

JOURNAL OF ENGINEERING AND APPLIED SCIENCES

Journal of Engineering and Applied Sciences, Volume 20, Number 1, June 2022, 709 - 720

# Development of a remote sensing system for detection and classification of oil spills using laser fluorosensor

Oborkhale, L.I.<sup>1</sup>; Aina, E.A.<sup>2</sup>; and Odo, K.O.<sup>3\*</sup> <sup>1,2,3</sup>Electrical and Electronic Engineering Department, Michael Okpara University of Agriculture, Umudike, Abia State \*Corresponding author's E-mail: kayceebby@yahoo.co.uk

## Abstract

This paper focuses on the development of a remote sensing system for detection and classification of oil spills using laser fluorosensor. The slow response and intervention by the oil spill monitoring team over the years in Nigeria is due to the fact that oil spills are often detected very late and also the difficulty in making decision on the type of instruments to be deployed during clean-up. Early detection of oil spills and quick interventions are key elements in reducing this menace caused by oil spills in our environment. In this research work, oil spills classification system based on laser fluorosensor spectra data was modeled and simulated. Artificial Neural Network (ANN) toolbox in Matlab/Simulink with MLP (multi-layer perceptron) based supervised architecture was used for the simulation. Using the data in form of 90-channel spectra as inputs, the ANN presents the analysis and estimation results of oil products and various background materials as outputs. The network was trained to understand numerous spectra data of laser fluorosensor for different oil spill products (light oil, medium oil, and heavy oil) and other backgrounds (water, sand and stone). The trained network was tested using data set to the network. A back propagation learning algorithm with an optimizer based on gradient descent method was used during the training of the network. It was found that the ANN with MLP based supervised architecture performed well when the number of neurons in hidden layers is the same and an average of 100% classification result was achieved. It was also found that Laser fluorosensor must be operated at wavelength between 302nm and 340nm to produce well- distinguished fluorescence spectra.

Keywords: Artificial neural network, Laser fluorosensor, Multi-layer perception, Oil spill, Remote sensor.

# 1. Introduction

A remote sensing system plays an important role in continuous detection and classification of oil spills on oceans. This has helped the emergency and monitoring team to take a quick and proactive action in order to reduce pollution caused by oil spills in our environment, (Bava *et al.*, 2002). Oil spill is one of the major sources of pollution to the sea which can be accidental or deliberate. Sea-based sources are discharges coming from ships through leakages, ship accident and tank washing residues. Also, fuel oil sludge, engine room wastes and foul bilge water produced by all type of ships also end up in the sea (Konstantinos, 2014). The location and spread of an oil spill over a large area, the thickness of the spilled oil, the distribution of an oil spill to estimate the quantity of spilled oil, and the classification of the oil type. All these information are necessary in order to estimate environmental damage, take appropriate response activities, and to assist in clean-up operations (Maya, *et al.*, 2014).

Remote sensing data are basically records of electromagnetic wave reflected and emitted from the objects/earth features under investigation. The proportions of energy reflected, absorbed and transmitted will vary for various earth features, counting on their material type and condition. These differences permit us to differentiate different features on a picture. Even within a given feature type, the proportion of energy which is reflected, absorbed and transmitted will vary at different wavelengths. These two basic characteristics of electromagnetic radiation enable us to identify and study an object/earth feature, or in other words, to apply remote sensing (Shefali, 2010). Laser

Fluorosensors have been seen recently to be most effective remote sensors as they can detect oil under the water surface and on various backgrounds including snow or ice (Brown *et al.*, 2014).

Remote sensing data are basically records of electromagnetic wave reflected and emitted from the objects/earth features under investigation. The proportions of energy reflected, absorbed and transmitted will vary for various earth features, counting on their material type and condition. These differences permit us to differentiate different features on a picture. Even within a given feature type, the proportion of energy which is reflected, absorbed and transmitted will vary at different wavelengths. These two basic characteristics of electromagnetic radiation enable us to identify and study an object/earth feature, or in other words, to apply remote sensing (Shefali, 2010). Electromagnetic radiation is a form of energy moving through a free space which exhibits wave and light properties. The wave can be described in terms of wavelength ( $\lambda$ ), which is the distance of separation between adjacent wave peaks, or its frequency (f), which is the number of wave peaks passing fixed point out a given time. Sensing systems collect information through several portions of the electromagnetic spectrum. In remote sensing, it is most common to categorize electromagnetic waves by their wavelength location within the electromagnetic spectrum. Although names are generally assigned to regions of the spectrum for convenience, there's no clear-cut line between one nominal spectral region and therefore the next. Divisions of the spectrum have grown out of the varied methods for sensing each sort of radiation quite from inherent differences within the energy characteristics of varied wavelengths, (Shashank, 2014).

The slow response and intervention by the oil spill monitoring team over the years in Nigeria has led to death of many aquatic animals, reduction in the yielding level of farm lands, and reduction in the quality of natural water available for human being. Therefore, distinguishing oil spills from various backgrounds and classifying oil spills into different products will go a long way in addressing the problem of late detection of oil spills and the slow decision making on the instruments to be deployed during clean-up.

The portions of the spectrum commonly utilized in remote sensing are:

- i. Gamma rays, (less than 0.01nm)
- ii. x-rays (0.01-10nm)
- iii. ultraviolet, it adjoins the blue end of the visible portion of the spectrum (250-350 nm)
- iv. visible (400-750nm),
- v. Infrared, which adjoins the red end of the visible region and is further divided into three portions: near IR  $(0.7 1.3 \,\mu\text{m})$ , mid IR  $(1.3 3 \mu\text{m})$  and thermal IR  $(3 100 \,\mu\text{m})$
- vi. Microwaves (1mm-1m).

Spectral responses measured by remote sensors over various features at various wavelengths often permit an assessment of the sort and/or condition of the features and are often mentioned, as spectral signatures. Spectral signatures enable us to distinguish snow from water, vegetation from soil and so on.



### The Electromagnetic Spectrum

Figure 1: Region of Electromagnetic Spectrum (Mehta, 2011)

## **1.1 Literature Review**

# 1.1.1 Related Works

Maya *et al.*, (2018) examined the characteristics and applications of different sensors. They observed that having a better understanding of the strengths and weaknesses of oil spill surveillance sensors will improve the operational use of these sensors for oil spill response and contingency planning. In the paper, Laser fluorosensors were found to be the most efficient sensors for oil spill detection and also operate in either the day or night. However, they recommended more research on how a laser fluorosensor can be correctly be used to classify oil spills. Davide *et al.*, (2019) introduced multiple oil spill typologies and existing frameworks and methods used as best practices for facing out the menace of oil pollution were reviewed and discussed. Specific tools based on information and communication technologies were then presented, considering in particular those which can be used as integrated frameworks for the specific challenges of the environmental monitoring of smaller oil spills. However, the research work did not consider using information and communication technologies to detect oil spills.

Sudhir *et al.*, (2019) examined oil spills recognition by utilizing Sentinel-1 (SAR-C) imageries. The result of this paper demonstrated the significance of the VV polarization (measures the proportion of vertical transmitted waves which return vertically to the sensor) of the Sentinel-1 for recognizing oil-spills just as the diminished utility of the VH polarization (measures the part of the emitted waves which are polarized at the earth's surface and return vertically to the sensor) in this sole circumstance. However, the authors stated that the major limitation of SAR is false detection From all the literatures reviewed, it can be seen that none of the authors has used laser fluorosensor spectra data of different oil spill products and other backgrounds as a vector data to train a multi-layer Perceptron (MLP) network of an artificial neural network which is used to model and simulate an oil spills classification system that will distinguish oil spills from other backgrounds and also classify oil spill into different products in Matlab.

#### 2.0 Materials and method

The materials required in this research work are Laser fluorosensor spectra data of different oil spill products and other backgrounds collected from national oil spill detection and response agency in Nigeria (NOSDRA), Multi-Layer Perceptron (MLP) Model of an Artificial Neural Network, MATLAB/SIMULINK R2015b software and HP window 10, 4GB Installed Memory, 64-bit operating system laptop.

### 2.1 Method

The laser fluorosensor spectra data was tabulated and analyzed with Microsoft excel. The oil spills classification system was first modeled using a Multi-Layer Perceptron (MLP) model of an Artificial Neural Network technique. Then a MLP network training flow chart/oil spill classification scheme was developed. The oil spills classification system was simulated using an Artificial Neural Network toolbox in Matlab/Simulink with MLP based supervised architecture. The simulated artificial neural network was trained to understand numerous spectra data of laser fluorosensor for different oil spill products (light oil, medium crude and heavy oil) and other backgrounds (water, sand and stone). A back propagation learning algorithm with an optimizer based on gradient descent method was used during the training of the network. The trained network was then used to distinguished oil spills from other backgrounds and also classify oil spills into different products. The performance, accuracy and precision of the trained network were evaluated by root mean square error, regression curve and ROC (Receiver Operating Characteristic) curve.

## 2.1.1 Artificial neural network model

The general model for an artificial neural network used in this research work as stated in (Aharkava *et al.*, 2010) is given as

(1)

(2)

 $Y = g[(\sum_{i=1}^{n} x_i w_i) + b]$ where Y = Predicted Outputg = Activation functionx = Input signalw = Weightb = Bias

The activation function used is a sigmoid function as stated in (Gil et al., 2010) is given as

 $g(h) = \frac{1}{[1 + exp^{(-h)}]}$ 

JEAS ISSN: 1119-8109

## 2.1.2 Multi-layer Perceptron (MLP) Model

The MLP model used in this research work has one input layer that receives external input, two hidden layers where transformation is taking place and one output layer which generates the classification results. Each neuron in the input and the hidden layers is connected to all neurons in the next layer by weighted connections. Each neuron  $n_j$  is associated with a weight vector  $w_j \in \mathbb{R}^n$ .

$$W_i \in \mathbb{R}^n$$
.



Figure 2: Multi-Layer Perceptron model with one input layer, two hidden layers and one output layer. (Gil et al., 2010)

 $x_i$  = Input sample

 $w_i^1$  = Connection weight of a neuron in the first hidden layer

 $h_i^1$  = The weighted sum plus the bias  $b_i^1$  to each neuron in the first hidden layer

 $w_i^2$  = Connection weight of a neuron in the second hidden layer

 $h_i^1$  = The weighted sum plus the bias  $b_i^2$  to each neuron in the second hidden layer

 $w_i^d$  = Connection weight of neuron d in the output layer

 $b_i^d$  = The bias for the neuron d in the output layer.

 $\Sigma$  = Transfer function

g = Activation function

Y = Predicted output

y = Actual output

Each neuron  $n_i$  in the first hidden layer receives an input vector  $x_i \in \mathbb{R}^n$ . The net input vector  $h_i^1$  to the neuron is given by

$$h_j^1 = \sum_{i=0}^p w_i^1 x_i + b_j^1 \tag{3}$$

The output  $v_i$  from the first hidden layer is calculated by using a sigmoid function

$$v_j = g(h_j^1) = \frac{1}{[1 + \exp(-h_j^1)]}$$
(4)

Similarly, the net input vector  $h_j^2$  to each neuron in the second hidden layer is given by  $h_i^2 = \sum_{i=0}^p w_i^2 v_i + b_i^2$ (5)

The output  $f_j$  from the second hidden layer is calculated by using a sigmoid function

$$f_j = g(h_j^2) = \frac{1}{[1 + \exp(-h_j^2)]}$$
(6)

Similarly output neuron *d* receives a net input of  $m_{pd} = \sum_{j=0}^{p} w_j^d f_j$ 

Here,  $w_j^d$  represents weight from the second hidden layer to the output neuron d. The neuron then outputs quantity expressed by relation

(7)

$$Y_{pd} = g(m_{pd}) = \frac{1}{[1 + exp^{(-m_{pd})}]}$$
(8)

Since MLP is a supervised artificial neural network, that is, the network is presented with input samples as well as corresponding desired output, error function E is therefore minimized using Gradient descent optimizer through backward propagation algorithm is given as

$$E = \frac{1}{2} \left[ \sum_{i=1}^{p} (y - Y)^2 \right]$$
(9)

where y and Y are desired output and predicted output respectively. The error E is Mean Square Error (MSE). The square root of error E is Root Mean Square Error (RMSE). The weights are therefore adjusted to change the value of E in the direction of its negative gradient. The exact updating rules are calculated by applying derivatives and chain rule for the weights between the input layer and the output layer. The objective function given by equation 9 is a function of unknown weights  $w_j^1$ ,  $w_j^2$ , and  $w_j^3$ . So, partial derivative functions with respect to weights was evaluated and then move weights in a direction down the slope, continuing until error function no longer decreases. Mathematically, this can be expressed by

$$\Delta w_j^d = \frac{-\eta \partial E}{\partial w_j^d} \tag{10}$$

Where  $\eta$  is the learning rate and simply scale step size.

From equation 8,

$$\frac{\partial Y}{\partial m_{pd}} = g'(m_{pd}) = Y(1 - Y) \tag{11}$$

From equation 7,

$$\frac{\partial m_{pd}}{\partial w_i^d} = f_j \tag{12}$$

Equation 11 was multiplied by equation 12 to get,

$$\frac{\partial Y}{\partial m_{pd}} * \frac{\partial m_{pd}}{\partial w_j^d} = \frac{\partial Y}{\partial w_j^d} = [Y(1-Y] * f_j$$
(13)

Also from equation 9,

$$\frac{\partial E}{\partial Y} = (-1)y - Y \tag{14}$$

Using chain rule, equation 13 was multiplied by equation 14 to get,  $\frac{\partial Y}{\partial w_i^d} * \frac{\partial E}{\partial Y} = \frac{\partial E}{\partial w_i^d} = [(-1)y - Y] * [Y(1 - Y]f_j$ (15)

Substituting equation 15 back to equation 10, change in weights from the second hidden layer is given by  $\Delta w_j^d = -\eta[(-1)y - Y]Y(1 - Y)f_j \qquad (16)$ Weights are updated as

$$w_{j}^{a}(t+1) = w_{j}^{a}(t) + \Delta w_{j}^{a}$$
(17)

Therefore, MLP network is trained by following the processes below

- a. Initialize the weights to small random values.
- b. Choose an input vector and propagate it forward. This yields values for  $v_j$ ,  $f_j$  and Y, the outputs from the first hidden layer and the second hidden layer and output layer respectively.
- c. Compute mean square error
- d. Update weights

Since the input layer, the hidden layers and the output layer are all vectors, then, matrices can be used to summarize all the equations. The artificial neural network designed in this thesis has six input signals, two hidden layers and six outputs. Each of the hidden layers has seven neurons which are arranged vertically.

# 3.0 Results and Discussion

The network was trained with an input data which is in form of matrix or vector as shown in Table 1. The network was first trained with two hidden layers and each of the hidden layers having seven neurons. Then the number of hidden layers and number of neurons in each hidden layer were varied and their respective effects on the network were observed.

| Table 1: Laser fluorosenso | wavelengths/corres | ponding relative int | ensities of all the substances |
|----------------------------|--------------------|----------------------|--------------------------------|
|----------------------------|--------------------|----------------------|--------------------------------|

|     | Laser        | INPUT DA    | TA MATRIX (90 X 6)         |       |           |      |       |
|-----|--------------|-------------|----------------------------|-------|-----------|------|-------|
|     | Fluorosensor | Relative In | tensities of the substance |       |           |      |       |
| S/N | (nm)         | Light Oil   | Medium Crude               | Water | Heavy Oil | Sand | Stone |
| 1   | 301          | 152         | 56                         | 82    | 78        | 81   | 66    |
| 2   | 302          | 188         | 72                         | 98    | 99        | 102  | 87    |
| 3   | 303          | 196         | 85                         | 122   | 147       | 144  | 124   |
| 4   | 304          | 232         | 106                        | 145   | 188       | 186  | 148   |
| 5   | 305          | 256         | 158                        | 184   | 193       | 202  | 163   |
| 6   | 306          | 333         | 170                        | 200   | 200       | 247  | 170   |
| 7   | 307          | 310         | 170                        | 340   | 200       | 257  | 170   |
| 8   | 308          | 324         | 170                        | 345   | 600       | 274  | 170   |
| 9   | 309          | 324         | 1978                       | 344   | 1200      | 305  | 170   |
| 10  | 310          | 345         | 5034                       | 354   | 2200      | 320  | 170   |
| 11  | 311          | 372         | 4139                       | 355   | 2600      | 329  | 190   |
| 12  | 312          | 418         | 2267                       | 379   | 3490      | 345  | 206   |
| 13  | 313          | 454         | 1309                       | 400   | 4009      | 361  | 219   |
| 14  | 314          | 523         | 1590                       | 426   | 4264      | 359  | 231   |
| 15  | 315          | 699         | 1697                       | 416   | 4166      | 366  | 270   |
| 16  | 316          | 817         | 1996                       | 399   | 3999      | 365  | 309   |
| 17  | 317          | 962         | 2401                       | 366   | 3666      | 372  | 312   |
| 18  | 318          | 1172        | 2669                       | 379   | 3796      | 364  | 351   |
| 19  | 319          | 1761        | 3012                       | 601   | 3501      | 409  | 366   |
| 20  | 320          | 2112        | 3113                       | 989   | 3469      | 431  | 376   |
| 21  | 321          | 2660        | 3219                       | 1211  | 3311      | 435  | 356   |
| 22  | 322          | 3232        | 3362                       | 1513  | 3113      | 469  | 335   |
| 23  | 323          | 3961        | 3261                       | 1819  | 2919      | 493  | 319   |
| 24  | 324          | 4689        | 3323                       | 2162  | 2762      | 516  | 293   |
| 25  | 325          | 5565        | 3108                       | 2461  | 2561      | 505  | 276   |
| 26  | 326          | 6395        | 3208                       | 2823  | 2423      | 576  | 251   |
| 27  | 327          | 7371        | 3148                       | 3210  | 2210      | 586  | 231   |
| 28  | 328          | 8130        | 3093                       | 3699  | 1999      | 595  | 219   |
| 29  | 329          | 8878        | 2961                       | 3969  | 1769      | 585  | 200   |
| 30  | 330          | 11173       | 2864                       | 4161  | 1548      | 669  | 180   |
| 31  | 331          | 11314       | 2767                       | 4293  | 1403      | 625  | 170   |
| 32  | 332          | 10931       | 2649                       | 4161  | 1361      | 667  | 170   |
| 33  | 333          | 9594        | 2586                       | 3964  | 1264      | 657  | 170   |
| 34  | 334          | 7690        | 2413                       | 3867  | 1167      | 622  | 170   |

| 35 | 335 | 5411 | 2309 | 3549 | 1049 | 641 | 170 |
|----|-----|------|------|------|------|-----|-----|
| 36 | 336 | 3313 | 2205 | 2999 | 986  | 646 | 170 |
| 37 | 337 | 1862 | 2101 | 2689 | 813  | 699 | 170 |
| 38 | 338 | 1058 | 1999 | 2409 | 709  | 676 | 170 |
| 39 | 339 | 636  | 1897 | 2255 | 605  | 686 | 170 |
| 40 | 340 | 436  | 1797 | 2001 | 501  | 654 | 170 |
| 41 | 341 | 288  | 1647 | 1899 | 499  | 647 | 170 |
| 42 | 342 | 265  | 1520 | 1697 | 397  | 623 | 170 |
| 43 | 343 | 246  | 1490 | 1247 | 297  | 592 | 170 |
| 44 | 344 | 241  | 1385 | 1020 | 247  | 564 | 170 |
| 45 | 345 | 245  | 1280 | 800  | 220  | 586 | 170 |
| 46 | 346 | 237  | 1180 | 689  | 190  | 594 | 170 |
| 47 | 347 | 238  | 1080 | 590  | 185  | 584 | 170 |
| 48 | 348 | 239  | 980  | 478  | 180  | 563 | 170 |
| 49 | 349 | 240  | 880  | 356  | 180  | 548 | 170 |
| 50 | 350 | 231  | 780  | 280  | 180  | 512 | 170 |
| 51 | 351 | 229  | 680  | 249  | 180  | 503 | 170 |
| 52 | 352 | 231  | 580  | 220  | 180  | 510 | 170 |
| 53 | 353 | 229  | 360  | 180  | 180  | 516 | 170 |
| 54 | 354 | 231  | 350  | 180  | 180  | 470 | 170 |
| 55 | 355 | 229  | 340  | 180  | 180  | 451 | 170 |
| 56 | 356 | 232  | 310  | 180  | 180  | 435 | 170 |
| 57 | 357 | 231  | 290  | 180  | 180  | 436 | 170 |
| 58 | 358 | 229  | 270  | 180  | 180  | 426 | 170 |
| 59 | 359 | 234  | 275  | 185  | 185  | 431 | 175 |
| 60 | 360 | 239  | 280  | 190  | 190  | 436 | 180 |
| 61 | 361 | 244  | 285  | 195  | 195  | 441 | 185 |
| 62 | 362 | 249  | 290  | 200  | 200  | 446 | 190 |
| 63 | 363 | 254  | 295  | 205  | 205  | 451 | 195 |
| 64 | 364 | 259  | 300  | 210  | 210  | 456 | 200 |
| 65 | 365 | 264  | 305  | 215  | 215  | 461 | 205 |
| 66 | 366 | 269  | 310  | 220  | 220  | 466 | 210 |
| 67 | 367 | 274  | 315  | 225  | 225  | 471 | 215 |
| 68 | 368 | 279  | 320  | 230  | 230  | 476 | 220 |
| 69 | 369 | 284  | 325  | 235  | 235  | 481 | 225 |
| 70 | 370 | 289  | 330  | 240  | 240  | 486 | 230 |
| 71 | 371 | 294  | 335  | 245  | 245  | 491 | 235 |
| 72 | 372 | 299  | 340  | 250  | 250  | 496 | 240 |
| 73 | 373 | 304  | 345  | 255  | 255  | 501 | 245 |
| 74 | 374 | 309  | 350  | 260  | 260  | 506 | 250 |
| 75 | 375 | 314  | 355  | 265  | 265  | 511 | 255 |
| 76 | 376 | 319  | 360  | 270  | 270  | 516 | 260 |
| 77 | 377 | 324  | 365  | 275  | 275  | 521 | 265 |

JEAS ISSN: 1119-8109

| 78 | 378 | 329 | 370 | 280 | 280 | 526 | 270 |
|----|-----|-----|-----|-----|-----|-----|-----|
| 79 | 379 | 334 | 375 | 285 | 285 | 531 | 275 |
| 80 | 380 | 232 | 250 | 180 | 180 | 385 | 170 |
| 81 | 381 | 233 | 220 | 180 | 180 | 377 | 170 |
| 82 | 382 | 231 | 180 | 180 | 180 | 379 | 170 |
| 83 | 383 | 230 | 180 | 180 | 180 | 378 | 170 |
| 84 | 384 | 233 | 180 | 180 | 180 | 348 | 170 |
| 85 | 385 | 240 | 180 | 180 | 180 | 336 | 170 |
| 86 | 386 | 240 | 180 | 180 | 180 | 328 | 170 |
| 87 | 387 | 258 | 180 | 180 | 180 | 333 | 170 |
| 88 | 388 | 258 | 180 | 180 | 180 | 180 | 170 |
| 89 | 389 | 258 | 180 | 180 | 180 | 180 | 170 |
| 90 | 390 | 258 | 180 | 180 | 180 | 180 | 170 |

The relative intensities of all the substances were plotted against their respective wavelengths of the laser fluorosensor as tabulated in Table 1



Figure 3: Fluorescence spectra of oil products and background materials

It was observed from figure 3 that the fluorescence spectra curves of all the substances (light oil, medium crude, heavy oil, water, sand and stone) can be well distinguished between 310nm and 340nm of laser fluorosensor wavelengths. It was also observed that the fluorescence spectra curve of light oil has highest amplitude follow by medium crude, water, heavy oil, sand and the stone spectra curve has the lowest amplitude.



Figure 4: Fluorescence spectra of light oil

It was also observed that the fluorescence spectra curve of light oil attained maximum amplitude at 330 nm at relative intensity of 11,800 as shown in Figure 4.



Figure 5: Fluorescence spectra of medium crude

The fluorescence spectra curve of medium crude attained maximum value at 309 nm at relative intensity of 5000 as shown in Figure 5.



Figure 6: Fluorescence spectra of water JEAS ISSN: 1119-8109

The fluorescence spectra curve of water attained maximum value at 330 nm at relative intensity of 4400 as shown in Figure 6.



Figure 7: Fluorescence spectra of heavy oil

The fluorescence spectra curve of heavy oil attained maximum value at 314 nm at relative intensity of 4250 as shown in Figure 7.



Figure 8: Fluorescence spectra of sand

The fluorescence spectra curve of sand attained maximum value at 337 nm at relative intensity of 700 as shown in Figure 8.



Figure 9: Fluorescence spectra of stone

The fluorescence spectra curve of stone attained maximum value at 319 nm at relative intensity of 375 as shown in figure 9. It is seen that laser fluorosensors can be operated at wavelength between 308 nm and 340 nm since the fluorescence spectra curves of all the substances can be well distinguished at these wavelengths.

#### 4.0. Conclusion

The modelling of ANN with MLP based supervised architecture was simulated and trained with laser fluorosensor spectra data under different number of hidden layers and different number of neurons in hidden layers and the results were analysed using Matlab. MLP was found to be a very suitable tool for the simulation of oil spills classification system. The simulation results will be helpful in the hardware implementation of the system. It was found that the number of hidden layers as well as number of neurons in the hidden layers have a significant effect on the successful training of the network hence, the overall performance and accuracy of the network. From the research work, it was observed that laser fluorosensors can operate at wavelengths between 308 nm and 340 nm since the fluorescence spectra curves of all the substances can be well distinguished at these wavelengths.It was found that laser fluorosensors for oil spill detection since they can detect, classify oil on all surfaces and also operate in either the day or night.

#### 5.0 Recommendation

The laser fluorosensor spectra data used in this research work is limited to six substances which are light oil, medium crude, heavy oil, water, sand and stones. It is therefore recommended that more substances should be added in future research to give the network more flexibility.

#### Acknowledgements

The support of National Oil Spill Detection and Response Agency in Nigeria (NOSDRA) is gratefully acknowledged for providing Laser fluorosensor spectra data of different oil spill products used for this research work.

#### References

- Bava J., Tristan O., and Yasnikouski J. 2002. Earth observation applications through systems and instruments of high performance computer. ASI/CONEA training course, September-December, Matera, Italy, pp. 485-631
- Bianchi F., Espeeseth M., and Borch N. 2020. "Large scale detection and categorization of oil spills from SAR images with deep learning. Remote sensor, 12, 2260.

- Brown, C., Fingas M., Marois R., and Gamble R. 2014, Remote Sensing of Water-In-Oil Emulsions: Initial Laser Fluorosensor Studies. *Proceedings of the 27th Arctic and Marine Oil spill Program (AMOP) Technical Seminar*, Environment Canada, Ottawa, ON, Canada, pp. 295-306.
- Carl E. B. and Merv F. (2018). A review of oil spill remote sensing. *Spill science Edmonton*, AB T6W 1J6, Canada, 18(1):91.
- Davide M., Gabriel P. and Marco T. 2019. Environmental Decision Support Systems for Monitoring small scale Oil Spills Pollution. *Institute of information science and technologies, national research council, via Moruzzi,* 1-56124 Pisa (IT) Italy, pp.1-17
- Konstantinos N. 2014. Oil Spill detection by SAR Images: Dark formation Detection, feature Extraction and classification Algorithms. *Joint Research Centre (JRC)*, European Commission, Via Fermi 2749, 21027, Ispra (VA), Italy, 8(10):6642-6659
- Maya N., Jason L. and Yang G. 2014. Advances in remote sensing for oil disaster management. *State of the Art Sensors Technology for Oil Spill Surveillance:* Department of Geomatics Engineering, University of Calgary T2N 1N4, Alberta, Canada, Western Washington University, Disaster Reduction and Emergency Planning, Huxley College of the Environment, 516 High Street, Bellingham, Washington 98225-9085, USA, 8(1):236-255
- Mehta A. 2011. Introduction to the Electromagnetic Spectrum and Spectroscopy. *Analytical chemistry*. ACS Publications (United States), 772
- Mohamed S., Reem S., Hadi A.K., Adel K., Ahmed S., Shady E., Ali M., Mohammed G. and Ayman E. 2021. "A deep-learning framework for the detection of oil spills from SAR data" Multidisciplinary Digital Publishing Institute (MDPI), <u>https://doi/10.3390/s21072351</u>, 21(7), 2351.
- Shashank G. 2014. Remote Sensing: History, Principles and Types. <u>https://www.biologydiscussion.com/plant-taxonomy/remote-sensing-history-principles-and-types/30587</u>, pp.15
- Shefali A. (2010). Principles of Remote Sensing. *Photogrammetric and Remote Sensing Division*, Indian Institute of Remote Sensing, Dehra Dun, pp.16
- Sudhir K., Saikat B. and Shashanklele 2019. An assessment of oil spill detection using sentinel 1 SAR-C images. Journal of Ocean Engineering and Science, 5(2):116-135
- Sung H., Hyung S., Moung J., Won J. and Myoung J. 2017. Oil spill detection from planetscope image to detect oil spills. *Journal of Coastal Research*, 90(1):251-260