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Abstract  

The critical buckling load determination for Euler-Bernoulli (EB) beams on elastic foundations is an important consideration in 

their analysis especially when they are subjected to in-plane compressive loads. This paper presents the Stodola-Vianello method 

for the iterative presentation and solution of the governing fourth order ordinary differential equation (ODE). The method of 

successive integrations is used after re-arrangement to express the governing ODE in iterative form. The eigenfunction for the nth 

buckling mode is used to obtain the (n + 1)th buckling mode equation for the Dirichlet end conditions considered. The condition 

for convergence at the nth buckling mode is used to drive the eigenequation, whose roots were used to find the buckling loads at 

the nth mode. The critical buckling mode is exact since the exact buckling mode function was used to derive it. The critical 

buckling load expression was expressed in standard form in terms of critical buckling load coefficients which depend on the 

parameter representing the EB beam on Winkler foundation interaction. The critical buckling load coefficients were found to be 

in close agreement with previously reported works, and identical with the exact critical buckling load coefficient obtained by 

previous researchers using closed form analytical methods. 

 

Keywords:  Stodola-Vianello iteration method, eigenfunction, eigenvalue, critical buckling load coefficient, beam on Winkler 

foundation. 

 

1. Introduction 

The analysis and design of buried structures is a soil-structure interaction problem. The soil supports the buried 

pipelines and alters the equation of equilibrium. It is thus important to evaluate the soil reaction or loading on buried 

structures in order to adequately analyse the structural behaviour. In geotechnical engineering, some buried 

structural elements like pipelines, shallow foundations, and piles can be idealized as beam structures and the 

resulting soil-structure interaction problem called beam on elastic foundation due to the idealization of the 

surrounding soil, as elastic foundation. 

There are two common types of beam theories, namely: Euler-Bernouli beam theory (EBBT) and Timoshenko beam 

theory (TBT). Other theories for beams include Vlasov beam theory, Mindlin beam theory, and shear deformation 

beam theories developed by Levinson (1981), Dahake and Ghugal (2013) and Sayyad and Ghugal (2011). Shimpi. 

Elastic foundation models that have been used are Winkler, Pasternak, Vlasov, Hetenyi, Kerr. EBBT which is 

suitable for thin beams, for which the thickness, h, to span, l, ratio is less than 0.05, (h/l  0.05), ignores shear 

deformation and assumes that planes orthogonal to the longitudinal fibres remain plane and orthogonal after 

deformation. The assumptions make the EBBT ideal for thin beams for which shear deformation do not contribute 
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significantly to their behaviour (Ike, 2018a). For moderately short and deep beams, TBT is used to account for the 

effect of shear deformation. 

Winkler model which is the simplest elastic foundation model assumes the soil as a series of closely spaced, 

mutually independent, linear elastic vertical springs as shown in Figure 1, which provide stiffness that is directly 

proportional to the deflection of the beam at the point.  

 

Figure 1: Typical thin beam of rectangular cross-section on Winkler model of soil idealized as a bed of closely 

spaced vertical elastic springs which do not interact with neighbouring springs 

 

Hence the soil reaction is defined using a single parameter k called the Winkler parameter which represents the soil 

stiffness parameter. The major limitation of the Winkler model is the lack of continuity of the soil spring model, 

which results in the inability of the model to consider the shear interaction between adjacent springs. 

Several two-parameter foundation models which consider the interaction between adjoining springs have been 

derived by Pasternak, Vlasov, Hetenyi and others. Two-parameter elastic foundation models use two foundation 

parameters to describe the soil reaction; the first parameter k1 represents the vertical spring stiffness, as in the 

Winkler model, while the second parameter k2 represents the coupling effect of the linear elastic springs. 

Beams on elastic foundations which are subjected to axial compressive load are prone to buckling failures when 

such axial compressive loads attain certain critical values. The determination of the critical buckling loads become 

main issues for their analysis and design. 

Hetenyi (1946) was a pioneer in studying in the buckling of beams on elastic foundations; with his use of trial 

function methods to calculate critical buckling loads of beams on Winkler foundations. Timoshenko and Gere 

(1985) have presented closed form solutions for critical buckling loads for uniform simply supported thin beams on 

elastic foundations. Taha and Hadima (2015) used the recursive differentiation method (RDM) to obtain 

mathematical solutions for critical buckling loads of non-uniform beams on elastic foundations. 

Atay and Coskun (2009) used the variational iteration method (VIM) to solve the stability of beams on elastic 

foundation problems. Taha (2014) applied the recursive differentiation method to the analysis of a beam-column on 

an elastic foundation. Anghel and Mares (2019) used collocation method based on integral formulation for the 

stability problem to develop accurate solutions to the beam on elastic foundation problem. Aristizabal-Ochoa (2013) 

developed solutions to the buckling of slender columns on an elastic foundation with generalized end conditions. 

Hassan (2018) presented solutions to the buckling problems of beams on elastic foundations for different boundary 

conditions. 

Soltani (2020) used the finite element method to develop buckling solutions for variable cross-section axially 

functionally graded Timoshenko beam on elastic foundation. Ike (2018b) used the finite sine transformation method 

to find the exact solutions to the eigenvalue problem of free vibrating thin beam on Winkler foundation. Ofondu et 

al (2018) used the Stodola-Vianello iteration method to derive accurate critical buckling load solutions for Euler 

columns. They derived the Stodola-Vianello iteration formula for the Euler column buckling problem; and used an 
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algebraic basis function for the clamped-pinned end conditions considered to derive successive iterates for the basis 

buckling function. They found that a few iterative steps gave accurate critical buckling load results. 

Wang et al (2005) have provided exact solutions for the buckling of beams on elastic foundations for various 

boundary conditions. Huang and Luo (2011) solved the buckling problem of beams on elastic foundation by 

expanding the mode shape as power series, thus transforming the field equations into algebraic equations. Critical 

buckling loads are then found by them by using the conditions for existence of nontrivial solutions. Literature 

reveals that the Stodola-Vianello iteration method has not beam used to formulate and solve stability problems of 

BoWF. The formulation and solution of the BoWF is the main focus of this work. 

In this paper the Stodola-Vianello iterative method is applied to develop buckling load solutions for thin beam on 

Winkler foundations with pinned-pinned ends. The innovation in the paper is the first principles approach to the 

Stodola-Vianello iteration formulation of the governing equation of the BoWF. Another innovative aspect is the first 

principles systematic use of exact shape functions of Dirichlet simply supported beams to find exact buckling load 

solutions. 

 

2. Governing Equation/Theory 

The equation for the buckling load problem of a thin beam on Winkler foundation is given by 

2 2 2

2 2 2

( ) ( )
( ) ( )

d d w x d w x
EI P kw x p x

dx dx dx

 
+ + = 

 
       (1) 

where w(x) is the transverse deflection, 

 x is the longitudinal coordinate axis of the beam, 

 p(x) is the distributed transverse load on the span 

 k is the Winkler modulus of the foundation,  

 P is the compressive load, 

 E is the Young’s modulus of elasticity of the beam, 

 I is the moment of inertia. 

In the absence of distributed transverse load 0( ) ,p x =  and for. homogeneous prismatic beams, Equation (1) 

simplifies to the fourth order ordinary differential equation: 

4 2

4 2
0

d w d w
EI P kw

dx dx
+ + =           (2) 

Dividing by EI, yields: 

4 2

4 2
0

d w P d w k
w

EI EIdx dx
+ + =           (3) 

Let 
P

EI
 =             (4a) 

k

EI
 =              (4b) 

Then the equation s: 



Ike/ UNIZIK Journal of Engineering and Applied Sciences 2(1), 250-259       253 

 

 

 

4 2

4 2
0

d w d w
w

dx dx
 + + =            (5) 

 

3. Methodology 

The Stodola-Vianello iteration equations are derived by successive integrations of the governing equation after re-

arrangement. Thus 

4 2

4 2

d w d w
w

dx dx
 
 

= − + 
 

           (6) 

Integrating once, 

4 2

4 2
0 0

x x
d w d w

dx w dx
dx dx

 
 

= − + 
 

            (7) 

Hence, 

3

13
0

x
d w dw

w dx c
dxdx

 = − − +           (8) 

where c1 is an integration constant. 

Integrating again, 

2

1 22
0 0

( ) ( )

x x
d w

w x w x dxdx c x c
dx

 = − − + +           (9) 

where c2 is the second integration constant. 

Integrating again, 

2
1

2 3
0 0 0 0 2

( ) ( ) ( )

x x x x
c xdw

x w x dx w x dxdxdx c x c
dx

  = = − − + + +          (10) 

where c3 is an integration constant. 

Integrating Equation (10), 

3 2
1 2

3 4
0 0 0 0 0 0 6 2

( ) ( ) ( )

x x x x x x
c x c x

w x w x dxdx w x dxdxdxdx c x c = − − + + + +          (11) 

where c4 is the fourth integration constant. 

The four integration constants are determined using the boundary conditions of the problem. Hence the Stodolla-

Vianello iteration becomes for the (n + 1)th iteration: 

3 2
1 2

1 3 4
0 0 0 0 0 0 6 2

( ) ( ) ( )

x x x x x x

n n n

c x c x
w x w x dxdx w x dxdxdxdx c x c + = − − + + + +         (12) 
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4. Results and Discussion 

The pinned-pinned beam on Winkler foundation shown in Figure 2 is considered. 

 

Figure 2: Pinned-pinned beam on Winkler foundation under compressive load 

For beam of length l, 

The boundary conditions are given by the four equations: 

0 0( )w x = =             (13a) 

0 0( ) ,M x = =  where 0( )M x =  is the bending moment distribution at 0.x =   

Using bending moment deflection equation, the left support, 

2

2
0 0( )

d w
x

dx
= =            (13b) 

0( )w x l= =             (13c) 

0( ) ,M x l= =  where M(x) is the bending moment distribution. 

Using bending moment deflection equation, at the right support, 

2

2
0( )

d w
x l

dx
= =            (13d) 

Substituting the boundary conditions at x = 0 in the Stodola-Vianello equations give: 

4 0c =              (14a) 

2 0c =              (14b) 

Hence, Equation (12) is simplified after considering boundary conditions at the left support 0( )x =  to the following 

iteration equation: 

3
1

1 3
0 0 0 0 0 0 6

( ) ( ) ( )

x x x x x x

n n n

c x
w x w x dxdx w x dxdxdxdx c x + = − − + +           (15) 

A buckling shape function at the nth mode that satisfies the pinned-pinned boundary conditions at the left and right 

supports is the sinusoidal function: 

( ) sinn

n x
w x

l


=            (16) 

Then substituting in Equation (15) gives: 

3
1

1 1 2
0 0 0 0 0 0 6

( ) sin sin

x x x x x x

n

c xn x n x
w x dxdx dxdxdxdx c x

l l

 
 + = − − + +          (17) 
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Evaluating the integrals in Equation (17) gives a simplified iteration as: 

32 4
1

1 1 3
3

( ) sin sinn

c xl n x l n x
w x c x

n l n l

 
 

 
+

   
= − + +   

   
     (18) 

The Stodola-Vianello iteration constructed using Equation (9) gives after evaluation of the integral: 

2

1 1( ) sin sinn

n x l n x
w x c x

l n l

 
 


+

  = − − + 
 

       (19) 

Enforcing the boundary conditions at ,x l=  give: 

2

1 1 0( ) sin sinn

l
w x l n n c l

n
   


+

  = = − − + = 
 

       (20) 

 1 0c =             (21) 

Similarly, applying the boundary conditions at x l=  for w(x) in Equation (18) gives: 

34
1

1 3 0
6

( ) sin sinn

c ll l
w x l n n c l

n n
   

 
+

   
= = − + + =   

   
     (22) 

 3 0c =             (23) 

Thus, Stodola-Vianello iteration formula for the pinned-pinned BoWF becomes: 

2 4

1( ) sin sinn

l n x l n x
w x

n l n l

 
 

 
+

   
= −   

   
       (24) 

Simplifying, 

2 4

1 2 4
( ) sin

( ) ( )
n

l l n x
w x

ln n


 

 
+

 
= − 
 

        (25) 

Further simplification gives: 

2 4

1 2 4
( ) ( )

( ) ( )
n n

l l
w x w x

n n
 

 
+

 
= − 
 

        (26) 

At convergence, 

1( ) ( )n nw x w x+ =            (27) 

Hence the characteristic buckling equation becomes: 

2 4

1
l l

n n
 

 

   
− =   

   
          (28) 

Solving for  gives: 
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4
1

( )

l n

ln

 




  
= +   

  
           (29) 

Thus, the nth buckling load Pn is: 

2 2

2( )
n

n l
P EI

l n

 



  
= +  

  
         (30) 

or, 

4
2

2 2
( )

( )
n

EI l
P n

l n






 
= + 

 
          (30a) 

The critical buckling load is the minimum value for Pn and corresponds to 1.n =   

Thus, 

2 2

1 2( )cr n

l
P P EI

l

 


=

  
= = +  

  
          (31) 

4
2

2 2 2cr cr

EI l EI
P K

l l






 
= + = 

 
          (32) 

where 
4

4 2
2

( )cr

l
K l


 


= +           (33) 

4( )crK l  is the critical buckling load coefficient 

4( )crK l  is dependent upon l4 which depends on the Winkler parameter, k and the beam flexural rigidity EI as 

given by Equation (4b). 
4( )crK l  is calculated for various values of l4 and presented in Table 1 together with 

previous results obtained using VIM and exact methods. 

Table 1: Values of critical buckling load coefficient 
4( )crK l  for various values of l4 for present work and 

previous research works 

l4 
Present work 

Kcr 

(Atay and Coskun, 2009) 

VIM 

Kcr  

(Wang et al, 2005) 

Exact 

Kcr 

0 9.869604401   9.8696 9.869604401 

50 14.93566358 14.9357 14.93566358 

100 20.00172277 20.0017 20.00172277 

 

Table 2 presents a comparative study of the present solution with the method of collocation presented by Anghel and 

Mares (2019). 
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Table 2: Comparison of present work with collocation results 

l4 

10n =  20n =  40n =  60n =  100n =  

Present work Collocation method by Anghel and 

Mares (2019) 
Anghel and Mares (2019) 

0 11.051 10.378 10.108 10.025   9.961 9.869604401 

50 16.756 15.712 15.298 15.172 15.075 14.93566358 

100 22.416 21.032 20.485 20.318 20.188 20.00172277 

 

The Stodolla-Vianello method has been used in this paper to develop buckling load solutions for thin beam on 

Winkler foundation. The Stodolla-Vianello iteration equation was derived from first principles for beam on Winkler 

foundation with pinned ends as Equation (15). 

A buckling shape function at the nth buckling mode that satisfies the boundary conditions at the pinned ends is 

chosen as the eigenfunction of a vibrating thin beam as Equation (16). The integration constants are obtained using 

the boundary conditions. The requirement of convergence as presented in Equation (27) is used to obtain the 

characteristic eigenequation as Equation (28), which is solved to find the eigenvalue  as Equation (29). The nth 

buckling load (Pn) is found as Equation (30). The exact mathematical expression for the buckling load for all the 

modes of buckling of the simply supported thin BoWF is thus obtained in this study. This is made possible by the 

use of exact shape function for the thin beam with Dirichlet boundary conditions employed in the Stodola-Vianello 

iteration 

 The critical buckling load Pcr corresponds to the minimum value for Pn which is found at the first buckling mode (n 

= 1). The critical buckling load is given by Equation (32) which is found to be the exact expression since the 

governing differential equation is satisfied at all points on the domain and the boundary conditions are also satisfied. 

Table 1 which shows the variation of the critical buckling load coefficient Kcr with the Winkler foundation 

parameter (l4) illustrates the identical results of the Stodola-Vianello iteration at the nth iteration and the exact 

results obtained by Timoshenko and Gere (1985) and Wang et al (2005). The present results are also in close 

agreement with variational iteration method (VIM) results presented by Atay and Coskun (2009).  Table 2 shows 

that the present results also agree remarkably well with Anghel and Mares (2019) collocation results using 100n =  

collocation points. The results further show that an increase in the Winkler foundation parameter (l4) results in an 

increase in the critical buckling load Pcr. 

 

5. Conclusion 

In conclusion, this paper has presented Stodolo-Vianello iteration method for the buckling load analysis of thin 

BoWF. The governing equation BoWF was reformulated using four successive integrations to Stodola-Vianello 

iteration equation which contains four integration constants determined using the problem boundary conditions. The 

problem consequently becomes simplified to an easier to solve algebraic problem. 

(i) Stodola-Vianello iteration method reduces the buckling load problem of a thin beam on Winkler foundation 

to an iterative equation used to derive the (n + 1)th buckling mode shape function from the nth buckling 

mode shape function. 

(ii) The Stodola-Vianello iteration equation is derived such that the buckling mode shape function satisfies the 

boundary conditions. 

(iii) The condition for convergence is used to derive the characteristic eigenequation. 

(iv) The roots of the eigenequation are used to obtain the buckling load expression for the nth buckling mode. 

(v) The least buckling load corresponds to the first buckling mode and yields the critical buckling load. 

(vi) The critical buckling load expression obtained is the exact expression for Pcr since the exact buckling 

eigenfunction was used to derive the Stodola-Vianello iteration equation. 
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Nomenclature 

EBBT  Euler-Bernoulli Beam Theory 

TBT  Timoshenko beam theory 

BoWF  Beam on Winkler Foundation 

ODE  Ordinary Differential Equation 

w(x)  transverse deflection 

x  longitudinal coordinate axis of  beam 

y  coordinate axis of beam in the dimension of width 

z  transverse coordinate axis 

p(x)  distributed transverse load on the span 

k  Winkler modulus of the Winkler foundation 

P  compressive load 

E  Young’s modulus of elasticity of the beam 

I  moment of inertia 

 parameter defined in terms of P and EI 

 parameter defined in terms of k  and EI 

d

dx
   first derivative with respect to x 

2

2

d

dx
   second derivative with respect to x 

 … dx  integration with respect to x 

c1, c2, c3, c4 constants of integration 

(x)  slope of beam 

M(x)  bending  moment 

l  beam length, span of beam 

 … dx dx two successive integrals with respect to x 

 … dxdxdxdx  four successive integrals with respect to x 

n  buckling mode number 

b  width of beam 

h  thickness of beam 

Pn  nth buckling mode 

Kcr  critical buckling load coefficient 

Pcr  critical buckling load 
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