 

 Increase in the cross-validation error with training. 

Furthermore, a performance comparison in terms of estimation capacity was conducted between the two models to 

show their potential in predicting the response.  

3.2.1 Score Metrics for ANN and ELM Models 

To validate and compare the results from ANN and ELM models, the following score metrics were statistically 

evaluated. They are; Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation 

(MAD), Mean Absolute Percentage Error (MAPE), Tracking Signal (TS) (Narasimhan, Mcleavey and Billington 

1995; Vonderembse & White 1991) and Coefficient of Determination (R
2
) (Thorstom 2017). These score metrics 

are expressed as follows; 

𝑀𝑆𝐸 =
1

𝑁
  𝑅𝑃𝑖 − 𝑅𝑇𝑖 

2

𝑛

𝑖=1

                                                        (5) 

                       𝑅𝑀𝑆𝐸 =  
1

𝑁
  𝑅𝑃𝑖 − 𝑅𝑇𝑖 

2  𝑛
𝑖=1                                                        (6)    

                            𝑀𝐴𝐷 =
1

𝑁
   𝑅𝑇𝑖 − 𝑅𝑃𝑖  

𝑛
𝑖=𝑖                                                                (7)  

                              𝑀𝐴𝑃𝐸 =
   𝑅𝑇−𝑅𝑃  𝑅𝑇  ∗100

𝑁
                                                                    (8)    

                                 𝑇𝑆 =
 
𝑅𝑇𝑖 −𝑅𝑃𝑖

𝑅𝑇𝑖
1

𝑁
   𝑅𝑇𝑖−𝑅𝑃𝑖   
𝑛
𝑖=1

                                                                                            (9)        

𝑅2 = 1 −
  𝑅𝑇𝑖 − 𝑅𝑃𝑖 

2
𝑛
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 −1

𝑖=0

  𝑅𝑇𝑖 − 𝑅  2
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 −1

𝑖=0

                                                    (10) 



527 Achike et al. /Journal of Engineering and Applied Sciences, 19(1), 519 - 532 

 

JEAS   ISSN: 1119-8109 

 
 

where RPi and RTi are the predicted and the targeted responses. 

3.2.2 ANN and ELM Prediction Results at 10, 20 and 30 Nodes  

The ANN and ELM simulation results alongside the experimental results at 10 nodes, 20 nodes and 30 nodes are 

presented in Tables 8 for tensile strength response. 

Table 8: Tensile Strength Prediction at 10, 20 and 30Nodes 

Experimental                         ANN                       ELM 

 10 Nodes 20 Nodes 30 Nodes  10 Nodes 20 Nodes 30 Nodes 

383.6 453.06663 429.02375 413.38619  403.68655 395.16142 386.35216 

422.8 459.49173 437.87816 427.8426  437.0649 435.20172 460.04088 

396.5 396.6316 441.92961 412.43954  403.17928 398.18938 436.29263 

392.8 448.61005 421.09872 394.56061  420.94148 400.59183 410.77693 

382.4 383.41517 406.46415 393.88381  414.5933 395.96078 416.799 

 

3.2.3 ANN and ELM Prediction Comparison of Tensile Strength at 10, 20 and 30 Nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: ANN and ELM Prediction Comparison of Tensile Strength at 10, 20 and 30 Nodes 
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 3.2.4 ANN and ELM Scatter Plots for Tensile Strength Response at 10, 20 and 30 Nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: ANN and ELM Scatter Plots for Tensile Strength Response at 10, 20 and 30 Nodes 
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3.2.5 Performance Metrics for Tensile Strength at 10, 20 and 30 Nodes 

The performance metrics for tensile strength at 10, 20 and 30 nodes is shown in table 9 by applying equations (5) to 

(10). 

Table 9: Performance Metrics for Tensile Strength at 10, 20 and 30 Nodes  

Metrics ANN ELM 

 10 Nodes 20 Nodes 30 Nodes 10 Nodes 20 Nodes 30 Nodes 

MAD 37.09878 40.55069 35.51372 19.30732 3.91356 5.83969 

MAPE 10.11712 10.77945 9.58555 5.16242 1.07217 1.66254 

TS -5 -5 -5 -5 -2.69233 -3.49202 

R2 0.57161 0.80862 0.94129 0.52242 0.98133 0.98369 

Time (S) 0.15784 0.08985 1.00246 0.00285 0.00089 0.00985 

MSE 1897.94134 2031.65741 1317.56434 475.91181 23.87675 88.09618 

RMSE 43.56537 45.07391 36.29827 21.8154 4.88638 9.38596 

 

3.2.6 Discussion of ANN and ELM Results                                                     

The tensile strength from the experimental data represents the target (expected) value while the output is the 

predicted value (response). The model was trained as the output neuron value was adjusted from 10 to 30 in the 

regression mode. The ELM model was verified against the ANN model which is one of the very popular machine 

learning black boxes. The ANN and ELM simulation results at 10 nodes, 20 nodes and 30 nodes alongside the 

experimental results are presented in Table 8. It can be seen from the table that the number of epochs and 

consequently the time needed for ANN and ELM modeling  reduced with rise in the number of nodes. It is also seen 

from R
2
 values and correlation that accuracy of ANN and ELM modeling improved with rise in number of nodes. 

This means that from both stand points of speed and accuracy, it is better to use higher number of nodes and lesser 

number of iterations than to use lower number of nodes and higher number of iterations.  

Figure 5 show the graphical representation of the predicted values for tensile response at 10, 20 and 30 nodes for 

both ANN and ELM models. It can be observed from the graphs that at node 30, ELM was the same as the expected 

values at all the measured points. The advantages of the ELM over the classical ANN model are evident. For 

example, in accordance with the basic theory of ELM, randomly initiated hidden neurons are fixed, and they do not 

need iterative tuning process with free parameters or connections between hidden and output layer. Consequently, 

ELM is remarkably efficient to reach a global optimum, following universal approximation capability of single layer 

feed-forward network. With suitable activation functions, ELM can attain optimal generalization bounds of 

traditional feed forward neural networks in which all parameters are learned. This is a distinct advantage of the ELM 

model in terms of the efficiency and generalization performance over traditional learning algorithm such as ANN as 

revealed in this research. 
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Figure 7: Performance Metrics for Tensile Strength at 10, 20 and 30 Nodes 
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3.2.7 Discussion of ANN and ELM Scatter Plots 

The scatter plots of the predicted values at 10, 20 and 30 nodes are shown in figure 6. From the scatter plots of the 

predicted response, the highest degree of clusters at the linear regression line is clearly observed on the ELM model. 

This was specifically pronounced for the ELM model at 30 neural nodes. This particular statistical correlation of 

targeted and predicted responses at optimum of 30 nodes has a coefficient of determination (R
2
) value of 98.4% for 

ELM, 94.1% for ANN and 92.8% for Taguchi robust design. This result shows that ELM has better prediction 

capability compared to ANN. 

3.2.8 Discussion of Model Performance 

Table 9 shows the performance metrics of ANN and ELM. The performances of the models were considered using 

results gotten from statistical metrics of equations 6 to 11. They are: Mean Square Error (MSE), Root Mean Square 

Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), Tracking Signal (TS), 

and Coefficient of Determination (R
2
). Training time for each of the models was also recorded. It is observed that 

ELM algorithm was simply magnificent in its training time which was much faster than ANN for all neural nodes. 

At 30 neural nodes, the training time for ELM was 0.009 Seconds while that of ANN was 1.00 Seconds. 

The MSE and MAD are statistical approaches used to verify the prediction error. It was found that the MSE, RMSE, 

MAD and MAPE all improved as the output neuron value increased and fully converged at 30 neural nodes. This 

means that the higher the number of output neurons, the better the response. While the hidden nodes of ANN can be 

adjusted, they are not accessible in ELM. The tracking signal (TS) helps to determine if the model is an accurate 

representation of the real-world variable. It is expected to be theoretically equal to zero. Both ELM and ANN 

models have tracking signals recorded at sub-zero for all the nodes. This indicates that the models have good 

tracking signal; hence the models are good. 

4.0. Conclusion  

At the end of this research, the following conclusions are made: 

1. Based on analysis of the experimental results using Taguchi method, ANN and ELM algorithms, it can be 

concluded that all the methods gave reliable results.  

2. Taguchi method can be successfully applied to optimize the parameters which influence the tensile response of 

mild steel plate weldments whereas ANN and ELM models can be used for predicting the response.  

3. By comparing the experimental results with those obtained using ANN and ELM models, it can be concluded that 

the ELM model is more efficient in predicting tensile strength of mild steel plate weldments. 

 

5.0 Recommendation 

1. After obtaining experimental results of the mechanical properties of weldments, ANN and ELM models 

can both be reliably used to predict the mechanical properties. If both models are available, ELM is highly 

recommended.  

2. Examination of the connection between ELM algorithm and Random Forest algorithm should be carried 

out. 

 

Nomenclature/Abbreviations 

AI                  Artificial Intelligence 

ANN             Artificial Neural Network 

ASTM           American Society of Testing and Materials 

ELM             Extreme Learning Machine 

GTAW          Gas Tungsten Arc Welding 

MAD            Mean Absolute Deviation 

MAPE          Mean Absolute Percentage Error 

ML               Machine Learning 

MSE             Mean Square Error 

RMSE          Root Mean Square Error 

SLFN           Single Layer Feed-forward Neural Network 

TS                Tracking Signal 
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