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Abstract 

The remote monitoring of industrial equipment for real-time predictive maintenance reduces downtimes and losses brought on by 

unforeseen failures. An IoT-Based intelligent system developed for real-time remote monitoring and failure prediction of process 

parameters in the Injection Moulding Machine is presented in this work. The developed system captures data from the equipment, 

analyses, and transmits the data to the ThingSpeak IoT web server for further fault prediction analysis in MATLAB, with 

subsequent feedback to users - all in real-time. The software component of the system is developed using MINITAB, MATLAB, 

ThingSpeak IoT platform, and C++ in Arduino Integrated Development Environment. The hardware component of the system is 

developed using MLX90614 infrared temperature sensor, ultrasonic proximity sensor HC-SR04, and wifi-enabled Esp32 

WROOM-32 Microprocessor. When implemented on the injection moulding machine, the system achieved real-time data 

capture, analysis, and feedback through its easy-to-understand user interface. Comparative analysis of the developed system’s 

measured data with that of the traditional method, showed a Pearson Correlation Coefficient of 0.995242, indicating a perfectly 

positive correlation and consistency of measured data. The system may be beneficial to plastic manufacturing industries for 

reliable remote monitoring and failure prediction of the process parameters of Injection Moulding Machines towards achieving 

reduced maintenance cost, downtime, and cost of re-work. 

 

Keywords: intelligent system, remote monitoring, data, real-time, sensors, parameters, failure prediction, injection moulding 

machine. 

 

1. Introduction 

Injection moulding is one of the most popular cyclic manufacturing technologies and is extensively used to produce a 

variety of industrial products. In a complex manufacturing process, there are various factors like machine conditions, 

product characteristics, process parameters, raw materials, and several disturbances that affect the production plan 

and the final product quality (Zhang et al., 2016). To compete effectively in the plastics marketplace, manufacturers, 

and researchers have focused on improving product quality by adopting different methodologies. Predictive 

maintenance (PdM) predicts equipment failures to optimize maintenance efforts (Selcuk 2017; Tortorella 2018). The 

technology is based on real-time monitoring of equipment and processes, by this maintenance is carried out only 

when needed. Remote monitoring helps in supervising and controlling intelligent systems by means of locally 

installed agents that can be accessed by a management service provider. So, the equipment can be diagnosed without 

the expert compulsorily present in the production facility.    

 

Fault diagnosis is a crucial factor in any industry to detect the failure of equipment and schedule maintenance. 

Researchers have also developed a Data Acquisition (DAQ) system that employed cavity sensors and analysed the 

resulting data for potential faults (Gordon et al. 2017). Although the performance of the introduced method in terms 

of injection moulding monitoring is reliable, consistent quality in moulded products requires more than just a 
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monitoring strategy. The process is still dependent on the skills of the operator and process engineers. The lack of an 

online feedback system makes it difficult to develop robust monitoring and control techniques. A major portion of the 

recent research prefers the use of artificial intelligence (AI) technologies to control moulding processes as such 

technologies are better suited to identifying the relationships between measurable and unmeasurable parameters 

(Ogorodnyk & Martinsen 2018).  

 

Conventionally machine operator’s assistance is needed to conduct experiments and adjust process parameters based 

on observed quality feedback. To overcome such issues a combination of sensors is introduced, and a model has been 

developed to collect cavity and nozzle pressure data. After the extraction of essential data, the same model is used to 

diagnose the process conditions (Baek 2014). As modern moulding machines can generate large quantities of data, 

recently, the literature (Kozjek et al. 2017), used a big-data management approach to identify faults. A structured 

query language (SQL) database, stored data from every cycle, and Python programming is used to develop a fault-

prediction model with an accuracy of 57%. Based on the prediction control measures can be taken by the operator 

instantly. Although the performance of the introduced method in terms of injection moulding monitoring is reliable, 

consistent quality in molded products requires more than just a monitoring strategy. Park et al. suggested that an AI-

based moulding process can improve product consistency and quality. Chen et al. assigned injection moulding 

variables to three levels which include machine variables such as temperature, and pressure; process variables such as 

melt temperature, melt pressure; and quality definitions such as shrinkage and warpage. 

 

Kangalakshmi et al., Schiffers et al., & Wang et al. have tried to address quality-related problems by applying model-

based proportional-integral-derivative (PID) control, adaptive process control, and phase diagram control, 

respectively with each achieving some encouraging results. To overcome the complexities of sensor installation, data 

collection, and the difficulties of inter-relationship derivation between process parameters and failure, a research 

object with simple geometry is chosen. Cavity temperature and pressure sensors are used for data collection, and 

simulations are conducted to validate their models using different tools in all the above-introduced monitoring and 

control strategy. Considerable research efforts have been devoted to the reduction of quality failure rates in injection 

moulding, but the application of the developed system is either theoretical or just in simulation models. Furthermore, 

their practical implementation in industrial applications is still a distant job. 

 

Kumar et al. (2020), presented an engineering analysis model to analyze the process behavior of injection moulding 

in a cyber way because a fully experimental approach is a lengthy, costly, and impractical option. Tayalati et al. 

(2022), identified different phases for a look-out for faults during the injection moulding process: first, during the 

initial setting when we try to identify the initial parameters for a new plastic part; and second, during mass production 

when there is a deviation in the production process. Vasco et al. (2023), developed an intelligent system for 

processing equipment malfunctions, and environmental variations of injection moulding machines, to detect them at 

an early stage to avoid production in unsuitable processing conditions. They introduced an automatic self-correction 

to processing conditions and provided key performance indicators (KPI) for operation, maintenance, production, and 

quality control, with a local or remote interface. Tripathi et al. (2023), analyzed the process variable data from 

injection moulding processes to identify the key causal interactions between influential and dependent process 

variables in different product categories using variable lagged transfer entropy measure. They used variable lagged 

transfer entropy measurements to construct directed networks by calculating significant pairs of process variables for 

each production process (of each material). Wu et al. (2023), developed a generative machine learning-based multi-

objective optimization model. Such a model can predict the qualification of parts produced under different processing 

variables and further optimize processing variables of injection molding for minimal energy consumption and weight 

difference amongst parts in one cycle.  

 

Albertin et al. (2023), used Artificial Intelligence as Machine Learning model to recognize when something changes 

in the data’s behavior collected up to that moment, also helping companies to gather a preliminary dataset for future 

Predictive Maintenance implementation. Araujo et al. (2023), demonstrated the in-cavity pressure monitoring 

feasibility for failure diagnosis and injection moulding process optimization. Chen et al. (2022), provided online 

insight into process monitoring of injection moulding machines by utilizing a monitoring system with in-mould 

sensors. To meet these objectives, an artificial neural network (ANN) and multiple linear regression (MLR) were 

used to build the prediction model that was integrated with the monitoring system. Farahani et al. (2022), introduced 

a generalized framework for the implementation of predictive maintenance in the injection moulding process by 

integrating a variety of different data sources available in this process and taking advantage of both cloud and edge 

computing. Hu et al. (2022), proposed an integrated “processing–matching–classification–diagnosis” concept based 
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on machine vision and deep learning that allows for efficient and intelligent diagnosis of injection moulding in 

complex scenarios. Nunes et al. (2023), proposed a flexible architecture for PdM to recommend maintenance actions 

in injection moulding, The proposed architecture is based on containerized microservices on intelligent edge devices 

together with a hybrid model which fuses generalized fault trees (GFTs) and anomaly detection. Bogedale et al. 

(2023), introduced a novel approach to modelling injection moulding processes using only time series data and 

evaluates the quantitative influences of varying sampling times on calculation of integral values and model quality. 

Gomes et al. (2023) developed an affordable, simple system for injection moulding machine parameter monitoring, it 

boosts of a real-time data acquisition and display in an intuitive Graphical User Interface (GUI), while being open-

source firmware and software-based. Pierleoni et al. (2020), explored multiple sensors' data extracted from an 

injection moulding machine, with the final aim of developing a Predictive Maintenance model tailored on the specific 

machine utilization. Moreira et al. (2020), integrated a custom pressure sensor into an injection tool to monitor the 

different pressure levels along the process cycle, together with a commercial off-the-shelf accelerometer, coupled at 

the surface of the tool. Both sensors recorded the events over regular productive cycles, being this information, in the 

long-term, is paramount for smart predictive maintenance. These intelligent systems are developed using Industry 4.0 

technologies, which promise huge potential through new business models, increased resource productivity, and cross-

value chain efficiencies, enabling smart factories that are capable of profitably producing customer-specific items in 

an agile way (Okeagu & Mgbemena 2022). 

 

The injection moulding process continues to face quality failures such as sink marks, short shots, warpage, and 

flashes. Existing solutions like conformal cooling channels manufactured with 3D printing technology and process 

parameter optimization systems are incapable of maintaining quality consistency due to variations in process 

parameters, and process instability associated with the machine and environmental factors. This results in large 

quantities of scrap parts, reduction of productivity, and wastage of resources. A more efficient molding process is 

therefore in high demand. From the previous works reviewed, it could be clearly seen that none dealt with a real-time 

feedback system for the process control in the injection moulding process. The absence of the feedback mechanism 

denies communication between the developed system and the job floor which greatly affects the efficiency of the 

system. However, researchers have opined that alarm feedback is the best, as it is easier to understand. To overcome 

this difficulty, this paper introduces an IoT-based real-time remote monitoring system for predictive maintenance of 

Injection Moulding machines that can reduce quality failures and increase productivity with the application of an 

improved monitoring system. The primary goal of the presented research is to develop a smart monitoring and control 

system and validate it with real industrial experiments. The developed system boosts of robust feedback mechanism, 

and will drastically reduce downtime, reduce the cost of re-work, and reduce maintenance costs – for higher 

profitability.  

 

2.0 Materials and Methods 

Analysis model for describing real-world process behavour is developed and tested using MINITAB. The hardware 

component is of the system is then developed using Arduino microprocessor, temperature, and proximity sensors. 

The software component of the system is developed using Arduino IDE, MATLAB, and ThingSpeaks IoT platform. 

Development of the fault prediction and control model is done using MATLAB. The intelligent system is developed 

by integrating and synchronising the various components of the system, followed by the testing and validation of the 

developed system.  

 

The analysis model is developed from the historical data of the identified parameters, using MINITAB. The digital 

model is tested to ensure it represents the real condition of the equipment. The sensors are now trained to capture and 

transmit data for real-time monitoring and control. The sensors transmit the data to an IoT server, from which the data 

is exported to the fault prediction and control model. At this point, the intelligent system is fully functional and 

controlled using appropriate lines of code in MATLAB. The methodology applied in this study is a data-driven 

approach to predictive maintenance, the entire process is basically on the capturing, transmission, and analysis of 

injection moulding parameter data for fault prediction and real-time feedback.   

 

2.1 Design of Hardware Components 

The following hardware was selected for this research; 

a) By-906 Infrared Arduino Temperature Sensor  

With a Temperature range of -70C to 382.2C, the component will cover robustly, the Injection machine mould 

temperature (ranging from 30C to 80C). It offers a standard accuracy of ±0.5C around room temperature. It has a 

very low noise amplifire, and provides high precision for the thermometer. 
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                        Figure 1 By-906 Infrared Arduino Temperature Sensor 

b) HC-SR04 ultrasonic proximity sensor  

The products produced needs to be captured and transmitted in real-time without disrupting the process, a sensor 

that detect the ejecting products without touching it or causing abrasion/damage to the product, is desirable. This 

ultrasonic sensor detects and transmit the presence/passage of objects electrically without having to touch them 

(www.ia.omron.com). It has a measuring distance of 2cm to 400cm, while the area of coverage (ejection exit of the 

Injection moulding) is 64cm. 

 
                                         Figure 2 HC-SR04 ultrasonic proximity sensor 

c) Wifi enabled Esp32 WROOM-32 microprocessor 

The microprocessor module allows microcontrollers to connect to a wi-Fi network and make simple connections 

using Hayes-style commands. The sensors are manipulated through the microprocessor due to its flexibility and 

efficiency.  

 
                             Figure 3 Wifi enabled Esp32 WROOM-32 microprocessor 

 

2.2 Design of Software Components 

The Computer Aided Engineering (CAE) tools are deployed at different stages in the system. MINITAB is for the 

generation/testing of the analysis model; Excel Data Analysis ToolPak is used for analysis model selection, Arduino 

IDE is used for the training of the sensors through the microprocessor. The ThingSpeak IoT platform 

receives/exports data between the sensors and the fault prediction model. MATLAB performs the final data analysis 

and fault prediction. These tools are integrated with the hardware to develop the intelligent system. 

http://www.ia.omron.com/
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2.2.1 Development/testing of the analysis model for describing real-world process behavior using MINITAB     

Schiffers et al. (2016), assigned injection moulding variables to three levels; machine variables, process variables, 

and quality definitions (final response). These variables will produce a robust monitoring and control model for 

adaptive control of process parameters. The mould temperature, injection speed and the number of products is 

grouped under process parameters. Finding an empirical relationship between the parameters can be made possible 

using CAE.  The input variables are injection speed, the number of products produced per interval of failure and the 

mould temperature. The model is to predict ‘time to failure’ in real-time using regression analysis. The output 

variable is recorded using a stopwatch, the injection speed and the number of products are displayed on the 

dashboard, while an infrared temperature gun was used to record the mould temperature. These data were monitored 

and collected for about a period of 1 month, at an interval of 30mins during working hours. The comprehensive data 

table contains machine readings at this rate, but was later filtered to generate/test an accurate analysis model using 

MINITAB. The analysis model is tested using MINITAB.  

 

2.2.2 Development of fault prediction and control model using MATLAB. 

A control algorithm to recognise process parameters, to analyze the data and make failure predictions is developed 

in MATLAB using MATLAB Language. The analysis model is imported into the environment, for real-time fault 

prediction, the environment gets the input data from ThingSpeak. The MATLAB environment also hosts the 

feedback control.  

 

2.3 Development of the Intelligent System by Integrating and Synchronising the Various Components of the 

System 

To connect the system components and provide real-time remote monitoring and fault prediction, an integrated 

control system is programmed using the commercial tools. Data is extracted from the sensors, to the IoT data base, 

then exported to the MATLAB environment for analysis, monitoring, fault prediction and feedback. At this point, 

the system is developed and can be controlled using appropriate lines of code. 

 

2.4 Experimental Setup and Validation 

The functionality of the developed system is tested on the machine under study, Injection Moulding Machine 

(LSF-148S Longsheng Machinery). Two locations are involved in the test, the remote location and the production 

unit. A total of 2 participants are selected for the exercise, the expert monitoring remotely and the equipment 

operator, who is a worker in the production cluster. The expert is a volunteer, and the quality control officer of the 

company with proficiency in CAE tools; similarly, the equipment operator has been trained on the workings of the 

hardware. The total cost of the system is about $150, and the components of the system are readily available in the 

market. This requires a 5mins setup time as it needs the user to call up the MATLAB environment through the 

computer screen in a remote location with a strong internet presence. At this time, the sensors are strategically 

positioned, up and running for real-time data capturing and transmission. By-906 Infrared Arduino Temperature 

Sensor has a field of view of 900, the sensor is installed at an angle of 450 to the mould, and at a distance of 15cm 

from the mould.  HC-SR04 ultrasonic proximity sensor with a range of 2cm to 400cm, and a field view of 150, is 

installed at a distance of 32cm from the object, and at a normal angle (Angle 0) to the object. 

The IoT web server (ThingSpeak) is also active to receive data from the sensors and export to the model for 

prediction and control. Validation is done using Pearson Correlation, the formula to calculate the Pearson correlation 

coefficient (r) between two variables X and Y can be expressed as: 

 

r = cov(X,Y) / (std(X) * std(Y))                                                          (1) 

 

Where cov(X,Y) is the covariance between X and Y, std(X) is the standard deviation of X, and std(Y) is the standard 

deviation of Y. MATLAB was used to write the program for calculating the Pearson Correlation Coefficient of the 

actual values, and the predicted value by the developed system. The system is easy to implement because the 

interface is designed in a simple and interactive way. The experimental setup shows the machine under study Fig. 

4a, the location/position of the proximity sensor Fig.4b, the location/position of the temperature sensor Fig. 4c, and 

location/monitoring of the microprocessor by the machine equipment Fig. 4d. 
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(a) Injection Moulding Machine (LSF-148S 

Longsheng Machinery) 

(b) Installation of the Proximity Sensor 

 
 

(c) Installation of the Temperature Sensor (d) Monitoring of the Arduino Microprocessor 

Figure 4 Experimental Setup for Testing the Developed System 

 

3.0 Results and Discussion 

 

3.1 Development/Testing of the Analysis Model for Describing Real-World Process Behavior Using 

MINITAB  

These data are monitored and collected for about a period of 1 month, at an interval of 30mins during working 

hours. The data is filtered to generate an accurate analysis model that perfectly represents the real-world process 

behavior of the machine as shown in Table 1.  

 

3.1.1 Data Fitting 

The type of regression model that best fit the data, to ensure accurate analysis is determined by the use of Excel Data 

Analysis Toolpak. From table 1, the input variables are plotted individually against the output variable. Different 

types of regression models are used, and the model with the best 𝑅2 value is selected for the modelling. 
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Specifically, the model depicts the relationship between the process parameters and the output parameter under 

study. The results are summarized in Table 2 and the best model selected. The regression models considered are 

linear, exponential, logarithmic, polynomial and power.  

 

Table 1 Parameter Data 

S/N 𝑋1 

   (mm/s) 

𝑋2 

     (pcs) 

𝑋3 

    (C) 

Y 

(minutes) 

1 40 622 87 220.24 

2 40 692 90 245.12 

3 40 735 92 260.19 

4 40 651 89 230.55 

5 40 646 93 228.41 

6 40 672 91 238.08 

7 40 749 96 265.11 

8 40 731 92 258.53 

9 40 719 87 254.44 

10 40 755 94 267.17 

11 40 699 88 247.13 

12 40 762 95 273.26 

13 40 647 96 229.06 

14 40 686 99 242.5 

15 40 637 86 225.27 

16 40 680 91 240.32 

17 40 620 95 219.36 

18 40 752 90 266.18 

19 40 703 88 248.47 

20 40 764 89 270.15 

21 40 728 87 257.41 

22 40 695 86 243.15 

23 40 730 89 258.19 

24 45 720 94 254.57 

25 40 654 87 231.26 

26 40 665 92 235.23 

27 40 744 88 263.21 

28 40 713 90 252.12 

29 40 747 87 264.34 

30 40 730 94 258.24 

31 40 734 90 260.2 

32 40 761 97 269.29 

33 40 715 87 253.13 

34 40 722 100 255.49 

35 40 640 89 226.46 

36 40 674 95 239.15 

37 40 635 90 224.47 

38 40 728 96 256.16 

39 40 643 94 227.37 

40 40 623 98 220.34 

41 40 598 87 212.35 

42 40 671 97 237.46 

43 40 617 89 218.27 

44 40 630 88 224.52 

45 40 644 91 227.56 

46 40 659 98 233.19 

47 40 605 90 214.12 

48 40 626 94 221.33 

49 40 610 86 215.57 

50 40 630 89 223.06 

Where 𝑋1 = Injection speed, 𝑋2 = Number of products produced per interval of failure, 𝑋3 = Mould temperature & Y 

= Time to failure 
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Table 2 Model Selection Summary Table 

S/N Independent 

Variables 

Dependent 

Variables 

Linear 

(𝑹𝟐) 

Exponential 

(𝑹𝟐) 

Logarithmic 

(𝑹𝟐) 

Polynomial 

(𝑹𝟐) 

Power 

(𝑹𝟐) 

1 X1 Y 0.9947 0.0102 0.0102 0.0102 0.0102 

2 X2 Y 1 0.9788 0.9766 0.9982 0.9982 

3 X3 Y 0.9938 0.0159 0.0187 0.0208 0.0186 

The model with 𝑅2 value of 1 or closest is the best fit, thus linear model was selected for the modelling. 

3.1.2 Creation of the analysis model 

The model is created using MINITAB. The parameter data in Table 1 is used to develop a multiple linear regression 

model for analysis, time to failure is the output variable, while injection speed, number of products produced per 

interval of failure and mould temperature are the input variables. The MINITAB results are shown below. 

 

Regression Analysis: Y versus X1, X2, X3  

 

The regression equation is 

Y = 0.05 - 0.058 X1 + 0.354 X2 + 0.0214 X3                                                        

Predictor      Coef   SE Coef   T           P         VIF 

Constant      0.055  6.590       0.01      0.993 

X1          -0.0585    0.1573    -0.37      0.712    1.018 

X2         0.354352  0.002234  158.59  0.000    1.026 

X3          0.02141   0.02877    0.74      0.460    1.025 

S = 0.771510   R-Sq = 99.8%   R-Sq(adj) = 99.8% 

 

Analysis of Variance 

Source              DF           SS         MS            F             P 

Regression        3          15372.0     5124.0     8608.45   0.000 

Residual Error  46        27.4           0.6 

Total                 49        15399.4 

Durbin-Watson statistic = 2.01119 
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Figure 4: Residual Plots for Y 



268           Mgbemena and Okeagu / UNIZIK Journal of Engineering and Applied Sciences 2(1), 260-278 

 

3.1.3 Linear regression analysis 

The equipment time to failure for the conditions under study can be predicted using the linear regression model. The 

coefficients of the predictors in the equation as obtained from MINITAB package are: 

α = 0.05, 𝑋1= 0.058, 𝑋2= 0.354, 𝑋3= 0.0214  

 

therefore, the predictive model becomes, 

 

Y = 0.05 - 0.058𝑋1+ 0.354𝑋2 + 0.0214𝑋3                                           (1) 

Where 𝑋1 = Injection speed, 𝑋2 = Number of products produced per interval of failure, 𝑋3 = Mould temperature & Y 

= Time to failure. 

 

The values of statistical criteria; Coefficient of determination, 𝑅2 = 99.8%, Adjusted 𝑅2 = 99.8% and F-distribution 

= 8606.45 point to the fact that the multiple linear regression model as shown by equation (1) is very robust in 

predicting the equipment breakdown in real-time. The model can be used by the management of the company in 

predicting machine breakdown and scheduling maintenance appropriately.   

However, 𝑋1 remained almost constant; thus, its coefficient in the equation is modelled as 40. 

 

3.1.4 Testing of the developed analysis model 

To further verify the accuracy of the analysis model, the model was applied to a randomly selected resulting time to 

failure from table 3.1 (1st, 5th, 10th, 15th, 20th, 25th, 30th, 35th, 40th and 50th) as shown in Table 3 below. Comparing 

the results in Table 1 to the predictions obtained by the model, we can see that the calculated error is highly 

negligible and the predictions quite accurate. Therefore, it can be concluded that the model perfectly represents the 

real-world process behavior of the machine under study. 

  

Table 3 Prediction Accuracy of the Proposed Model 

Observation  Results  Predictions  Error  

1st  220.240 219.986 0.254 

5th  228.410 228.619 0.510 

10th  267.170 267.265 0.202 

15th  225.270 225.280 -0.010 

20th  270.150 270.347 -0.197 

25th  231.260 231.325 -0.065 

30th  258.240 258.406 -0.166 

35th  226.460 226.407 0.053 

40th  220.340 220.576 -0.236 

50th  223.060 222.864 0.170 

 

3.2 Development of the Hardware and Software Components of the Intelligent System. 

The sensors were trained using the Arduino IDE (Integrated Development Environment) software, the 

programming language used is C++. The two sensors were trained through its microprocessor, to capture and 

transmit data in real-time to ThingSpeak through channel id 2014053.  There are 3 fields in the ThingSpeak channel, 

the first field receives the mould temperature data from the Arduino temperature sensor, the second field receives 

the number of cups from the ultrasonic proximity sensor, and the ultrasonic sensor was trained to capture cup 

passage within 64cm range; this range being the space through which the products eject from the machine. The third 

field gets feedback from the prediction model for control. The data transmission is done at intervals of 30 seconds, 

this gives a robust real-time condition of the machine.  The sensors, microprocessor, and other supporting 

components that formed the system’s hardware component (such as buzzer, resistors capacitors LED, transistors, 

and push button), are connected/built on a vero board. The sensors are connected to the board using 4 pins header 

wire as shown in Fig. 5. 
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Figure 5 The Hardware Component of the Developed System 

 

3.3 Development of a Fault Prediction and Control Model Using MATLAB. 

The model environment was created using MATLAB Language. The analysis model in equation (1) is imported into 

the MATLAB environment by plotting each of the input variable against time to failure while injection speed is 

modelled as 40 (constant). The model also hosts the control of the system, that’s the reset button and the alarm 

feedback mechanism. The model gets its data from ThingSpeak and also give feedback to the sensors through 

ThingSpeak still, enabling a robust synchronization between the model and the hardware on the production facility. 

A detailed architecture of the fault prediction and control model is represented in the flow chart in figure 6. 

 

3.4 Development of the Intelligent System by Integrating and Synchronising the Various Components of the 

System. 

The intelligent system was developed by integrating the various software and hardware components of the system. 

At this point the system is fully ready for deployment, and can be controlled using the appropriate lines of code. The 

system behavior is described in Fig. 7, while Fig. 8 shows the components integration and synchronization right 

from data collection to failure control. 

 

3.5 Experimental Results and Discussions  

The setup time for both participants is 5minutes each. The hardware was connected to a power source, which turns 

the indicator light on the microprocessor board red. But immediately it was connected to internet through the 

microprocessor’s customized hotspot, the indicator turns blue and start data capturing and transmission to the web 

server. At every 30seconds the system transmits data, the indicator light turns white and then returns back to blue to 

start a new process. The model gets this data from ThingSpeak and make the fault predictions. Different predictions 

were recorded at different times as shown in figure 9. 
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Fig. 6 Fault Prediction and Control Model Architecture 
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Figure 7 System Flowchart  

 

 
 

Figure 8 System Synchronization and Integration 
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Figure 9 Real-time Prediction of Machine Time to Failure 

The prediction shown in Fig. 9 was made using the real-time data from the web server at about 14:41 GMT+0100 as 

proved in Fig. 10 & 11 below; 

 
                              Figure 10 Real Time Temperature Data Used for the Prediction 

 
                                    Figure 11 Real Time Number of Cups Data Used for the Prediction 

The predicted time to failure is evaluated by the model, and triggers an alarm when It’s remaining exactly 20minutes 

to machine failure. From the experiment in Fig. 9, the alarm went off at about 16:49 GMT+0100, exactly 20minutes 

to the predicted machine failure. Then at about 17:14 GMT+0100, 5mins late from the predicted time, the failure 

occurred. The failure occurred as a result of abnormal increase in mould temperature. So, the increase does not allow 
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the product to get the degree of cooling required for the cup formation and solidification, so during ejection, the 

product is damaged. Immediately this happens, the machine immediately stops, halting production and causing 

downtime. The alarm feedback as demonstrated using the developed system addresses the gap in the reviewed 

articles and forms the major innovative aspect of the study. 

 

3.6 Control Strategy for Avoiding the Predicted Failure 

The control strategies presented in this study is experimented by the machine operator, and failure was averted. 

From literatures, the predicted machine failure can be averted by increasing the cooling time of the process, by one 

or two seconds. This allows the product to stay longer in the mould, so as to cool off and solidifies before ejection. 

The melting temperature and the nozzle temperature is be reduced by 10C each, this will considerably reduce the 

amount of heat that is been injected into the mould, Table 4 below.  

 

Table 4 Control Strategy for Avoiding Failure 

Case  Failure Type  Control Actions 

High Mould 

Temperature; 

leading to 

machine 

breakdown 

and product 

fracture  

Machine Breakdown ➢ Increase cooling time by one or two 

seconds 

➢ Reduce melting temperature by 10C 

➢ Reduce Nozzle temperature by 10C 

  

3.7 Developed System Validation 

Experimental results are randomly selected for validation Table 5. The program written for calculating the Pearson 

Correlation is done using MATLAB. Stopwatch is used to record the actual machine time to failure, to validate the 

failure time predicted by the developed system. Using Pearson Correlation method, results is obtained through the 

different plots in Fig. 12, with a Pearson Correlation Coefficient of 0.995242. In Fig. 12a, measured time to failure is 

plotted against modelled time to failure; in Fig. 12b time to failure is plotted against time; in Fig. 12c, time to failure 

is plotted against the devices, in Fig. 12d frequency is plotted against measurement. The results shows that the 

developed system is very robust and reliable for failure prediction of the machine under study.  

 

 
Figure 12(a) Scattered Plot of Experimental Data 
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Table 5 Result Validation Data 

Observation 
Mould Temp. 

(C) 

Number of Cups 

(Pcs) 

Predicted Time 

(Mins)  

Actual Time 

(Mins)  

2023-01-23T13:02:41+00:00 48.2 267 94.3474 100.1 

2023-01-24T13:02:41+00:00 50.64 322 122.5571 121.45 

2023-01-25T11:08:15+00:00 53.24 403 141.5313 146.12 

2023-01-25T15:05:01+00:00 56.27 489 172.0401 168.54 

2023-01-26T12:31:11+00:00 54.09 452 158.8955 160.18 

2023-01-27T13:24:51+00:00 58.46 525 184.831 179.12 

2023-01-30T10:00:18+00:00 50.63 318 120.6801 124.24 

2023-01-30T14:20:38+00:00 51.45 396 140.599 145.15 

2023-01-31T12:40:11+00:00 50.92 351 132.883 131.2 

2023-02-01T09:41:21+00:00 60.1 580 206.6561 201.31 

2023-02-01T13:30:31+00:00 55.32 465 165.3838 164.44 

2023-02-02T10:24:33+00:00 49.63 305 107.982 108.52 

2023-02-02T14:13:31+00:00 47.45 249 87.8874 84.17 

2023-02-03T08:36:22+00:00 57.06 512 182.247 179.37 

2023-02-03T12:40:41+00:00 54.5 471 167.5143 161.56 

2023-02-06T09:40:41+00:00 59.16 551 196.254 192.47 

2023-02-06T13:42:12+00:00 50.15 292 103.3392 101.28 

2023-02-07T10:50:21+00:00 56.12 447 158.9569 160.18 

2023-02-07T14:50:42+00:00 52.26 408 144.9102 140.35 

2023-02-08T10:22:10+00:00 51.07 339 128.665 127.1 

  

 
12(b) Time Series Plot of Experimental Data 
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12(c) Box Plot of Field Data 

 

12(d) Histogram Plot of Field Data 
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4.0 Conclusion 

In this paper, an IoT-based real-time remote monitoring system for predictive maintenance of Injection Moulding 

machines, is presented. Predictive Maintenance is a viable strategy adopted when dealing with maintenance issues 

given the increasing need to minimize downtime and associated costs. The methodology has been implemented in a 

real environment on the example of a plastic industry using an Injection Moulding Machine (LSF-148S Longsheng 

Machinery). The identified parameter data was collected manually as presented in Table 1; the data were used to 

create an analysis model using MINITAB. The sensors were trained (Using Arduino IDE) and deployed for real-

time data capturing and transmission. Data are then transmitted to the fault prediction/control model domicile in 

MATLAB through an IoT web server (ThingSpeak). The system was then developed by integrating and 

synchronizing its hardware and software components Fig. 8; the system behavior was also explained using a 

flowchart in Fig. 7. Several experimental Tests were carried out, and validation was done using Pearson Correlation. 

Random results of the actual values of the failure time and that of the failure time predicted by the developed system 

were selected Table 5. A Pearson Correlation Coefficient of 0.995242 was recorded, which shows that the developed 

system is very robust and reliable for failure prediction of the machine under study. The fault predictions helped to 

avert the machine failure that could led to a waste of time, material & labor. A control strategy for the identified 

failure was also summarized in Table 4. These involve; increasing the cooling time for the product by 1 or 2 

seconds, and reducing the melting temperature and the nozzle temperature simultaneously, by 10C.      

 

The proposed PdM methodology allows dynamic decision rules to be adopted for maintenance management. 

Preliminary results signify a proper behavior of the approach on predicting the failure of the Injection Moulding 

Machine, with high accuracy (95%). Generally, the system contributions are mainly on the overall cloud architecture 

for Industry 4.0, sensor data are transmitted using IoT, the developed system makes the predictions remotely and 

gives feedback in real-time, maintenance is scheduled and the danger is averted, the feedback mechanism of the 

developed system takes care of the gap as seen in the reviewed works. The implications of applying this intelligent 

system are; remote monitoring of the machine from outside the production unit, reduction in downtime, reduction in 

maintenance cost, and increased productivity for plastic industries. The experiment was carried out successfully, 

with no significant limitations. Future work will go in the direction of having a more robust data set, investigating 

different fault scenarios in Injection Moulding Machines, and exploring a different set of features, in particular in the 

fault prediction of more complex industrial equipment. 

 

5.0 Recommendations 

There is an urgent need for the top management of plastic industries to support the development of more intelligent 

systems, not only to predict failure along the process line but all the parts of the machine. Intelligent systems can 

also help in inventory and safety management. The creation of an organizational support structure for Industry 4.0 

technologies is recommended. The group should include every member of the organization from management to the 

shop floor. This structure will promote the idea and also guarantee that everyone is carried along.  
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