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Abstract  

The determination of critical buckling loads of thin beam on Pasternak foundations (BoPF) subjected to in-plane compressive 

loads is vital to their analysis and design. This study presents the Stodola-Vianello iterative method for formulating and solving 

the governing ordinary differential equation (ODE) subject to the boundary conditions. The governing boundary value problem is 

expressed in iterative form using the method of four successive integrations after re-arranging the ODE. A suitable buckling 

mode is employed in the derived Stodola-Vianello iteration formula for the pinned-pinned end conditions studied. The 

convergence requirement of the nth buckling mode is used to derive the characteristic buckling equation whose roots are used to 

obtain the buckling loads at the nth buckling mode. The obtained expression for the nth buckling mode was found to be exact 

because exact buckling eigenfunction was used in the derivation. The critical buckling load was found to be exact and correspond 

to first buckling mode. The critical buckling load expression was expressed in standard form in terms of critical buckling load 

coefficients which was found to depend upon the beam parameter and parameters of the Pasternak foundation. The values of the 

critical buckling load coefficients were found to be in close agreement with previous studies. Exact buckling load solutions were 

obtained for all the buckling modes of the BoPF, and the critical buckling load was found to be identical with exact critical 

buckling load solutions obtained by previous researchers. 

 

Keywords: Stodola-Vianello iteration method, critical buckling load, beam on Pasternak foundation, eigenfunction, eigenvalue, 

critical buckling load coefficient 

1. Introduction 

Many important problems in geotechnical engineering are idealized as beam on elastic foundation problems. The 

examples include buried pipelines and shallow footings. Two main theories of beams used are Euler-Bernoulli beam 

theory (EBBT) and Timoshenko beam theory (TBT). More advanced beam theories which consider shear 

deformation have been proposed and studied by Levinson (1981), Dahake and Ghugal (2013), Sayyad and Ghugal 

(2011) and others. Some elastic foundation models that have been used are Winkler, Pasternak, Vlasov, Hetenyi and 

Kerr. The classical thin beam theory also called EBBT, assumes that cross-sectional planes normal to the 

longitudinal axis of the beam remain plane and normal to the longitudinal axis after deformation. The assumption 

implies that the theory is unsuitable for the analysis of thick and moderately thick beams where shear deformation 

plays critical role in the behaviour. The EBBT however gives accurate results for thin beams because shear 

deformation effects are insignificant in their behaviour (Ike, 2018a). 

 

Timoshenko beam theory was formulated by relaxing the assumption of orthogonality of plane cross-sections, and 

hence considering shear deformation. TBT is thus suitable for moderately thick and thick beams (Ike, 2019). Winker 

model is a discrete one-parameter elastic foundation model which represents the soil reaction pressure using an 
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analogue representation of closely spaced, mutually independent linear elastic vertical springs with stiffness that is 

directly proportional to the beam deflection at the point. Its major disadvantage is the lack of continuity resulting in 

the inability to account for shear interaction between adjoining springs. Several attempts to overcome the limitations 

of the one-parameter discrete elastic modelled researchers like Pasternak, Vlasov and Hetenyi to develop two-

parameter discrete elastic foundation models. In such two-parameter models the first parameter represents the 

vertical spring stiffness while the second parameter represents the coupling or interaction effects of the springs. 

Beams resting on elastic foundations and under the action of compressive forces can fail by buckling when such 

compressive forces reach some critical values. The vertical buckling load solution of the beam on elastic foundation 

is thus a vital aspect of the analysis and design. Hetenyi (1946) pioneered studies on the stability analysis of beam 

on elastic foundation using the classical mathematical methods. He determined exact critical buckling loads for thin 

beam resting on Winkler foundations for various end support conditions. 

 

Timoshenko and Gere (1985) and later on Wang et al (2005) also investigated the stability problems of beam on 

elastic foundations. They solved the governing ODEs using mathematical methods for solving ODEs and derived 

exact critical buckling load solutions for uniform simply supported Euler-Bernoulli beams resting on elastic 

foundations. Hassan (2018) studied the stability of beam on elastic foundations under various end restraints. Atay 

and Coskun (2009) have applied the variational iteration method (VIM) to find the critical buckling loads of beam 

on elastic foundations under various end restraints. Taha (2014) used the recursive differentiation method (RDM) to 

solve stability problems of beam on elastic foundations. Mama et al (2020) used quintic polynomial shape functions 

in the finite element method to determine elastic buckling loads of beam on Winkler foundation. Taha and Hadima 

(2015) applied the recursive differentiation method to find critical buckling load solutions of variable cross-section 

beams on elastic foundation. Aristizabel-Ochoa (2013) studied the stability of beams on elastic foundations for 

various end restraints. Anghel and Mares (2019) have applied collocation techniques to solve stability problems of 

beam on elastic foundation. The collocation principle sought to obtain the solution to the governing boundary value 

problem (BVP) only at the collocation points leading to an approximate solution, and a reduction of the complex 

integration problem to an algebraic formulation. Soltani (2020) applied the finite element method to derive stability 

solutions to Timoshenko beam on elastic foundation. 

 

Ike (2018b) applied finite integral transform using sinusoidal kernel functions to solve the eigenvalue problem of 

naturally vibrating Euler-Bernoulli beam resting on one-parameter discrete elastic foundations for Dirichlet 

boundary conditions. The sinusoidal kernel functions of the finite sine transform method satisfies the Dirichlet 

boundary conditions, and the BVP was converted to an algebraic eigenvalue problem which was solved to obtain 

exact eigenvalues from which the natural frequencies were found. Ofondu et al (2018) have applied the Stodola-

Vianello iteration method to derive approximate but accurate critical buckling load solutions for Euler columns. 

They derived the iteration formula by successive integrations of the re-arranged Euler column buckling differential 

equation. They derived an algebraic buckling shape coordinate function for the clamped-pinned end conditions 

considered and used it in the iteration formula for the determination of successive iterates for the buckling shape 

function. They found that a few iterative steps resulted in accurate critical buckling load. Literature reveals that the 

Stodola-Vianello iteration method has not been applied to the stability analysis of thin beam on Pasternak 

foundation. 

 

In this paper the Stodola-Vianello iterative method is applied to derive buckling load solutions for Euler-Bernoulli 

beam resting on Pasternak foundations for the case of Dirichlet boundary conditions. 

2. Governing Equation/Theory 

The governing equation for the buckling load problem of a thin beam on Pasternak foundation is given by: 

 
2 2 2 2

1 22 2 2 2

( ) ( ) ( )
( ) ( )

d d v x d v x d v x
EI P k v x k q x

dx dx dx dx

 
+ + − = 

 
    (1) 
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where x is the longitudinal coordinate axis of the beam, 

 v(x) is the transverse deflection,  

 k1 and k2 are the first and second parameters of the two-parameter Pasternak foundation,  

 P is the compressive load, 

 E is the Young’s modulus of elasticity of the beam, 

 I is the moment of inertia 

 q(x) is the distributed transverse load. 

 For homogeneous prismatic thin beams free of distributed transverse load, the fourth order ordinary 

differential equation (ODE) becomes: 

 
4 2 2

1 24 2 2

( ) ( ) ( )
( ) 0

d v x d v x d v x
EI P k v x k

dx dx dx
+ + − =      (2) 

Dividing by EI and re-arranging the equation gives: 

 
4 2

2 1

4 2

( ) ( )
( ) 0

k kd v x P d v x
v x

EI EI EIdx dx

 
+ − + = 
 

      (3) 

Let  
P

EI
 =          (4) 

 1
1

k

EI
 =          (4b) 

 2
2

k

EI
 =          (4c) 

Then, we have: 

 
4 2

2 14 2

( ) ( )
( ) ( ) 0

d v x d v x
v x

dx dx
+  −  +  =       (5) 

 

3. Research Methodology 

The Stodola-Vianello iteration equations are found using successive integrations as follows: 

 
4 2

2 14 2

( ) ( )
( ) ( )

d v x d v x
v x

dx dx
= −  − −        (6) 

Integrating, 

 
4 2

2 14 2
0 0

( ) ( )
( ) ( )

x x
d v x d v x

dx v x dx
dx dx

 
= −  − +  

 
       (7) 

Hence, 

 
3

2 1 13
0

( ) ( )
( ) ( )

x
d v x dv x

v x c
dxdx

= −  − − +       (8) 

where c1 is an integration constant. 

integrating again, 

 
2

2 1 1 22
0 0

( )
( ) ( ) ( )

x x
d v x

v x v x dxdx c x c
dx

= −  − − + +       (9) 

where c2 is the second integration constant. 

Integrating again, 

 
2

1
2 1 2 3

0 0 0 0

( )
( ) ( ) ( ) ( )

2

x x x x
c xdv x

x v x dx v x dxdxdx c x c
dx

 = = −  − − + + +      (10) 



220  Ike/ UNIZIK Journal of Engineering and Applied Sciences 2(1), 217-226 

 

where c3 is the third constant of integration. 

Integrating Equation (10), 

 
3 2

1 2
2 1 3 4

0 0 0 0 0 0

( ) ( ) ( ) ( )
6 2

x x x x x x
c x c x

v x v x dxdx v x dxdxdxdx c x c= −  − − + + + +       (11) 

where c4 is the fourth integration constant. 

 The four integration constants are found by enforcing the boundary conditions of the problem. Hence the 

Stodola-Vianello iteration becomes for the (n + 1) iteration. 

 
3 2

1 2
1 2 1 3 4

0 0 0 0 0 0

( ) ( ) ( ) ( )
6 2

x x x x x x

n n n

c x c x
v x v x dxdx v x dxdxdxdx c x c+ = −  − − + + + +       (12) 

 

4. Results and Discussion 

The thin beam on Pasternak foundation problem shown in Figure 1 is studied. The ends 0,x =  and x l=  are 

simply supported and l is the length of the beam. 

 

 
 

Figure 1: Pinned-pinned beam on Pasternak foundation under compressive load 

 

The boundary conditions are given by Equations (13a) – (13d): 

 ( 0) 0v x = =          (13a) 

 ( 0) 0v x = =          (13b) 

 ( ) 0v x l= =          (13c) 

 ( ) 0v x l = =          (13d) 

Enforcing the boundary conditions Equations (13a) and (13b) gives: 

 4 0c =           (14a) 

 2 0c =           (14b) 

Hence, Equation (12) simplifies as: 

 
3

1
1 2 1 3

0 0 0 0 0 0

( ) ( ) ( ) ( )
6

x x x x x x

n n n

c x
v x v x dxdx v x dxdxdxdx c x+ = −  − − + +        (15) 

The nth buckling mode shape function that satisfies the boundary conditions is 

 ( ) sinn

n x
v x

l


=          (16) 

Substituting Equation (16) into Equation (15) gives: 

 
3

1
1 2 1 2

0 0 0 0 0 0

( ) ( ) sin sin
6

x x x x x x

n

c xn x n x
v x dxdx dxdxdxdx c x

l l
+

 
= −  − − + +        (17) 

Simplifying, 

 

2 4 3
1

1 2 1 3( ) ( ) sin sin
6

n

c xl n x l n x
v x c x

n l n l
+

    
=  −  −  + +   

    
   (18) 

From Equation (9) after substituting Equation (10) and simplifying, 
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2

1 2 1 1( ) ( )sin sinn

n x l n x
v x c x

l n l
+

  
 = −  −  −  + 

 
    (19) 

Enforcing the boundary conditions at ,x l=  gives: 

 

2

1 2 1 1( ) ( )sin sin 0n

l
v x l n n c l

n
+

 
 = = −  −   −   + = 

 
    (20) 

  1 0c =          (21) 

Similarly, enforcing boundary conditions in Equation (17) gives: 

 

4 3
1

1 2 1 3( ) ( )sin sin 0
6

n

c ll
v x l n n c l

n
+

 
= =  −   −   + + = 

 
   (22) 

  3 0c =          (23) 

Hence, the Stodola-Vianello iteration equation for the studied problem simplifies to: 

 

2 4

1 2 1( ) ( ) sin sinn

l n x l n x
v x

n l n l
+

    
=  −  −    
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    (24) 

Simplifying gives: 

 

2 4

1 2 1( ) ( ) sinn

l l n x
v x

n n l
+

     
 =  − −   

     
     (25) 

Further simplification yields: 

 

2 4

1 2 1( ) ( ) ( )n n

l l
v x v x

n n
+

    
 =  −  −    

     
     (26) 

At convergence, 

 1( ) ( )n nv x v x+ =          (27) 

 or 1( ) ( ) 0n nv x v x+ − =         (27a) 

Hence the characteristic equation is: 

 

2 4

2 1( ) 1 ( ) 0,n

l l
v x

n n

    
  −  − − =   

     
 where, ( ) 0nv x   

For nontrivial solutions, 

 

2 4

2 1( ) 1
l l

n n

   
 −  −  =   

    
       (28) 

Re-arranging, we obtain: 

 

4 2

2 1( ) 1
l n

n l

     
  − = +     

    
       (29) 

Thus, 

 

4 2

2 11
l n P

n l EI

     
  =  + +  =   

    
      (30) 

Then, the buckling load at the nth buckling mode is: 

 

4 2

2 11n

l n
P EI

n l

      
  =  + +      

     
      (31) 

Simplification yields: 

 

4 2
2 2

2 12
1n

EI l n
P l l

n ll

      
  =  + +      

     
      (32) 
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Further simplification gives the standard form: 

 

4
2 2

2 12
( ) 1n

EI l
P l n

nl

   
  =  +  +    

   
      (33) 

When the second Pasternak foundation parameter vanishes, 2 0 =  the foundation becomes a Winkler foundation 

and Equation (33) simplifies to: 

 

4
2

12
( ) 1n

EI l
P n

nl

   
  =  +    

   
       (33a) 

Expressing Equation (33) in the standard form by defining the buckling load coefficient gives: 

 1 22
( , , )n

EI
P K n

l
=           (34) 

where, 

 

4
2 2

1 2 2 1( , , ) ( ) 1
l

K n l n
n

  
   =  +  +   

  
      (35) 

1 2( , , )K n  is the buckling load coefficient for the nth buckling mode. 

It is noted that if 2 0, =  

 

4
2

1 2 1( , 0, ) ( ) 1
l

K n n
n

  
   = =  +   

  
      (35a) 

The critical buckling load (Pcr) is found as the least buckling load and this occurs at the first buckling mode when 

1.n =  

Thus, 

 

4
2 2

( 1) 2 12
1cr n

EI l
P P l

l
=

   
  = =  +  +    

   
     (36) 

Hence, 

 1 22 2
( , , 1)cr cr

EI EI
P K n K

l l
=   = =        (37) 

where 

 

4
2 2

1 2 2 1( , , 1) 1cr

l
K n K l

  
   = = =  +  +   

  
     (38) 

Let  2
1 2( , , 1) crK n K =   = =        (39) 

Then, 

 
3

2cr
cr

P l
K

EI
= =          (40)  

 
2

crP l

EI
 =          (41) 
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Table 1: Values of critical buckling load parameters for various values of the Pasternak foundation 

parameters   

 2
2 20 ( / )k l= =    % Difference 

4
1 1k l= 

 

Taha (2014) Anghel and Mares (2019) Present Present andTaha 

(2014) 

Present andAnghel 

and Mares (2019) 

0 3.1415 3.1413 3.141593 0.00296 0.0093 

100 4.4723 4.4721 4.472329 0.000648 0.0051 

 2
2 21 ( / )k l= =      

4
1 1k l=   Taha (2014) Anghel and Mares (2019) Present   

0 4.4428 4.4427 4.442883 0.00187 0.00412 

100 5.4654 5.4653 5.465467 0.000123 0.0031 

 2
2 22.5 ( / )k l= =      

4
1 1k l=   Taha (2014) Anghel and Mares (2019) Present   

0 5.8774 5.8772 5.877382 −0.00031 0.0031 

100 6.6840 6.6838 6.683991 −0.000135 0.00286 

 

The boundary value problem of thin beam resting on two-parameter Pasternak foundation has been solved in this 

paper using Stodola-Vianello iteration method. The problem is represented for homogeneous prismatic beams by a 

fourth order ODE subject to boundary conditions determined from the end support conditions. The Stodola-Vianello 

iteration equation was developed using the method of four successive integrations after re-arranging the ODE for the 

case of Dirichlet boundary conditions. A trigonometric shape function for the nth buckling mode which satisfies the 

simply supported end conditions is used in the developed Stodola-Vianello iteration formula to find the ( 1)thn +  

buckling mode function. The Dirichlet boundary conditions are used to obtain the integration constants. The 

condition for convergence of the iteration is used to obtain the characteristic buckling equation as Equation (28). 

 

The root of the characteristic equation gives the eigenvalue,  as Equation (30). The nth buckling load (Pn) is found 

as Equation (31), and in standard form as Equation (33), where the nth buckling load coefficient is found as 

Equation (35). The expression for the nth buckling load which is presented in Equation (33) for BoPF reduces to the 

expression for the nth buckling load for a beam on Winkler foundation BoWF when the second Pasternak 

foundation parameter k2 vanishes. Similarly, the expression for critical buckling load Pcr for BoPF simplifies to the 

expression for Pcr for BoWF when the second Pasternak foundation parameter, k2, vanishes. The critical buckling 

load Pcr is the least buckling load and occurs at the first buckling mode. Pcr is found as Equation (36) from Equation 

(35). The critical buckling load coefficient 1 2( , 1) crK n K  = =  is found as Equation (38).  

Values of the critical load buckling parameter  which is defined in terms of Kcr and Pcr, l, EI in Equations (40) and 

(41) are presented in Table 1 for various values of 1 and 2 and compared with previous results obtained by Taha 

(2014) and Anghel and Mares (2019). Table 1 illustrates the close agreement between the present results and the 

results by Taha (2014) and Anghel and Mares (2019). The percentage difference between present exact critical 

values of Kcr and hence Pcr and previous results by Taha (2014) and Anghel and Mares (2019) are less than 0.004% 

for all values of 10 100,k   and 20 2.5.k   The closed form analytical expression for the buckling loads of all 

the modes of buckling of the simply supported thin BoPF has been derived in this study using Stodola-Vianello 

iteration method. The exact buckling load solutions developed was due to the exact shape function for the thin beam 

with Dirichlet boundary conditions used in the Stodola-Vianello iteration. 
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5. Conclusions 

In conclusion, this paper has studied the Stodola-Vianello iteration method for the buckling load analysis of Euler-

Bernoulli BoPF. The governing ODE for BoPF was reformulated using four successive integrations to a Stodola-

Vianello iteration equation with four integration constants, corresponding to the fourth order of the governing ODE. 

The four constants of integration were determined using the Dirichlet boundary conditions of the BoPF. The BoPF 

problem consequently becomes simplified to a more readily solved algebraic iteration problem. 

(i) Stodola-Vianello iteration method simplifies the buckling load problem of a thin beam on Pasternak 

foundation to an iterative equation for deriving the (n + 1)th buckling mode shape function using the nth 

buckling eigenfunction. 

(ii) The iteration equation contains four constants of integration which are found using the end support 

conditions of the problem. 

(iii) The buckling mode shape function is found from the boundary conditions. 

(iv) The requirement for convergence of the iteration is used to find the characteristic buckling equation. 

(v) The roots of the characteristic buckling equation are used to find the buckling load expression. 

(vi) The minimum buckling load occurs at the first buckling mode and gives the critical buckling load. 

(vii) The critical buckling load (Pcr) expression is the exact expression because the exact buckling shape 

function was used and the governing ODE was satisfied at all points on the solution domain. 

(viii) Results obtained for the critical buckling load parameters agree with previous solutions by Taha (2014) and 

Anghel and Mares (2019). 

(ix) Expectedly the nth buckling load Pn solutions obtained in this study simplified to the Pn solutions for 

BoWF when the second Pasternak foundation parameter, k2, (or 2) vanishes. 

 

Nomenclature/Symbols/Abbreviations 

EBBT  Euler-Bernoulli Beam Theory 

TBT  Timoshenko Beam Theory 

ODE(s)  Ordinary Differential Equation(s) 

VIM  Variational Iteration Method 

RDM  Recursive Differentiation Method 

BVP  Boundary Value Problem 

BoWF  Beam on Winkler Foundation 

BoPF  Beam on Pasternak Foundation 

x  longitudinal coordinate axis of the beam 

v(x)  transverse deflection 

k1  first parameter of the two-parameter Pasternak foundation 

k2  second parameter of the two-parameter Pasternak foundation 

P  compressive load on beam on Pasternak foundation 

E  Young’s modulus of elasticity of the beam 

I  moment of inertia 

q(x)  distributed transverse load 

 parameter defined in terms of P  and EI 

1 parameter defined in terms of k1 and EI 

2 parameter defined in terms of k2 and EI 

c1, c2, c3, c4 integration constants 

(x)  slope of beam 

n  buckling mode 

l  length of beam 

vn(x)  nth buckling mode shape function 
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Pn  nth buckling load 

Pcr  critical buckling load 

K(1, 1, n) buckling load coefficient for the beam on Pasternak foundation for the nth buckling mode 

 critical buckling load parameter defined in terms of Pcr, l and EI 

1k  dimensionless foundation parameter defined in terms of 1 and l 

2k   dimensionless foundation parameter defined in terms of 2 and (l/) 
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