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Abstract  

A field capacity model for different soil sub-groups (locations) was developed using statistical analysis based on the stepwise 

method. In this research study, the independent variables: organic matter content, hydraulic conductivity, exchangeable sodium, 

soil pH, cation exchange capacity, particle density, bulk density, porosity, percentage clay, percentage silt, percentage sand, 

electric conductivity, and the dependent variable (field capacity) were measured using standard experimental methods. A high 

coefficient of determination (R2) of 0.933 was obtained for the developed model at different soil sub-groups using raw data from 

three locations. The model was verified and validated by comparing the predicted values with the measured field capacity values 

from the remaining raw data from two locations not used in building the model, and there was no significant difference between 

the measured and predicted values at the 5% level of significance. The standard error of the model was predicted fairly 

accurately, judging from the low residual values obtained from the two locations not used in building the model: 16.3% and 

10.4%. These results are clear evidence of the goodness of fit of the model between predicted and measured parameters for field 

capacity in different soil sub-groups. 
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1. Introduction 

Moisture is one of the most important soil properties and plays a substantial role in energy partitioning between 

topsoil and atmosphere. This parameter is dramatically affected by the interactions occurring within the soil profile – 

such as changes in physical and chemical properties of the soil – or by such external factors as evaporation, 

irrigation, precipitation and vegetation (Alletto, et al., 2022). It is one of the main input parameters fed into Soil-

Vegetation-Atmosphere Transfer (SVAT) models (Askary, et al., 2022). Soil moisture (SM) is also a very important 

indicator in agricultural drought monitoring (Navidi, et al., 2021). Soil moisture data are quite vital in several areas 

such as runoff estimation, climate modeling, flood control, geotechnical engineering, slope failure prediction and 

water quality assessment. It is considered one of the principal factors in irrigation scheduling, and determines 

irrigation water requirement and irrigation timing. Over recent years, the idea of precision agriculture on the farm 

scale has been very popular among researchers and farmers. One of the approaches in precision agriculture is 

determination of irrigation water requirement and the appropriate irrigation time, which has been realized with the 

use of moisture sensors and by accurate determination of SM. However, spatial and temporal variability, which is a 

characteristic feature of SM, complicates its monitoring (Cousin, et al., 2022). The significance of SM in irrigation 

scheduling becomes much more apparent on the small scale of a farm. Accordingly, several studies have been 
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conducted to estimate SM at field capacity and permanent wilting point (PWP). Application of moisture sensors for 

exact irrigation timing based on real-time SM measurement has been also developed under the concept of ‘precision 

agriculture’ and with the aim of optimizing water consumption and minimizing the water stress imposed on plants 

(Navidi, et al., 2021; Tasan, & Demir, 2020). The role of this parameter is obvious on a large scale, as in 

catchments, where it plays a part in controlling such processes as infiltration, runoff and evapotranspiration and 

eventually the water balance of catchments. 

Field capacity (FC) corresponds to the superior limit of available water and represents the moisture of the soil after 

drainage of the water contained in the macrospores by gravity action (He, et al., 2022 and Robertson, et al., 2021). 

This moisture condition favors higher absorption of water and nutrients by the plants. It is interchangeably used as 

water holding capacity and water retention capacity, which is the amount of soil moisture or water content held in 

soil after excess water has drained away and the rate of downward movement has materially decreased, which 

usually takes place within 2–3 days after a rain or irrigation in pervious soils of uniform structure and texture. The 

physical definition of field capacity is the bulk water content retained in soil at −33 J/kg (or −0.33 bar) of hydraulic 

head or suction pressure. When irrigation is applied to the soil, all the soil pores get filled with water. After the 

gravitational drainage, the large soil pores are filled with both air and water, while the smaller pores are still full of 

water. At this stage, the soil is said to be at field capacity. At field capacity, the water and air contents of the soil are 

considered to be ideal for crop growth. 

Worldwide, there are concerns about rising nutrient concentrations in surface and groundwater systems (He, et al., 

2022). A leading source of leached nutrients is agricultural land, which has expanded significantly with the global 

demand for food (Wang, X., et al., 2022). To mitigate nutrient leaching, more effective land management practices 

operating within an appropriate regulatory environment are necessary, making knowledge of soil water and nutrient 

retention properties indispensable. However, soil hydraulic properties are costly and time-consuming to measure, 

making it difficult or impossible to provide representative soil hydraulic properties at the farm scale, let alone 

regional and national scales. Therefore, models have been developed to provide estimates of soil retention properties 

like field capacity (FC) using more readily available field data (Robertson, 2021). When applied to soil 

mapping units, these models (known as pedotransfer functions) can be utilized for management and regulation 

purposes at the national scale when appropriate uncertainty analysis is included (Shahriari, et al., 2019). 

Soil water holding capacity is known to optimize crop production and this is the amount of water that a given soil 

can hold for crop use. Field capacity is the point where the soil water holding capacity has reached its maximum for 

the entire field and this is the goal for most if not all agricultural producers. When there is a deficit in the amount of 

water in the soil, the soil profile needs to be replenished by precipitation or irrigation. According to Robertson, et al., 

2021, the best-standardized procedure to evaluate FC is by flooding a square or rectangular plot on a bare field; after 

irrigation, it is covered with a plastic sheet (He, et al., 2022) to avoid evaporation. The FC profile is defined by the 

distribution of moisture in the upper half of the soil profile, which will be fully wet at the end of infiltration (quasi-

saturated), as measured 2 or 3 days after water application. This FC profile usually depends on the texture and 

structure of the individual soil layers (Navidi, et al., 2021). Based on this dependence and the operational difficulties 

of a field test, FC is commonly evaluated in a laboratory setting as the moisture of undisturbed soil samples at a 

specific matric potential. Swain, et al., 2021, reported that a wide range of matric potentials (from -2.5 kPa to -50 

kPa) has been used for this purpose, although suctions of 5 kPa, 6 kPa, 10 kPa, and 33 kPa are more common 

choices; however, there is no satisfactory general criterion for selection of the suction values for the determination 

of FC (Ostovari, et al., 2015). The key is for farmers to understand the nuances of soil water holding capacity and 

how to manage it so that the farm does not need to irrigate or suffer from a drought. Soil Organic Matter (SOM) is 

another factor that can help increase water holding capacity. Soil organic matter has a natural magnetism to water. If 

the farm increases the percentage of soil organic matter, the soil water holding capacity will increase (Wang, et al., 

2022).  

Soil Organic Matter is decayed material that originated from a living organism and can be increased by adding plant 

or animal material. When irrigation is applied to the soil, all the soil pores get filled with water. After the 

gravitational drainage, the large soil pores are filled with both air and water, while the smaller pores are still full of 

water. At this stage, the soil is said to be at field capacity. At field capacity, the water and air contents of the soil are 

considered to be ideal for crop growth. The persistence of a high field capacity due to water logging, particularly in 

the presence of bio-available C sources, results in declining soil redox potential and development of anoxic 

conditions. At “Field Capacity” (FC) the soil is wet and contains all the water it can hold against gravity. At the 
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“Permanent Wilting Point” (PWP) the soil is dry and the plant can no longer extract any more water. The difference 

in the water content of soil between field capacity and the permanent wilting point gives the amount of soil water 

available for uptake by plants. The plant available water is expected to be greater for clayey and organic soils 

compared to sandy soils. If we know the plant available water and the rate at which this water is being depleted by 

crops then we can determine the necessary frequency of irrigation. Apart from irrigation scheduling, this information 

can also be useful in the modeling of crop growth and prediction of yields (Askary, 2022). 

Usually, field capacity is determined in the laboratory, by the retention curve method. In this method, the value of 

the field capacity moisture is represented by the balance moisture with tension of 6–33 kPa, depending on the 

texture, structure and content of organic matter in the soil. Since the determination of these parameters is expensive 

and time-consuming, this study aims to develop model for estimating field capacity based on physicochemical 

properties of soils. 

2.0 Material and methods 

2.1 The study area - The study area (Federal University of Technology Owerri, School of Agriculture and 

Agricultural Technology Farm, Imo State) lies between latitude 4º.45´N and 5º50´N, longitude 6º35´E and 7º30´E 

located in the Southeastern section of Nigeria and is one of the 36 States of the Nigerian Federation, with Owerri as 

its capital and largest city. It occupies an area of about 5,329.17 sq. km with a Population of 2,938,708. Imo State 

derives its name from Imo River, which takes its course from the Okigwe/Awka upland. Imo State is located 

between the lower River Niger and the upper and middle Imo River. The area experiences a humid, semi-hot 

equatorial climate (Amanbagara, et al., 2015). The rainfall is heavy, with an average annual rainfall of 2000-

2400mm and an average number of 152 rainy days particularly during the rainy season (April - October). Rainfall 

distribution is bimodal, with peaks in July and September and two weeks break in August. The rainy season begins 

in March and lasts till October or early November.  

 

Figure 1: Map of Imo State showing the local government areas. (Amanbagara, et al., 2015). 

Geologically, Imo State is underlain by the sedimentary sequences of the Benin Formation (Miocene to recent), and 

the Bende-Ameki Formation (Eocene). The Benin Formation is made up of friable sands with minor intercalations 

of clay (Amanabagara et al., 2015).  The sand units are mostly coarse-grained, pebbly, poorly sorted, and contain 

lenses of fine-grained sands. In some areas like Okigwe, impermeable layers of clay occur near the surface, while in 

other areas, the soil consists of lateritic material under a superficial layer of fine-grained sand. Imo State is 

characterized by three main landform regions: a highland region of elevation of 340m in the northern sections 

covering Orlu, Ideato, Okigwe, and White Uboma local government areas. The mainstream-Orashi (Ulasi) River, 

rises near Dikenafai in Imo State, flows northward to Ozubulu in Anambra State, and then turns round in a wide 
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loop and heads for the Atlantic Ocean. The second main landform region is midway between the North and the 

Southern section of the state and is of a moderate elevation of between 175m - 240m above Medium Sea Level. 

They provide elevated, well-drained topography with few isolated undulating topography and valleys. The third 

landform region is the lowland/plains that lie South of the high and moderately elevated highlands; the Orashi River 

plain, south of Oguta, and the inter-basin area between Oguta and Egbema. The main rivers draining the State are 

Imo, Otamiri, Njaba, Arashi, Nwaorie, Oraminiukwa, and a couple of other smaller streams all of which have very 

few tributaries. These rivers constitute the five subbasins in the Imo-Anambra River Basin draining an average area 

of about 3,777.76km2 of Imo State. The area underlain by the Imo Shales, other rivers rise within the coastal plain 

sands.  

 

The width and depth of the majority of these rivers ranged between 10m to 350m and 0.5m to 2.8m respectively. 

Water in excess of that required to maintain field capacity is known as excess winter rainfall and this water leaches 

through the soil profile and represents the recharge to water sources. The volume of excess winter rainfall varies 

each year according to factors such as precipitation amount, soil type, antecedent cropping, evaporation, 

temperature. Random sampling method was adopted during sampling by taking soil samples from areas of the given 

site chosen at random when there is little previous knowledge of the site. 

 

2.1.1 Soil pH: In a mechanical sieve shaker, a 10grams of 2mm sieved air dried soil sample was put into the 100ml 

beaker, 10ml of distilled water added making the soil-water ratio to be 1:1 and the whole solution is stirred for about 

30mins simultaneously. The solution is left to stand and settle for about 6hrs before the glass electrode of the pH 

meter is immersed deep enough in the clear solution on top of the settled suspension so as to read and record the 

result shown on the meter. 

 

2.1.2 Organic matter content: Organic matter content was determined using Walkley-Black wet oxidation method 

procedure where the percentage organic carbon was calculated using the Equation (1) below; 

 

% 𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝐶𝑎𝑟𝑏𝑜𝑛 =  (𝐵 − 𝑇) × 𝑀 × 0.003 × 1.33 ×  
100

𝑤𝑡
      (1) 

Where; wt = weight of soil sample in grams 

             B = Blank titre value in ml 

             T = sample titre value in ml 

             M = molarity of actual concentration of fe2+ 

 

2.1.3 Particle size: Particle size distribution of less than 2 mm fractions was determined using hydrometer method 

and the %clay, %silt and %sand was calculated using the equations below after getting the parameters required from 

the laboratory 

%𝑆𝑎𝑛𝑑 = 100 − %(𝑐𝑙𝑎𝑦 + 𝑠𝑖𝑙𝑡)                                                          (2) 

 

{
[(𝑅2ℎ𝑟𝑠 − 𝑅𝑏) + 𝑅𝑑]

𝑤𝑡
} × 100                                                                    (3) 

%(𝑐𝑙𝑎𝑦 + 𝑠𝑖𝑙𝑡) = {
[(𝑅40𝑠 − 𝑅𝑎) + 𝑅𝑎]

𝑤𝑡
} × 100                                   (4) 

Where; R40s and R2hrs = Hydrometer reading after 40 secs and 2hrs, grams 

 Ra and Rb = 40secs and 2hrs blank hydrometer reading, grams 

 Re and Rd = Temperature readings of the suspension, ºc for 40secs and 2hrs 

wt = weight of soil sample, grams 

Finally, with the results, the textural classes (%clay, % sand and %silt) were determined using textural triangle. 

 

2.1.4 Bulk density: The bulk density was determined using core method. The core sampler was driven vertically 

into the soil to 10cm depth so as to fill the sampler with soil and later it was removed carefully from the hole so as to 

get an undisturbed soil sample insitu. The soil extending was trimmed from both ends of the sampler with a knife 

and the weight of the sampler when empty and its weight with the soil sample was recorded as W1 and W2. The 

volume of the soil sample which is the same as the volume of the core sampler was calculated using the formula; 



Ngwangwa et al/ UNIZIK Journal of Engineering and Applied Sciences 2(1), 111-134 131 
 

 
 

 

𝑉 = 𝜋2ℎ                                                                                        (5) 

Where; h and r are the height and radius of the core sampler. 

 

Bulk density is then calculated using the equation below; 

 

                                       𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑖𝑙,𝑔

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙,𝑐𝑚3                                                 (6)    

                         

2.1.5 Porosity: Porosity is calculated using the equation below; 

 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =  [(1 −
𝐷𝑏

𝐷𝑝

) × 100] %                                           (7) 

 

2.1.6 Cation Exchange Capacity: The exchangeable calcium and magnesium were determined using EDTA 

titration method and after the parameters were gotten in the Lab, the following equations were used to calculate the 

magnesium and calcium in the soil sample. 

 

𝐶𝑎𝑙𝑐𝑖𝑢𝑚,
𝑀𝑔

100𝑔
= 𝑇 × 𝑚𝑜𝑙 𝑜𝑓 𝐸𝐷𝑇𝐴 × (

𝑉1

𝑉2

) × (
100

𝑤
)       (8) 

𝑀𝑔 = (𝑐𝑎 + 𝑚𝑔) − 𝑐𝑎                                                                     (9) 

 

3.0. Results and Discussions 

A multiple linear regression was run by using each property to relate to the measured Field Capacity by simple 

correlation and multiple correlation analysis to predict field capacity from Soil ph, Organic matter content, 

percentage clay, Bulk density, particle density, Exchangeable sodium percentage, Porosity, Percentage sand, 

Percentage silt, Cation exchange capacity and Electrical conductivity. The correlation coefficients were checked for 

significance using IBM SPSS software (version 20) in other to determine the order of inclusion of the variables 

during model building. The model was then developed using stepwise regression method in the statistical package. 

In stepwise regression method, each variable is entered in sequence and assessed using the observed coefficient of 

determination (R2) and adj. R2.   

 

Table 1: Correlation coefficient between field capacity and the selected soil properties 

Soil 

properties 

Correlation, 

r 

P-value Remark 

Fc &Hc -0.168 0.240 Not correlated 

Fc & OMC -0.389 0.045* Correlated 

Fc &Bd -0.490 0.014* Correlated 

Fc &Pd -0.245 0.149 Not correlated 

Fc & ECS 0.365 0 .057 Not correlated 

Fc & Soil Ph 0.554 0.006* Correlated 

Fc & P 0.398 0.041* Correlated 

Fc & %S -0.455 0.022* Correlated 

Fc & %Si 0.176 0.229 Not Correlated 

Fc & %C 0.571 0.004* Correlated 

Fc & CEC 0.482 0.016* Correlated 

Fc & EC 0.465 0.019* Correlated 

 

If adding a variable increases the R2 and adj. R2 values of the model, then it is retained but all other variables in the 

model are retested to see if they are still contributing to the success of the model. If they no longer contribute 

significantly, they are removed. This method ended up in giving the smallest possible set of soil properties one 

needed to measure so as to predict field capacity within the studied location. The effective variables that influence 

field capacity that were retained in the model include; Organic matter content, Soil ph, Percentage clay and Bulk 

density. These variables generally, statistically and significantly predicted field capacity as stated in Table (1) 

below. This model has variables not originally well correlated with measured Field capacity retained in the model 
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while one originally well correlated was eventually excluded from the model. Based on Table 1, porosity, 

percentage sand, cation exchange capacity and electrical conductivity, were to appear in the final field capacity 

model but rather they were excluded. What this suggests is that a variable may not be well correlated with another 

factor on its own, but its interaction with other variables may enhance its relationship with the variables with which 

it was not originally well correlated as a single variable. The coefficient of determination, R2 increased generally 

until it gets to a point where R2 remained unchanged which shows that the best model fit has been achieved. Table 

(1) shows the result of the correlation analysis of the measured field capacity value against the selected soil 

properties. 

 

From Table (1), the R-value computed for the correlation between Field Capacity and Percentage Clay exceeds both 

tabular R-values at 5% and 1% probability levels. It was concluded that the simple linear correlation coefficient is 

significantly different from zero at 1% probability level. This significantly high R-value indicates that there is strong 

evidence that the Field Capacity and Percentage Clay in the different soil sub-groups are highly associated with one 

another in a linear function. This linear association shows that soil sub-groups with high field capacity will have a 

high Percentage Clay or vice versa. For  the linear function of the Percentage Clay in the soil sub-groups of the 

study, the coefficient of determination, R2 increased gradually until it gets to a point where, R2 remained unchanged 

which shows that the best model fit has been achieved. Table 2 illustrates the mean comparison for the soil 

properties in the soil sub-groups. 

 

Table 2: Mean comparison table using Duncan’s Multiple Range Test (DMRT) for the model 
BLOCKS 

(Locations) 
  TREATMENTS (Soil properties) 

FC Hc OMC Bd Pd ESP pH P %S %Si %C CEC EC 

Egbema 7.4800 

(0.4288) 

0.2921 

(0.0625) 

4.2971 

(0.0826) 

1.5600 

(0.0383) 

2.4157 

(0.0399) 

3.3471 

(0.0505) 

6.2314 

(0.0945) 

35.4300 

(2.4817) 

87.2714 

(0.4957) 

4.7286 

(0.6291) 

8.0000 

(0.6055) 

3.0314 

(0.2395 

42.3000 

(10.6022) 

Owerri 9.4850 

(0.5358) 

0.9557 

(0.1355) 

7.1129 

(0.0320) 

1.2243 

(0.0489) 

2.1157 

(0.0616) 

2.1743 

(0.1032) 

5.3671 

(0.1791) 

42.0671 

(3.3759) 

50.1857 

(0.4741) 

28.1857 

(0.4375) 

21.6286 

()0.1704 

3.9343 

(0.3640) 

82.5750 

(25.3022) 

Okwele 14.010 

(1.7847) 

0.4433 

(0.1560) 

4.4814 

(0.0727) 

1.4500 

(0.0311) 

2.6214 

(0.0279) 

3.8586 

(0.2499) 

6.0771 

(0.4601) 

44.910 

(1.3244) 

47.0714 

(0.2498) 

16.3571 

(0.5769) 

36.5714 

(0.4991) 

4.7000 

(0.1327) 

91.8500 

(16.3938) 

Umuna 17.0350 

(0.2767) 

0.4218 

(0.0492) 

4.5929 

(0.0626) 

1.2714 

(0.0328) 

2.1657 

(0.0544) 

2.9129 

(0.1096) 

6.5186 

(0.0913) 

41.2514 

(2.2156) 

62.2857 

(0.4488) 

16.1000 

(0.2582) 

21.6571 

(0.4577) 

3.3729 

(0.1841) 

84.5000 

(26.1057) 

Orlu 16.4350 

(1.0702) 

0.4926 

(0.0241) 

4.2271 

(0.0776) 

1.2643 

(0.0446) 

2.0686 

(0.0578) 

3.9757 

(0.3552) 

7.4571 

(0.2613) 

38.8671 

(1.9469) 

57.4143 

(1.3146) 

18.2857 

(1.4369) 

24.3000 

(0.9399) 

5.4543 

(0.2622) 

73.2000 

(8.1343) 

 

3.1Stepwise Regression 

Table (3) below listed the best fit equations of the stepwise regression for the different number of model variables 

including their test characteristics; correlation coefficient, R, coefficient of determination, R2, adjusted coefficient of 

determination, R2adj, F test and standard error of estimate, S.E. 

 

Table 3: Stepwise regression equation for different numbers of Model variables 
S/

N 

Equation R R2 R2adj F SE Remarks 

1. 7.391 + 0.246%Cl 0.571 0.326 0.289 8.725 3.3621 Best of 12 one-variable 

equation. Sig. at 0.01 
2. -9.643 +0.24%Cl + 2.707pH 0.786 0.618 0.573 13.754 2.6052 Best of 11 two-variable 

equation. Sig. at 0.01 
3. 5.210 + 0.210%Cl + 2.524pH - 9.642Bd 0.847 0.718 0.665 13.590 2.3068 Best of 10 three-variable 

equation. Sig. at 0.01 

4. 82.24 + 0.150%Cl - 1.907pH – 30.074Bd – 4.047OMC 0.966 0.933 0.915 51.869 1.1653 Best of 9 four-variable 
equation. Sig. at 0.01 

N/B:  OMC = Organic Matter Content; %Cl = %Clay; pH = Soil pH; Bd = Bulk density 

From Table (3), the equation that seems to be the optimum of the best fit using statistical analysis in serial number 

four (4) equation as shown in Equation (10) below. 

𝐹𝐶 = 82.24 + 0.150%𝐶𝑙 − 1.907𝑝𝐻 − 30.074𝐵𝐷 − 4.047𝑂𝑀𝐶                          (10) 

Where: Fc =Field capacity; OMC = Organic matter content; %Cl = Percentage clay; BD = Bulk density; pH = Soil 

pH 
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Validation of Model:  

Table 4 shows the difference between the measured and predicted field capacity values for the two locations not 

used in building the model. 

Table 4: Measured and predicted field capacity values from the two locations not used in developing the 

model. 

Location (soil group) Measured Predicted Residual (%) 

Owerri(DystricFerrasol) 9.485 9.648 1.72 

Orlu(EutricNitosol) 16.435 16.539 0.63 

 

According to Table 3, the model predicted perfectly with a decent amount of accuracy, going by the low residual 

values (1.72% and 0.63%) obtained from the two locations not included in the model's development. This concurs 

with research by Nwakuba et al. (2018) and Ngwangwa et al. (2015) showing the models are more accurate with less 

percentage error values between measured and predicted results. 

 

 

4.0. Conclusion  

A mathematical model was established using statistical analysis; special package for the social sciences, SPSS, 

based on stepwise method. A functional relationship between some soil properties and Field Capacity was 

established. The model was tested with data from the two locations (Owerri and Orlu) not used in building the 

model and low residual values got as 1.72%and 0.63%. There was no significant difference between the measured 

and predicted Field Capacity values at 5% level of significance. The difference between the actual (measured) and 

the predicted Field Capacity values were below 20% which implies good model. 

 

5.0 Recommendation 

Having the knowledge of current values of Field Capacity and other soil properties from the desired area combined 

with the relevant understanding of water flows within the study area, aids in developing useful information 

recommended for agriculture and structural maintenance in Soil and Water Engineering practices. I recommend the 

model (Equation 10) as a better one to use in the study area for the fact that it predicted field capacity well. 
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