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Abstract  

Design expert software is employed for optimization of significant electrochemical materials to enhance low energy capacity of 

lithium-ion cell that operates variety of consumer electronics devices, electric vehicles and energy storage systems. The design 

expert experiment, particularly the response methodology effectively explored the variable percentage weight ratio of cathode 

electrode material composition for adaptability between the predicted and actual experiments. The three optimized samples 

parameters in the ratio of active material, conductive additive and binder demonstrated significant outputs. Cell sample C with a 

composition ratio, 92:5:3 displays maximum capacity with high efficiency of design expert response methodology. The outstanding 

responses from various runs implies substantial effect on the response by each of the factors. The ANOVA analysis and model 

fitting result indicates non-significant lack of fit. The increment in the percentage weight of binder and active material improves 

the battery capacity. All the optimized parameters of the three samples have results closely in agreement with the experimental 

maximum capacity. The compatibility of the responses and analysis implies that the Design expert software is promising for 

optimization expedient for enhancement of energy capacity of lithium-ion cells.  
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Abbreviations 

NMC:   Nickel Manganese Cobalt 

CB:    Carbon Black 

CNTs:   Carbon Nanotubes 

PVDF:   Polyvinylidene Fluoride 

FEP:    Fluorinated Ethylene Propylene 

AM:   Active Material 

B:      Binder 

CA:   Conductive Additive 

1. Introduction 

Optimization attempts in the cell industry particularly focus on formulation and modification of electrode composition 

and structure. Having the knowledge of different stages of mixing in addition to crucial underlying interfacial and 

surface phenomena offers a long-lasting tool that can lead to superior product quality and reproducibility. The mixing 

process parameters can be optimized by initiating interrelationship between mixing parameters, slurry material 

characteristics, finished battery performance and durability (Mohanad, 2017).  
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Two approaches are to be considered when discussing optimization; sequential and simultaneous. When model is 

continuously solved within an optimizer, sequential framework is an easy framework to comprehend optimization. 

Researchers have studied various algorithms that do not require gradient calculations in order to overcome the 

disadvantages of gradient based optimization (Hare et al, 2018; Gong et al, 2017; Sigmund, 2018). Another sequential 

approximate technique that can be applied successfully to nonlinear problems without gradient calculation is the so-

called progressive quadratic response surface method (Jacobs et al, 2018). Furthermore, the progressive quadratic 

response surface method requires hardly any calculations for best results, unlike parametric study utilizing a Ragone 

plot, which needs numerous simulations to analyze a cell (Hong et al, 2016; Alexandrov, 2017; PIDOTECH, 2014). 

Irrespective of the advantages of progressive quadratic response surface method, it has not been applied to the 

optimization of lithium-ion cell despite its numerous applications in engineering discipline (Choi et al, 2017; Choi et 

al, 2016). Simultaneous optimization is feasible with benefits as regards computational performance. Although setting 

up of sequential approach is much simple when comprehensive models are involved (Suresh & Rengaswamy, 2019). 

As a result of high theoretical energy density, lithium-ion batteries are generally used as a rechargeable battery (Jelle 

et al, 2017; Jin-San et al, 2020; Wang et al, 2016; Du et al, 2016; Gao et al, 2016). The improvements and quests on 

high-capacity lithium-ion cells are witnessing a rise due to increase demand for energy storage systems, consumer 

electronics and hybrid electric vehicles (Dong-chan et al, 2020; Venter, 2018; Lu, 2018; Tran, 2016; Scrosati and 

Garche, 2020; Ding et al, 2019; Thackeray et al, 2018; Parvini & Vahidi, 2015; Chen et al, 2017; Yan et al, 2016; Wu 

et al, 2017). 

The energy capacity of these cells must be enhanced in order to cater for this surge. Many researchers are recently 

conducting studies on the development of new electrode materials, and this requires a reasonable time and effort. 

Consequently, a good means of reducing the cost of research and development is through optimization of existing 

electrode material parameters for the enhancement of lithium-ion cell capacity (Ramadesigan, 2016; Doyle et al, 2017; 

Doyle, 2016; Srinivan & Newman, 2018; Christensena et al, 2016; Stewart et al, 2018; Appiah et al, 2016, Xue, 2018, 

Golmon et al, 2017; Liu & Liu, 2016). Due to the fact that capacity and power have common relationship, it is 

important to optimize the design parameters to attain target performance. Nevertheless, collaboration between design 

parameters and lithium-ion cells performance is extremely non linear (Sang et al, 2015; Chen et al, 2014; Gao et al, 

2017). To get rid of this challenge, optimization using design expert surface response methodology is employed. In 

this study, optimization for the maximum energy capacity of a lithium -ion cell is performed with the aid of design 

expert software using experimental generated parameters. This paper is structured in 6 sections and a conclusion. The 

section 1 presents the introductory part, the section 2 presents an overview, the section 3, material and methods, the 

section 4 presents results and discussions, and section 5 is the conclusion on our results while section 6 is the 

recommendation. 

Battery is an energy storage device consisting of one or more electrochemical cells that produces electrical energy 

from chemical energy stored in its active materials through electrochemical reactions (Ehsan, 2015). The energy 

conversion takes place with the aid of electrochemical oxidation-reduction reaction. This type of reactions occurs 

owing to the transfer of electrons from one type of materials to another via an electric circuit. The energy storage 

capacity of a battery is the amount of charge that the battery can store/provide at a rated voltage. A battery comprises 

anode, cathode, and electrolyte as major constituents with separator and current collector as auxiliary components 

(Surendra, 2017) 

Currently, standard lithium-ion battery cathode electrode slurry consists of three components: an active material (60–

95%), a binder (2–25%), and conductive additives (3–30%) (Medvedev et al, 2020). The greater number of researchers 

use the weight ratio of 80%:10%:10% for high-power applications of lithium-ion battery (Goren et al, 2015). In a 

theoretical study, it was obvious that a binder and carbon black ratio of less than 4 attains the best lithium-ion 

performance, and the most favourable ratio is 90% of the active material; a binder and conductive additives (carbon 

black) are from 2 to 8% (Miranda et al, 2019). The ratio of the latter is chosen based on the battery types and conditions 

of application. Presently, perspective conductive additives such as carbon nanotubes, grapheme and other electrically 

conductive binder are extensively studied (Sheng et al, 2014). Every one of the above components permits to increase 

the weight content of the active material, without jeopardizing the conductive properties.  

Various studies have been devoted to materials innovation; outstanding achievement has been made as well on the 

engineering part. The motivation for enhancing electrode production focuses mainly in the potential to notably 

improves the weight ratio of active materials in lithium-ion batteries, generating higher energy density and lower cost 

(Li et al, 2017). The electrode components of lithium-ion battery which comprise the active material, binder and 
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conductive additive give rise to the energy and capacity, electronic conductivity and mechanical strength of the 

electrode (Blake & Jianlin, 2018). The optimal combination of features between constituents regarding the weight 

ratios is very crucial (Zheng et al, 2012). The stability and processability of the slurry are the main important properties 

of a feasible cathode electrode. Knowing that electrode slurry comprises active particles which are considerably bigger 

than molecules containing the solvent which are reactive to Brownian motion (Mewis & Wagner, 2012). The strength 

of a cathode electrode slurry is measured by its capacity to withstand agglomeration and sedimentation (Blake & 

Jianlin). 

Response Surface Methodology is a collection of statistical and mathematical techniques which are utilized for setting 

up a series of experiments for adequate response, fitting a hypothesized model to data generated under the selected 

experiment (design), determining optimum conditions on the model’s input variables that provides maximum or 

minimum response within an area of interest (Andre, 2017). Kama et al, 2021 studied optimization of culture 

conditions by response surface methodology for production of extracellular esterase from Serratia. Plackett -Burman 

design was utilized to determine the effect of six parameters cotton seed oil, peptone and maltose concentrations, PH, 

temperature and inoculum volume for production of esterase. Four factors; inoculum size, PH, peptone concentration 

and cotton seed oil concentration had significant effect on production of esterase as suggested by the Pareto chart. The 

maximum esterase yield was 9.77 U/ml under optimized state with inoculum size (1.0%, v/v), PH (8.0), peptone 

concentration (1.5%, w/v) and cotton seed oil concentration (4.0%, v/v). analysis of variance (ANOVA) of the central 

composite design (CCD) based experiment displayed the model F-value of 44.24 and P-value of <0.0001 which 

implies that the model was significant and adequate to represent the system. 

Fan et al, 2012 studied response surface optimization for process parameters of LiFePO4/C preparation by 

carbothermal reduction technology. The experimental data for fitting the response are obtained by the central 

composite design. A second order model for the discharge capacity of LiFePO4/C is demonstrated as a function of 

sintering temperature, sintering time and carbon content. The outcome of each variable and their interactions are 

studied by ANOVA analysis. The result show that the linear and quadratic effect of carbon content, sintering 

temperature and interactions among these variables are statistically significant while those effects of sintering time 

are insignificant. The P-value greater than 0.1 indicates non-significant model terms whereas value less than 0.0500 

indicates significant model terms. The small P-value (<0.0001) and large F-value (=94.7) implies significant quadratic 

model. 

2. Material and Methods 

 

2.1 Material 

The active material, the binder and conductive additive are the cathode electrode control factors due to the 

characteristics of the composite elements as follows; 

Nickel; it assists to deliver high energy density to the composites and it offers greater storage capacity at a cheap cost. 

Manganese; It forms a spinel structure to achieve low internal resistance, offers low specific energy and provides 

cycle stability to the active material structure. 

Cobalt; It enhances the rate performance of a cell, aids batteries to accept lithium ions at a high rate during charging 

and deliver lithium ions at a high rate during discharge (Audi et al, 2017). 

Polyvinylidene fluoride (PVDF); Chemical inertness and dual function, it can be used in both negative and positive 

electrode formulations. 

Fluorinated ethylene propylene (FEP); It has good dielectric strength, flexible mechanical strength and thermally 

stable 

Carbon Black (CB); Channel black is a good choice for higher battery stability and high voltage (Morfeld & 

McCunney 2007).  It also provides higher battery capacity and rate capability with light weight 

Carbon Nanotubes (CNTs); It exhibit remarkable electrical conductivity (Bever et al, 2010) 

They have exceptional tensile strength and thermal conductivity due to their nanostructure and strength of the bonds 

between carbon atoms (Yu et al, 2010) 

 

2.2 Methods 

The weight ratio of active material (NMC) to binder (PVDF+FEP) and conductive additive (CB+CNTs) is 94:3:3 

weight % for sample A, 90:5:5 weight % and 92:5:3 weight % for sample B and C respectively. The cathode electrode 

materials were sourced from Soundon Energy Ltd, China while the fabrication and experimental analysis were carried 

out by Benzo Technology, China. The knowledge obtained from the literatures was applied in determining the 
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percentage weight ratios. The conductive additive and binder were dried in a vacuum oven for 24 hours before use, 

the binder was dissolved in the solvent N-Methyl-2-pyrrolidone (NMP) in a planetary mixer de-aerator (SWXJ-

SOWER) operated at 670 rpm rotation and 1130 rpm revolution with a total time of 6 minutes. Thereafter the 

conductive additive was added to the binder solution followed by mixing at 4000 rpm for 45 minutes in a homogenizer 

(Konmix, KRH-75). Thirdly, the active material (NMC) was added to the homogenizer, and the mixture was mixed 

at 4000 rpm for 1 hour. Finally, the homogeneous slurry was placed in a vacuum chamber for 5 minutes to remove 

any trapped bubbles and thereafter removed out of the chamber to cast at room temperature onto 15 μm thick aluminum 

foil with an automatic compact film coater which has an in-built dryer and vacuum chuck (Benzo Technology). For 

casting, the adjustable doctor blade gap was set at 200 μm and the casting speed was 0.15 m/30s.  

Applying the Immersion precipitation method for membrane fabrication, the cast electrode was instantly immersed in 

a de-ionized water bath at 25°C for 120s followed by a pre-drying step by exposing the electrode in dry air for 5 

minutes. The electrodes were dried at room temperature overnight. The electrode was calendared with a 40 μm rolling 

gap using a compact electric rolling press (Gn-Gy-150) at room temperature to improve the adhesion of the compatible 

electrode materials with the Al foil, and control the porosity and packing density (Sheng et al, 2014). The calendered 

electrode was punched to a specified dimension with a Precision pouch punching mould (Benzo Technology) and 

further dried in vacuum oven for 12 hours at 130°C. For comparison, positive cathode electrodes of varying 

compositions for the three different cell samples were prepared by the same method using the same mixing sequence 

and parameters. 

 

Table 3.1 Positive Electrode Fabrication Data 

Sample  NMC (%) 

Ratio 

AM:B:CA (%) 

Ratio 

B:CA (%) 

Ratio 

Sample (mm) 

Dimension 

A 0.4:0.3:0.3 94:3:3 1:1 48x30x7 

B 0.3:0.3:0.3 90:5:5 1:1 60x50x6 

C 0.5:0.3:0.2 92:5:3 1:0.6 60x50x8 

 

Table 3.2 Cell Sample A Basic Performance Test Data 

No Item Parameter Note 

1. Maximum Capacity 1200 mAh Fully discharged (0.2C C5A) after fully 

charged. 2.  Nominal Capacity 1000 mAh 

3.  Maximum Cell Initial Impedance 165 mΩ 3.7V AC 1KHz 

4. Nominal Voltage 3.7 V Mean Operation Voltage 

5. Initial Voltage 3.75 V  

6. Limited Charge Voltage 4.2 V Voltage of CC charge to CV charge 

7. Cut-off Voltage 2.75 V Discharge Cut-off Voltage. 

8. Open-Circuit Voltage 4.06V To be measured within 24 hours after fully 

charged. 

9. Nominal Energy 3.7Wh  

10. Charging Current 240 mA 

(0.2C) 

 

11. Discharging Current 240 mA 

(0.2C) 

 

12. Maximum Discharge Current 1200 mA 

(1.0C) 

 

13. Charging Time 5 hours Maximum 

14. Rapid Charging Time 2 hours Maximum 

 

Table 3.3 Cell Sample B Basic Performance Test Data 

No Item Parameter Note 

1. Maximum Capacity 2100 mAh Fully discharged (0.2C C5A) after fully 

charged. 2.  Nominal Capacity 2000 mAh 

3.  Maximum Cell Initial Impedance 160 mΩ 3.7V AC 1KHz 

4. Nominal Voltage 3.7 V Mean Operation Voltage 

5. Initial Voltage 3.75 V  

6. Limited Charge Voltage 4.2 V Voltage of CC charge to CV charge 
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7. Cut-off Voltage 2.75 V Discharge Cut-off Voltage. 

8. Open-Circuit Voltage 4.07V To be measured within 24 hours after 

fully charged. 

9. Nominal Energy 7.4Wh  

10. Charging Current 240 mA (0.2C)  

11. Discharging Current 240 mA (0.2C)  

12. Maximum Discharge Current 2100 mA (1.0C)  

13. Charging Time Approx. 6 hours Maximum 

14. Rapid Charging Time Approx. 3 hours Maximum 

 

Table 3.4 Cell Sample C Basic Performance Test Data 

No Item Parameter Note 

1. Maximum Capacity 3100 mAh Fully discharged (0.2C C5A) 

after fully charged. 2.  Nominal Capacity 3000 mAh 

3.  Maximum Cell Initial Impedance 150 mΩ 3.7V AC 1KHz 

4. Nominal Voltage 3.7 V Mean Operation Voltage 

5. Initial Voltage 3.75 V  

6. Limited Charge Voltage 4.2 V Voltage of CC charge to CV 

charge 

7. Cut-off Voltage 2.75 V Discharge Cut-off Voltage. 

8. Open-Circuit Voltage 4.08V To be measured within 24 

hours after fully charged. 

9. Nominal Energy 11.1Wh  

10. Charging Current 240 mA (0.2C)  

11. Discharging Current 240 mA (0.2C)  

12. Maximum Discharge Current 3100 mA (1.0C)  

13. Charging Time Approx. 6 hours Maximum 

14. Rapid Charging Time Approx. 3 hours Maximum 

 

3.0 Results and Discussions 

3.1 Optimization of the Composite Materials 

 

The response obtained from the experimental runs carried out by combinations of the three variables (active material, 

binder and conductive additive) are shown on the response column of Table 4.1. The three experimental variables 

interaction generate a total of 20 experimental runs. The responses obtained from various runs were significantly 

outstanding which implies that each of the factors have substantial effect on the response. 

3.2 ANOVA Analysis and Model Fitting 

 

The Model F-value of 49.60 implies the model is significant. There is only an 0.01% chance that an F-value this large 

could occur due to noise. Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case A, 

B, C, BC, A^2, B^2, C^2 are significant model terms. Values greater than 0.1000 indicate the model terms are not 

significant. The adequacy of the model was evaluated by applying lack of fit test as shown in Table 4.2. The test for 

lack of fit compares variation around the model with pure variation within repeated observations. This test measures 

the adequacy of different models based on response surface analysis (Lee et al, 2006). Non-significant lack of fit is 

desirable because it implies the model will produce a good fit. Hence, the ANOVA and lack of fit validates the 

generated model. In comparison with the research of Kama et al, 2021 as presented in the literature, the obtained 

ANOVA results are in communion, which are adequate for the system. 

3.3 Effect of actual and predicted values 

The response values obtained by inserting the independent values are the predicted values of the model. These values 

are compared to the actual experimental values. The result of this comparison is shown in Figures 4.1a, 4.1b, 4.1c and 

4.1d respectively. The linear correlation for the cell samples represents a confidently distributed relationship between 
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the predicted and actual values which is attributed to the improved material composite, due to the experimental 

approach. 

Table 4.1: Factors and Response 
  Factor 1 Factor 2 Factor 3 Response 1 

Std Run A:Active material % B:Binder %  C:Conductive additive % Capacity mAh  

1 5 90.8 3 3 1500 

2 15 93.2 3 3 2400 

3 19 90.8 5 3 2900 

4 8 93.2 5 3 3200 

5 10 90.8 3 5 900 

6 1 93.2 3 5 1000 

7 9 90.8 5 5 1100 

8 12 93.2 5 5 1900 

9 20 90 4 4 1200 

10 17 94 4 4 2100 

11 11 92 2.3 4 1400 

12 6 92 5.7 4 3100 

13 2 92 4 2.3 3100 

14 18 92 4 5.7 1000 

15 14 92 4 4 2600 

16 13 92 4 4 2600 

17 7 92 4 4 2600 

18 3 92 4 4 2600 

19 4 92 4 4 2600 

20 16 92 4 4 2600 

 

Table 4.2: ANOVA for Response Surface Quadratic Model Analysis of variance table [Partial 

sum of squares - Type III] 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 1.173E+007 9 1.303E+006 49.60 < 0.0001  

A-Active material 9.562E+005 1 9.562E+005 36.39 0.0001  

B-Binder 2.778E+006 1 2.778E+006 105.72 < 0.0001  

C-Conductive additive 5.456E+006 1 5.456E+006 207.64 < 0.0001  

AB 1250.00 1 1250.00 0.048 0.8317  

AC 11250.00 1 11250.00 0.43 0.5276  

BC 1.513E+005 1 1.513E+005 5.76 0.0374  

A2 1.801E+006 1 1.801E+006 68.53 < 0.0001  

B2 2.879E+005 1 2.879E+005 10.96 0.0079  

C2 6.481E+005 1 6.481E+005 24.67 0.0006  

Residual 2.627E+005 10 26274.45    

Lack of Fit 2.627E+005 5 52548.90    

Pure Error 0.000 5 0.000    

Cor Total 1.199E+007 19     
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Figure 4.1 (a) Correlation between predicted vs actual values for the cell samples 

 

Figure 4.1 (b) double effect plot for the effect of binder and active material on the cell capacity 

 

Design-Expert® Software
capacity

Color points by value of
capacity:

3200

900

Actual

P
re

d
ic

te
d

Predicted vs. Actual

500

1000

1500

2000

2500

3000

3500

500 1000 1500 2000 2500 3000 3500

Design-Expert® Software
Factor Coding: Actual
capacity (mAh)

Design Points
3200

900

X1 = A: Active material
X2 = B: Binder

Actual Factor
C: Conductive additive  = 4

90.8108 91.4054 92 92.5946 93.1892

3

3.5

4

4.5

5

capacity (mAh)

A: Active material (%)

B
: 
B

in
d
e
r 

(%
)

1500

2000

2000

2500
6



650  Okonkwo et al./ Journal of Engineering and Applied Sciences 20 (2022), 643 - 656 

 

JEAS   ISSN: 1119-8109 

 

 

Figure 4.1 (c) Correlation between normal plot of residuals and normal % probability 

 

Figure 4.1 (d) Correlation between residuals and active material 
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4.4 Effect of composite parameters 

The graph of binder versus active material indicates increment in the percentage of binder and that of active material, 

which increases the battery capacity (Figure 4.2a). The graph of conductive additive versus active material indicates 

negative effect of conductive additive on the cell capacity, which decreases the capacity whereas increment in the 

active material gives positive result to the cell capacity, which increases the capacity (Figure 4.2b). The graph of 

conductive additive versus binder also indicates negative effect of conductive additive on the cell capacity, which 

decreases the capacity while binder provides positive result on the capacity, which increases the capacity (Figure 4.2c). 

 

Figure 4.2 (a) 3D surface plot for the effect of active material and binder on the cell capacity 
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Figure 4.2 (b) 3D surface plot for the effect of active material and conductive additive on the cell capacity 

 

Figure 4.2 (c) 3D surface plot for the effect of conductive additive and binder on the cell capacity 
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4.5 Optimization 

Position seven (7) of the table was preferred as the optimized composition against selected position one (1) Table 4.3. 

This is because the solution at that position conforms with the result of the graph(s), which indicates that increment 

in the percentage weight of the binder and that of active material, increases the cell capacity. Additionally, the 

generated maximum optimized capacity occurs at that position, which is approximately the same as the experimental 

maximum capacity.  

 Table 4.3 Optimization of the composite materials 

  Lower Upper Lower Upper  

Name Goal Limit Limit Weight Weight Importance 

A:Active material is in range 90.8 93.2 1 1 3 

B:Binder is in range 3 5 1 1 3 

C:Conductive additive is in range 3 5 1 1 3 

Capacity none 900 3200 1 1 3 

 

 

 Table 4.4 Optimum solution for the composite materials  

Number Active material Binder Conductive additive  capacity Desirability  

1 92.294 4.088 4.879 1947.652 1.000 Selected 

2 93.189 3.000 3.000 2228.966 1.000  

3 92.000 4.000 4.000 2602.694 1.000  

4 90.811 3.000 3.000 1649.765 1.000  

5 90.811 5.000 5.000 1337.644 1.000  

6 90.811 3.000 5.000 735.672 1.000  

*7 93.189 5.000 3.000 3430.938 1.000 Preferred 

8 93.189 5.000 5.000 1816.845 1.000  

9 93.189 3.000 5.000 1164.874 1.000  

10 93.144 3.961 3.994 2515.621 1.000  

 

5.0. Conclusion  

 

Optimization of lithium-ion cell positive electrode for maximization of energy capacity, successfully performed using 

design expert software presented significant throughput. The optimized capacity, cell initial impedance, nominal 

voltage, cut-off voltage, nominal energy, charging/discharging current, charging time, etc. were performed 

concurrently across the model samples. Evidence, design expert experiment demonstrating these optimization factors, 

as repeatedly performed data displays high degree of adaptability between the predicted and actual experiments. Thus, 

the active material, which contributes to 90 % capacitance of lithium-ion storage, shows consistent improved average 

energy capacity in the range of 1,500 – 3,200 mAh. Adequacy of the model further showed, as demonstrated with 

ANOVA analysis by evaluating the lack of fit test, consistent model F-value of 49.60 known for significant model. In 

fact, the three experimental variables interaction generated a total of 20 experimental runs with close margin response, 

suggesting sustainable design expert application. These composites used for the experiment also demonstrated the 

proportion ratio of active material to binder, 94:3 with superior energy capacity. The results shows that design expert 

surface methodology-based optimization is promising for designing experiments with NMC and similar related 

materials would be successfully optimized.                       
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6.0 Recommendation 

 

The main focus of this study was to maximize the energy capacity of lithium-ion cells using Design expert surface 

methodology.  The existing framework can be developed to enhance the real effect of the optimization results by 

attempting various views. At first, comprehensive micro-structure modeling can be integrated into the cell model to 

give accurate cell design optimization. Furthermore, a multi-point optimal design can be ascertained by utilizing an 

aggregate objective function. 
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