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Abstract  

This work investigates the impact of artificial neural networks on gas lift optimization to improve the Crude oil production. Data 

were collected from two wells which was trained in neural network using MATLAB 7.9 neural network toolbox. The data was 

divided into three parts; training (60%), validation (20%) and testing (20%), and was done on 20 hidden neuron multi-layer feed-

forward neural network. The result indicated that the data from the two wells were well trained for accurate optimal prediction as 

the R-value was close to 1 and the Mean Square Error (MSE) was very low. The average error comparing the actual and 

predicted data was minimal using few data from the general data. The behavior for both wells follow same pattern and can be 

concluded that for optimal production to be achieved, it will involve a reduced Well head parameter and Gas Compressor Suction 

pressure and a higher Gas compressor Injection pressure. It can be concluded that artificial intelligence have a very high impact 

on the optimal Crude oil production using gas lift. 

Keywords:  Gas lift, neural network, MATLAB, Optimization 

1. Introduction 

As a reservoir produces, it naturally experiences pressure drop and water cut increases, which can cut or reduces its 

production flow rate. When this is encountered, artificial lift methods, including gas lift can resume or increase the 

production rate by supplying additional energy to the fluid in the well (Mohammad, 2012). The major reason for 

installing a gas lift is to increase the drawdown on the production formation by inputting gas into the lower part of 

the oil column and consequently reducing the flowing gradient in the oil column. In the petroleum industry, Gas lift 

optimization is now been thoroughly discussed as a proper Gas lift optimization can reduce the operation cost, 

increase the net present value and maximize the recovery from the asset (Mohamad et al., 2016). A definition which 

can be accepted for a Gas lift optimization is to obtain a maximum output under specific operating conditions. Gas 

lift optimization is a continuous process and can be viewed from two levels of production optimization; optimizing 

the surface facilities which can be seen as total field optimization and optimizing the injection rate that can be 

achieved by standard tools software. 

In achieving an optimization process for gas lift, so many researchers have suggested so many tools which have not 

been too efficient, though can also improve the performance of the well. Most of the works tried to approach gas lift 

optimization using regressive method and other optimization tools like linear programming, Leg radian method, 

Interpolations, etc (Ntherful, 2013; Benjamin, 2012; Dinesh et al, 2016). Most methods explored have not produced 
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good intelligent system to understand itself automatically, for optimal production. Such system if actualized can 

reduce cost thoroughly and human labour. 

Artificial intelligence which is the major discussion in the world today can also be seen in Gas lift optimization. 

Though discussions have been raised on the possibilities of using Artificial intelligence for Gas lift optimization but 

only few works have applied it. Chukwuka et al. (2014) tried to study the oil well characterization using neural 

network and genetic algorithm. The work was limited to cost optimization without considering most of the well 

properties like Gas compression Injection pressure, Well head choke size, Gas compression suction pressure, etc.  

Other articles which applied Machine learning could not give a good results or analysis on the Neural network 

application to justify their analysis. This work hopes to establish these gaps in reconciling the neural analytic 

application and its effect on the gas lift optimization. For optimal production rate, this work employed neural 

network application to Gas lift optimization using the well properties data collected from Waltersmith Petroman oil 

limited. The data will be analyzed using MATLAB 7.9 Neural Network Toolbox and its result will be compared 

with normal operation to ascertain the state of the production rate after Artificial neural Network is applied. 

Continuous gas lift is a process of producing mature and depleted reservoir which can no longer produce using their 

natural energy (Garrouch et al., 2020). Their operation consists of injecting gas through the well annulus into the 

producing fluid column, reducing the hydrostatic pressure. When gas is present inside the producing tubing at the 

deepest point, it aids the flow pressure of the bottom hole to allow fluid to flow from the reservoir to surface 

(Mohamad et al., 2016). Many works have suggested methods of gas optimization to maximize production rate and 

reduce cost of production. Dinesh et al. (2016) considered real-time optimization under uncertainty applied to gas 

lift well network. The work considered daily production optimization in the upstream oil and gas domain. In order to 

maximize revenue, the author(s) tried to find the optimal decision variables that utilizes the production system 

efficiently. The production model is subject to uncertainty that have been overlooked and the optimal solution is 

based on nominal models which can render the solution useless and may lead to infeasibility when implemented. 

The author(s) proposed using scenario-based optimization to reduce the conservativeness of the proposed model. 

The work demands more measurement to know the time state of the well. 

Chrisman et al. (2017) considered optimization of oil production using gas lift Macaroni in X field. The author(s) 

considered an X field where many gas wells have stopped flowing years ago and cannot be considered economically 

anymore. Gas field was considered as the best solution which is proper to sandy soil characteristics. The objective 

was to maximize the production rate, which is done by installing the new tubing called the macaroni tubing inside 

the existing tubing of which the gas lift valve was installed inside the macaroni tubing. Results were collected on the 

production rate after the installation which shows that the new design could generate oil production rate of 

425STB/day. The process was able to save cost and optimize the production rate. Shedid and Mostafa (2016) 

considered a simulation study of technical and feasible gas lift performance using PROSPER software. The aim was 

to critically analyze each well in order to maximize the production earnings. The PROSPER simulator was used to 

model all wells individually using actual PVT data of the deviation survey, down-hole completion, geothermal 

gradient and average heat capacities. The result indicated that gas lift optimization process is inevitable for obtaining 

high production rates considering several variables like injected gas compositions, water cut and well head pressure 

which have an important effect on gas lift, while gas roughness has minimal effect on increasing oil production. The 

work was simulated on actual data. 

Okorocha et al. (2020) reviewed the production challenges and gas optimization strategies in Gas lift optimization 

for oil and gas production process. Drawbacks or challenges encountered in gas-lift optimization according to the 

author(s) are deterioration of oil well, incorrect production metering, instability of gas compressor and over injection 

of gas. To reduce operational cost, the author suggested that artificial intelligence or machine learning could be 

introduced into gas lift to reduce operational cost, which in turn will maximize the production rate and increase 

profit. Garrouch et al. (2020) further discussed that the flowrate of a single vertical well undergoing Gas lift 

operation is affected by the fluid flow potential gradient along the well, a porous and permeable reservoir interfaced 

contributing with a fluid feed and the wellbore geometry which may consist of concentric pipes of varying diameter 

and lengths rather than single diameter pipes. The author(s) considered a pragmatic approach for optimizing gas lift, 

applying a dimensional analysis to the highly non-linear production problem in order to develop an empirical model 

for predicting the optimal gas injection rate and the optimal production rate that may be produced from continuous 

gas lift operation. The proposed method evades the assumption process associated with non-linear regression 

analysis in predictions associated with gas lift optimization. 
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Kashif et al. (2012) tried to provide an insight on techniques and methods developed for gas lift continuous 

optimization process.  According to the author(s), it ranges from isolated Well analysis to real time multivariate 

optimization schemes encompassing all wells in the field. Some methods are limited to their neglects of treating the 

effect of inter-dependent well and common flow line while other methods are limited due to large scale networks of 

wells which are difficult to produce. The methods employed from simple variable minimization to more 

sophisticated mixed-integer non-linear (MINLP) optimization scheme. Depending on the formulation adopted, some 

optimization scheme could be preferred than others. Derivative free scheme like Genetic Algorithm (GA) and 

Polytope can be applied in most settings but suffers from a high computational overhead if the function is costly to 

evaluate. The method could be improved using a numerical approach. 

Chukwuka et al. (2014) considered possibility of Gas lift optimization using neural network combined with genetic 

algorithm for cost reduction in gas-lift. The method according to the author will reduce the over-allocation of gas to 

the oil wells. Though the work addressed the oil production of wells using non-performing wells thorough work was 

not done on the neural network approach rather the result indicated more work on the genetic algorithm. The result 

shows an improvement on the well performance and profit actualized. Out of all the reviewed researches only one 

considered Neural Network application with Genetic Algorithm though considering the cost optimization majorly. 

Production rate was not dealt with holistically. Also, most researches considered traditional methods like linear 

programming, Genetic Algorithm etc but much work have not been done on using Artificial Neural Network to 

optimize the well production rate. The Objective of this research is to cover this gap by using Artificial Neural 

Network to optimize the Well Production Rate and create an automated operation which in turn hopes to minimize 

cost of production. 

2.0 Research method 

2.1 Data collection 

This study was carried out on Ibigwe well 1 and Ibigwe well 2 of Waltersmith Petroman oil limited. The study was 

for a period of 2years. These data are daily process data that are always observed and recorded by the production 

personnel on board. These include the well head parameters, compressor parameters, volume of gas injected and 

well production rates etc. 

 

2.2 Neural network analysis 

To optimize the performance of the Gas lift production rate, Neural Network was used to for accurate prediction and 

computing. The data was divided into inputs and targets and was analyzed using MATLAB 7.9 Neural Network 

Toolbox. The input variables are the well head parameter, well head choke size, compressor injection pressure and 

the gas compressor suction pressure while the target value is the well production rate. The aim of the analysis is to 

get an accurate, optimal prediction of the behavior of the well to improve the automatic gas lift properties prediction 

in order to optimize the production rate of the wells. 

 

A typical neural network has neurons often called units or nodes, which could be from complex of dozens to even 

millions and are arranged in layers. All units can be classified into input units, hidden units and output units which 

connect the layers on either side. Rectifier Linear Unit (ReLU) activation was considered which takes a real-valued 

input and replaces the negative values with zero. It is trending in the field of engineering because it is relatively 

simple and efficient function which avoids and rectifies the gradient vanishing problem. 

 

        𝑅(𝑥) = max⁡(0, 𝑥)       (1) 

 

The neural network considered have 3 inputs, 1 target and 20 hidden neurons as shown in Figure 1 below. 

Having data containing features and results, the multi-layer perception will learn the relationship between 

features and results in the given data set and predicts the results from the new data set. Generally, n inputs 

are sent and weight are generally assigned to the units at first place.  
𝑥 = 𝑥𝑤𝑡ℎ𝑝 , 𝑥𝑔𝑐𝑖𝑝 , 𝑥𝑤ℎ𝑠𝑐 , 𝑥𝑔𝑐𝑠𝑝 ⁡⁡|⁡𝑥 ∈ 𝑅𝑛   (2) 

          𝑤 = 𝑤𝑤𝑡ℎ𝑝 , 𝑤𝑔𝑐𝑖𝑝 , 𝑤𝑤ℎ𝑠𝑐 , 𝑤𝑔𝑐𝑠𝑝 ⁡⁡    (3) 

For the training session, the weight will be adjusted for more accurate approximation 
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Figure 1: Study Neural Network flow 
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For the hidden layer, a pre-state P is initiated by taking dot product of x and w ; 

  𝑃 = 𝑥𝑤𝑡ℎ𝑝𝑤𝑤𝑡ℎ𝑝 + 𝑥𝑔𝑐𝑖𝑝𝑤𝑔𝑐𝑖𝑝 + 𝑥𝑤ℎ𝑐𝑠𝑤𝑤ℎ𝑐𝑠 + 𝑥𝑔𝑐𝑠𝑝𝑤𝑔𝑐𝑠𝑝 + 𝑏  (4) 

The total matrix to be created at the output using four inputs, twenty hidden neuron and one output is 4x20 matrix. 

Each matrix is called wki, where i is the neuron position and k is the input position. This shows that we have twenty 

pre-states, each stores the dot product of corresponding inputs and weights. The pre-state goes through an activation 

function, α, called the state (S) inside the hidden neuron, 

    𝑆 = 𝛼(𝑊𝑖𝑋𝑖 + 𝑏𝑖)     (5) 

Neural network learns from pattern of data and tries to make accurate predictions of them. The optimization problem 

is to set the neural net V that minimizes the error function, which can be seen as, 

      𝐸 =
1

𝑁
∑ ‖𝑡𝑖 − 𝑦𝑖‖
𝑞
𝑖=1      (6) 

Where V can be built ideally as, 

       𝑉(𝑥𝑖) = 𝑡𝑖      (7) 

Where ti is the target value, xi is the input values and N is the number of training patterns. The error of the neural net 

given a target t will be, 

  𝐸(𝑤1, 𝑤2, 𝑏1, 𝑏2) =
1

2
(𝑡 − 𝑦)2 =

1

2
[𝑡 − (𝑤2𝛿(𝑤1𝑥 + 𝑏1)) + 𝑏2]

2
  (8) 

Our aim is to minimize the error, which will cause us to move to the opposite side of the gradient. To achieve a 

better error, it will be good to update weights/biases in the training session. Using gradient descent, the 

weights/biases (u) can be updated with the equation, 

    𝑢𝑛𝑒𝑤 = 𝑢𝑜𝑙𝑑 − 𝛽
𝜕𝐸

𝜕𝑢
= 𝑢𝑜𝑙𝑑 + 𝛽𝛥𝑢    (9) 

Where β is called the learning rate and the change in u is computed by the chain rule of the error. The negative sign 

is incorporated into Δu because the derivative of the (t-y) will always be negative t-y. 

3.3 Splitting of the data for neural analysis 

Data is divided into 3 during the Analysis training session for proper prediction. The data is divided into the 

following; 

- Training data set: this is the sample of data used to train the Neural network. For the purpose of this work, 

60% of data was used for training purpose. 

- Validation data set: this is the sample of data used to provide an unbiased evaluation of the final version of 

the neural network on the training data set while tuning the hyperparameter. 20% of the data set was used 

for this purpose. 

- Testing data set: this is the sample of data used to provide an unbiased evaluation of the final version of the 

neural network fit on the training data set. 20% of the data set was used for this purpose. 

 4.0 Results 

From the analysis done, the neural network results were gotten and compared with the optimal production rate 

without neural network. The two well data were trained in MATLAB 7.9 Neural Network Toolbox and the results 

for the regression fitting and average errors were plotted. 
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Table 1: Neural Network Regression results 

WELL 1 

 MSE R-value 

Training 0.31218 0.98288 

Validation 0.55661 0.96816 

Testing 0.38499 0.97752 

WELL 2 

Training 0.22266 0.98596 

Validation 0.68595 0.96232 

Testing 1.38166 0.93587 

 

 

Figure 2: Regression results for 20 hidden Neuron for Well 1 

The regression result for well 1 shows a very good results as the R values for the training (R=0.98288), validation 

(R=0.96816) and test (R=0.97752) and close to 1 according to Figure 2 and Table 1.  The output tracks the targets 

very well for training, testing and validation and the average R-value is 0.97839. This shows that the network is 

properly trained, validated and tested for proper predictions using the input and the target values. 

 

 



848  Okorocha et al./ Journal of Engineering and Applied Sciences 21 (2022), 842 - 858 

 

JEAS   ISSN: 1119-8109 

 

 

Figure 3: MSE results for 20 hidden neurons for well 1 

Considering the mean square error in Figure 3, the minimum validation error is at 0.55661 at 9th (epoch 9) iteration. 

The result can be considered perfect since the test result and the validation result is following almost same pattern 

and the errors are also relatively small for training (0.31218) and testing (0.38499). 

 

Figure 4: Comparison of well production rate for actual and predicted value for Well 1 
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Figure 5:  Average Prediction error for Well 1 

From Figures 4 and 5 it can be seen that the average prediction error is minimal comparing the predicted value with 

the actual value. This shows that the predicted value can actually be trusted for proper optimization.  

 

Figure 6: Regression results for 20 hidden neurons for well 2 

The regression result for well 2 shows a very good results as the R values for the training (R=0.98596), validation 

(R=0.96232) and test (R=0.93587) and close to 1 according to Figure 6 and Table 1.  The output tracks the targets 

very well for training, testing, and validation and the average R-value is 0.96698. This shows that the network is 

properly trained, validated and tested for proper predictions using the input and the target values. 
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Figure 7: MSE results for 20 hidden neurons for well 2 

Considering the mean square error in Figure 7, the minimum validation error is at 0.68595 at 23 rd (epoch 23) 

iteration. The result can be considered perfect since the test result and the validation result is following almost same 

pattern and the errors are also relatively small for training (0.22266) and testing (1.38166). 

 

Figure 8:  Data prediction error 

From Figure 8, it can be seen that the average prediction error is minimal comparing the predicted value with the 

actual value. This shows that the predicted value can actually be trusted for proper optimization.  
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Table 2: Optimal production rate data 

WELL 1 

WPR (Without NN) 458.7BBL 

WPR (With NN) 479.4BBL 

WTHP (Without NN) 115Psi 

WTHP (With NN) 114Psi 

GCIP (Without NN) 1254Psi 

GCIP (With NN) 1257Psi 

GCSP (Without NN) 35Psi 

GCSP (With NN) 32Psi 

WELL 2 

WPR (Without NN) 855.5BBL 

WPR (With NN) 881.9BBL 

WTHP (Without NN) 85Psi 

WTHP (With NN) 79Psi 

GCIP (Without NN) 1336Psi 

GCIP (With NN) 1349Psi 

GCSP (Without NN) 34Psi 

GCSP (With NN) 34Psi 

 

From the optimal production result in Table 2, there was an improved well production rate for both Well 1 and 2 

using the from 458.7BBL to 479.4BBL for well 1 and 855.5BBL to 881.9BBL for well 2.  The values followed 

same trend for well 1 and well 2 except the Gas Compressor suction pressure which is constant (34Psi) at optimum 

for well 2 and reduced from 35Psi to 32Psi for well 1 using neural networks. The gas compressor injection pressure 

increased for both wells increased from 1254Psi to 1257Psi using neural network while from 1336Psi to 1349Psi for 

well 2 using neural network. 

Generally, from the results gotten it can be observed that higher production rate can be achieved when there is 

reduced well head parameter and gas compressor suction pressure and a higher gas compressor injection pressure. 

Comparing the results gotten with other research done (though much work, considering thorough analysis on 

optimizing the production rate have not been done) applying neural network will proffer better solution than other 

traditional methods like linear programming and genetic algorithm considering optimization of well production rate.  

4.1 Research findings, Applications, Recommendations and Contribution to Knowledge 

At the conclusion of the research the following Findings, Applications and Recommendations as well as 

contribution to knowledge can be proffered based on findings, 

- Gas lift systems incorporated with Artificial Intelligence will go a long way to minimize the cost of 

production and optimize the well production rate. 

- For optimal well production, it will be more advisable to incorporate Neural Network in the design of gas 

lift systems than other AI systems. 

- Neural network will optimize the production rate while maintaining appropriate well behaviours. 

- Neural network application will guarantee automated operation thereby reducing manpower operation 

while still guaranteeing optimal production of the well. 



852  Okorocha et al./ Journal of Engineering and Applied Sciences 21 (2022), 842 - 858 

 

JEAS   ISSN: 1119-8109 

 

- Other AI tools like Fuzzy logic should be incorporated with Neural Network in Gas lift Optimization. 

- The work gave deep knowledge on the application of Neural Network  and also gave factors that can affect 

the Gas-lift of Crude Oil Wells. 

5.0  Conclusion 

This study investigated the impact of neural network on the performance of gas lift. It considered the parameters 

which affects the production rate of a well. For the study, two wells were considered and it was observed that neural 

network have a great impact on the gas lift optimal prediction as it aid to improve the oil production rate for the two 

wells. This can be deduced from the minimal Mean Square Error (MSE) and the R-values for the training, validation 

and testing which is close to 1 showing a very good fit.  For both wells, same trends were observed for the properties 

considered except for Gas compressor suction pressure which remained constant for well 2. Generally, it can be 

concluded that for optimal production to be achieved, there should be a reduced well head parameters and gas 

compressor suction pressure and a higher gas compressor injection pressure. This can be concluded from the trend 

observed from both the predicted and the observed data.  
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Appendix A: Data used for the research 

Table A1: Data for Well 1 

Well THP (Psi) 

Well Production Rate 

(BBL) 

Gas 

Compressor 

Injection 

Pressure (PSI) 

Well Head 

Choke Size 

(Inches) 

Gas Compressor 

Suction Pressure (Psi) 

120 433.7 1295 24/64 35 

120 433.8 1294 24/64 34 

119 433.1 1296 24/64 34 

121 434.2 1293 24/64 34 

121 433.9 1296 24/64 35 

120 433.4 1296 24/64 35 

121 434.1 1295 24/64 35 

120 433.6 1295 24/64 35 

119 433.1 1293 24/64 35 

121 434.2 1294 24/64 35 

119 433.3 1294 24/64 34 

119 433.2 1293 24/64 35 

121 434.1 1293 24/64 34 

121 433.8 1294 24/64 35 

119 433.1 1295 24/64 34 

121 434.7 1294 24/64 35 

120 433.9 1294 24/64 34 

120 434 1293 24/64 35 

120 434.1 1295 24/64 34 

120 433.9 1293 24/64 35 

120 433.8 1295 24/64 34 

121 434.5 1293 24/64 35 

119 433.8 1294 24/64 34 

120 434.1 1295 24/64 35 

119 433.9 1293 24/64 34 

120 434.1 1293 24/64 34 

119 433.2 1294 24/64 34 

121 434.8 1293 24/64 34 

119 433.2 1294 24/64 35 

120 434.1 1295 24/64 34 

119 433.6 1295 24/64 34 

     

120 433.7 1295 24/64 35 

120 433.8 1294 24/64 34 

119 433.1 1296 24/64 34 

121 434.2 1293 24/64 34 

121 433.9 1296 24/64 35 

120 433.4 1296 24/64 35 

121 434.1 1295 24/64 35 

120 433.6 1295 24/64 35 

119 433.1 1293 24/64 35 

121 434.2 1294 24/64 35 

119 433.3 1294 24/64 34 

119 433.2 1293 24/64 35 

121 434.1 1293 24/64 34 

121 433.8 1294 24/64 35 

119 433.1 1295 24/64 34 

121 434.7 1294 24/64 35 
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120 433.9 1294 24/64 34 

120 434 1293 24/64 35 

120 434.1 1295 24/64 34 

120 433.9 1293 24/64 35 

120 433.8 1295 24/64 34 

121 434.5 1293 24/64 35 

119 433.8 1294 24/64 34 

120 434.1 1295 24/64 35 

119 433.9 1293 24/64 34 

120 434.1 1293 24/64 34 

119 433.2 1294 24/64 34 

121 434.8 1293 24/64 34 

119 433.2 1294 24/64 35 

120 434.1 1295 24/64 34 

119 433.6 1295 24/64 34 

120 433.9 1290 24/64 35 

121 434.1 1293 24/64 34 

119 432.8 1289 24/64 34 

122 433.4 1292 24/64 34 

119 432.7 1291 24/64 35 

120 433.3 1289 24/64 33 

121 434.2 1290 24/64 34 

122 434.8 1290 24/64 35 

120 433.9 1291 24/64 35 

120 434 1290 24/64 34 

120 434.1 1289 24/64 35 

121 434.8 1293 24/64 34 

119 432.8 1293 24/64 35 

121 434.2 1292 24/64 35 

120 433.9 1292 24/64 34 

121 434.1 1291 24/64 35 

120 433.8 1289 24/64 35 

119 432.6 1293 24/64 34 

119 432.4 1293 24/64 35 

121 434.2 1290 24/64 34 

120 433.8 1289 24/64 35 

120 433.7 1290 24/64 35 

121 432.4 1290 24/64 34 

120 433.8 1291 24/64 34 
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Table A2: Data for Well 2 

Well THP (Psi) 

Well Production Rate 

(BBL) 

Gas Compressor 

Injection 

Pressure (PSI) 

Well Head 

Choke Size 

(Inches) 

Gas Compressor 

Suction Pressure 

(Psi) 

120 433.7 1295 24/64 35 

120 433.8 1294 24/64 34 

119 433.1 1296 24/64 34 

121 434.2 1293 24/64 34 

121 433.9 1296 24/64 35 

120 433.4 1296 24/64 35 

121 434.1 1295 24/64 35 

120 433.6 1295 24/64 35 

119 433.1 1293 24/64 35 

121 434.2 1294 24/64 35 

119 433.3 1294 24/64 34 

119 433.2 1293 24/64 35 

121 434.1 1293 24/64 34 

121 433.8 1294 24/64 35 

119 433.1 1295 24/64 34 

121 434.7 1294 24/64 35 

120 433.9 1294 24/64 34 

120 434 1293 24/64 35 

120 434.1 1295 24/64 34 

120 433.9 1293 24/64 35 

120 433.8 1295 24/64 34 

121 434.5 1293 24/64 35 

119 433.8 1294 24/64 34 

120 434.1 1295 24/64 35 

120 434.1 1293 24/64 34 

119 
433.2 1294 

24/64 34 

121 434.8 1293 24/64 34 

119 433.2 1294 24/64 35 

120 434.1 1295 24/64 34 

119 433.6 1295 24/64 34 

120 434.7 1293 24/64 34 

119 433.8 1292 24/64 34 

120 434.3 1290 24/64 33 

119 433.7 1293 24/64 35 

120 434.9 1288 24/64 34 

120 435 1289 24/64 34 

120 434.8 1292 24/64 33 

119 433.2 1290 24/64 35 

119 433.4 1291 24/64 35 
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120 434.1 1288 24/64 33 

121 435.8 1289 24/64 35 

120 433.8 1290 24/64 34 

121 434.5 1292 24/64 33 

119 433.3 1291 24/64 34 

120 434.2 1289 24/64 35 

120 434.1 1288 24/64 34 

121 435.6 1291 24/64 35 

119 433.2 1290 24/64 33 

120 434.1 1292 
24/64 

34 

121 434.9 1289 24/64 35 

119 433.1 1288 24/64 33 

120 434.2 1290 24/64 34 

119 433.2 1288 24/64 35 

121 434.5 1288 24/64 34 

120 434.1 1289 24/64 33 

121 435.2 1290 24/64 34 

119 434 1288 24/64 35 

119 433.9 1289 24/64 34 

120 433.9 1290 24/64 35 

121 434.1 1293 24/64 34 

119 432.8 1289 24/64 34 

122 433.4 1292 24/64 34 

119 432.7 1291 24/64 35 

120 433.3 1289 24/64 33 

121 434.2 1290 24/64 34 

122 434.8 1290 24/64 35 

120 433.9 1291 24/64 35 

120 434 1290 24/64 34 

120 434.1 1289 24/64 35 

121 434.8 1293 24/64 34 

119 432.8 1293 
24/64 

35 

121 434.2 1292 24/64 35 

120 433.9 1292 24/64 34 

121 434.1 1291 
24/64 

35 

120 433.8 1289 24/64 35 

119 432.6 1293 
24/64 

34 

119 432.4 1293 
24/64 

35 

121 434.2 1290 
24/64 

34 

120 433.8 1289 24/64 35 
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120 433.7 1290 24/64 35 

121 432.4 1290 24/64 34 

120 433.8 1291 24/64 34 

119 432.3 1291 24/64 34 

120 434.1 1289 24/64 35 

121 434.8 1290 24/64 34 

119 432.1 1291 24/64 34 

121 434.7 1293 24/64 35 

119 432.3 1291 24/64 34 

121 434.3 1292 24/64 33 

121 434.1 1289 24/64 35 

121 433.9 1292 24/64 33 

119 433.1 1291 24/64 34 

120 433.5 1290 24/64 33 

121 435.2 1293 24/64 34 

119 433.1 1289 24/64 33 

120 434.4 1289 24/64 34 

119 433.2 1292 24/64 34 

121 435.2 1291 24/64 33 

120 435.1 1292 24/64 35 

119 434.1 1290 24/64 34 

119 434 1289 24/64 33 

121 436.2 1293 
24/64 

34 

120 436 1293 24/64 36 

120 435.9 1289 24/64 33 

 

 

 

 

 

 

 

 

 

 

 


