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Abstract  

The optimal utilization of valuable resources like money and time through the adoption of artificial neural network (ANN) and its 

ability to give reliable solutions to problems that are challenging to conventional statistical models, has increased the interest of 

scholars in using it to estimate concrete properties. In this study, ANN is employed to optimize the compressive and flexural 

strength of concrete containing Bambara nutshell ash (BNSA) and quarry dust (QD) as partial replacement of cement and sand 

respectively. This replacement was done at 0 – 50% using 2.5% interval with 1:2:4 mix proportion for 14, 21, 28 and 56 curing 

days. Two hundred and fifty-two (252) concrete cubes and beam moulds were produced with QD and BNSA. The optimum values 

were obtained at 22.5% replacement and mix ratio of 0.775: 0.225: 1.55: 0.45: 4. The optimum values of compressive strength 

recorded from experimental works at 14, 21, 28 and 56 curing age were 24.29 N/mm2, 24.78 N/mm2, 25.14 N/mm2, and 27.36 

N/mm2 respectively. Optimum values for the flexural strength were 8.89 N/mm2, 9.32 N/mm2, 9.41 N/mm2 and 13.21 N/mm2. The 

ANN model had 6 neurons, 10 neurons, and 2 neurons in the input, hidden and output layers respectively. A total of ninety (90) 

training data set were introduced to the model. 45 samples were used for training, 23 samples each were used for testing and 

validation. The modelled results were very close to the experimental outcome. 20% replacement was concluded as optimum for 

structural concrete. The model’s adequacy was further tested using the Student’s T test. The calculated T-value (-2.74 and -3.45) 

for the compressive and flexural strength of BNSA-QD-concrete were less than that from the T-table (2.09) at 95% confidence 

level, certifying that the network predictions are suitable and reliable for prediction and optimization of BNSA-QD concrete. The 

adoption of ANN significantly offers the elbow room for modification during concrete production and attaining required strength. 

The use of bambara nutshell ash and quarry dust in concrete making are recommended as they improve concrete properties and 

curtails the issue of poor waste management by transmuting it into wealth 
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1. Introduction 

Infrastructural advancement and engineering practices of both developing and developed nations largely depends on 

the use of concrete.  Concrete has gained more attention as the dominant construction material due to the availability 

of its constituents, its eco-commercial advantages and its ability to be tailored into desired specifications in a distinct 

manner (Ayuba et al., 2022; Nwa-David, 2023a).  Concrete in its fundamental structure is the blend of cement, water 

and aggregates. Concrete production places more demand for cement due to its binding role. The depletion of 

limestone deposits, discharge of toxic metals, noise pollution, emission of carbon dioxide which has contributed to 

global warming and high cost of cement production, has prompted the development of supplementary cementitious 

materials (SCMs) that would partially or totally replace ordinary and conventional cements (Olafusi et al., 2019; Nwa-

David et al., 2023a; Oyebisi et al., 2019). 
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Uncontrolled sand mining has contributed to environmental degradation. Due to the strict regulations placed on river 

sand mining by government agencies, there is scarcity and an increase in the cost of quality river sand for concrete 

production and a search for alternatives to replace sand, either partially or wholly. One of such alternatives is quarry 

dust. Quarry dust is a residual of the rock quarrying process sufficiently available and minimally utilized in quarry 

sites.  

 

Agricultural and industrial wastes that are often disposed in landfills or burnt openly polluting the atmosphere, has 

gained great attention and usefulness in the construction industry because their powder or ash such as cassava peel 

ash, oyster shell ash, periwinkle shell ash, sawdust ash, bone powder ash, rice husk ash, bambara nut shell ash and 

bagasse ash are adopted as SCMs (Rukzon and Chindaprasirt, 2012; Ayuba et al., 2022; Nwa-David and Ibearugbulem 

2023; Nwa-David, 2023b; Eze et al., 2022). This study adopts bambara nut shell ash for its investigation. Bambara 

nut shells are by-products obtained during the processing of Bambara seeds into flour for human consumption and 

they are the major agro-waste in Africa (Eze et al., 2022). The shell is generated after splitting the seeds in an attrition 

mill to remove the shells, winnowing to remove loosened testa (Sutivisedsak et al., 2012). Bambara nutshell ash 

(BNSA) is produced after burning the sun-dried shell to a certain temperature in a kiln. Investigating the strength 

property of concrete adopting the conventional materials and methods of mix design., is a difficult, costly and time-

consuming task due to the absence of defined formulations of its constituent materials and variations in concrete 

mixing occasioned by qualitative-knowledge-based technique. The non-linear relationship between concrete 

properties and its ingredients as well as the necessity of achieving a reliable and accurate prediction of concrete 

behaviour; is a gap worth filling through this study.  

 

To avert material loss and unnecessary test repetition, model development for concrete strength prediction has become 

a regular practice among scholars.  Soft computing techniques such as artificial neural network (ANN) has gained 

more attention than statistical models due to the ease, speed of predictions and ability to obtain the optimum material 

combination to balance cost and strength.  ANN is a computational model that behaves like the biological neural 

networks. ANN comprises of three major sections known as the input, hidden and output layers.  By a learning process, 

ANN is designed for a peculiar application such as pattern recognition or data classification (Nwa-David et al., 2023b; 

Nwobi-Okoye et al., 2013; Russell and Norvig, 2003). ANN’s usefulness in performing a variety of tasks is due to its 

ability to learn quickly. To ensure acceptable prediction accuracy with respect to flexural and compressive strength, 

ANN is employed in this study.  

 

Optimization of concrete properties using artificial neural network is common among researchers.  Artificial neural 

network (ANN) was employed by Alaneme and Mbadike (2019) as the modelling tool for evaluating properties of 

concrete whose cement ratio was partially replaced by fractions of aluminum waste and sawdust ash. The authors 

adopted a two-layer feed-forward network, hidden neurons with sigmoid activation function and linear output neurons 

for the simulation of the model. Their model predicted the setting time and concrete compressive strength at different 

curing days and the model performance was evaluated using linear regression, RMSE and R-values. Flexural strength 

was not considered in their study. Percentage error and student’s T-test was not used for evaluation of model 

performance. BNSA was also not adopted in their study.   

 

Alaneme and Mbadike (2021), replaced cement with BNSA from 0-40%. The authors carried out test on the concrete’s 

compressive strength, density, Poisson ratio, and young’s modulus of elasticity. They employed a mix proportion of 

1:3:6 with water cement ratio of 0.55 and cured for 3, 7, 28, 60 and 90 days. The authors did not employ artificial 

neural network in their study. The authors did not consider flexural strength. Oti et al. (2019) developed an ANN-

model to predict the compressive strength of BNSA concrete. A genetic algorithm was employed to optimize the mix 

proportions by considering BNSA content, water-to-cement ratio, and curing time. Their study demonstrated that the 

proposed approach could effectively optimize BNSA concrete for enhanced compressive strength. The flexural 

strength of the concrete was not examined. Kosti´c and Vasovi´c (2015) formulated an ANN-model for estimating 

compressive strength of concrete. The authors employed different water-to-cement ratios using 75 samples with their 

compressive strength being determined at 7, 20 and 32 curing days. The water/cement ratio, curing periods, and 

number of freeze/thaw cycles were used in the input-layer.  

 

Ogbodo & Dumde (2017) adopted a 3-layered feed-forward neural network model with a back-propagation algorithm 

to predict concrete mix ratio. The model performed quite well in predicting, not only the output parameters used in 
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the training process, but also those of test mixtures that were unfamiliar to the neural network. Their study captured 

the utility, reliability and usefulness of ANN.  

 

Awodiji et.al., (2018) determined experimentally the compressive strength of hydrated lime-cement concrete without 

the inclusion of any pozzolanic material using some selected mix ratios and developed an ANN-model that can be 

used to predict the compressive strength of the concrete. Their study showed that the concrete can be used as a 

structural concrete if the cement replacement was not up to 30%. The network results were in conformity with the 

experimental outcome. The Student’s T test value proved the reliability of the network prediction. However, the 

authors did not employ BNSA neither was quarry dust considered in their concrete mix.  

 

Abdulla (2020) employed ANN to formulate an empirical relationship for predicting the axial compression capacity 

and axial strain of concrete-filled plastic tubular specimens. The author employed 72 experimental test data of the 

specimens and unconfined concrete for training, testing, and validating the model. Suescum-Morales et al., (2021) 

developed a novel ANN-model to predict the 28-day compressive strength of recycled aggregate concrete. The authors 

used 11 neurons in the input layer. Levenberg–Marquardt (LM) and Bayesian Regularization (BR) were adopted as 

the two training techniques for the ANN combining 15 and 20 hidden layers. There was no consideration for quarry 

dust. The cement content was not partially replaced with any material. The authors did not consider the flexural-

strength of the concrete.  Nwa-David et al., (2023b) modelled the compressive strength of concrete containing 

nanostructured cassava peel ash adopting ANN. The authors presented 240 data set to the network, used 60 for 

validation and 60 for performance testing. Their network architecture was 6-10-1. The authors employed student’s T-

test and percentage error method for validation of the model. BNSA was not taken into account in their study and 

flexural strength was not evaluated. 

 

The idea of optimization and the adoption of soft computing techniques for it, is rare in literatures and this gap has 

necessitated the research. The usefulness of ANN in prediction of concrete properties cannot be overemphasized. 

However, more works need to be done for concealed areas. The distinctiveness of this study lies in its input and output 

architecture. Unlike previous studies, this study considered two output variables: compressive strength and flexural 

strength. The content of its input layer is also such that was not addressed by preceding works. The ANN architecture 

of this study is a gap worth filling. Antecedent authors generated their data from existing literatures. The peculiarity 

of this work is that the data introduced to the network were all derived from the laboratory experiments. The accuracy 

and reliability of the model formulated in this study distinguishes it. Many SCMs have been considered by different 

previous authors but very few studies have done on the use of bambara nutshell ash in concrete and this gap is 

addressed in this work. The peculiarity of this work is also seen in its curing ages and interval of percentage 

replacement. Their variation enhances thorough investigation and modelling. The objective of this study is to 

investigate the effects of BNSA and quarry dust on the fresh and hardened properties of concrete and to optimize these 

properties using ANN. 

 

2.0 Material and methods 

2.1 Materials  

 

The Dangote brand of Ordinary Portland Cement that conformed to the requirements of BS12 (1996) was used. 

Bambara nut shell was obtained from Umunevo and Onuato villages in Enugu North, Enugu State, Nigeria.  These 

nuts were frequently used by the villagers to produce what is locally called okpa in Igbo, epa-roro in Yoruba and 

kwaruru in Hausa. The shells that were removed from the nuts were dried under the sun and burnt at a temperature of 

about 620 °C in a kiln. After burning, the ash was collected and sieved in the laboratory with 150/μm sieve size to 

obtain a finely divided material which were taken for the practical. 

   

The sand was sourced from Imo River, Imo State of Nigeria. It was sieved through 10mm British Standard test sieve 

to remove cobbles to conform to the requirements of BS 882 (1992). The granite was sourced from the quarry site at 

Ishiagu, Ebonyi State, Nigeria. The maximum size of aggregate used for this work is 20mm diameter. It conformed to 

the requirements of BS 882 (1992) The test Quarry dust material utilized as admixture in the experimental 

investigation was obtained from Crushed Rock quarry site, Lokpanta, Abia State, Nigeria. The required quantity of 

QD samples were gotten which was sundried, stored and prepared for experimentation. The water used was obtained 

from borehole. The water was clean and free from any visible impurities. it conformed to the requirements of BS 3140 

(1980).  
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2.2 Methods 

2.2.1 Experimental Method 

 

Preliminary tests were carried out on the constituent materials so as to determine their suitability for production of 

concrete. The binder and fine aggregate were partially replaced with Bambara nutshell ash (BNSA) and quarry dust 

(QD) respectively. The replacements were done at 2.5 % intervals, from 0 % to 50 %. Concrete mix ratio of 1: 2: 4 

and water-cement ratio of 0.55 were used for the concrete making. BNSA and QD were first blended homogeneously 

with OPC and sand respectively, with water and the coarse aggregate at the required proportion. The homogeneous 

mixture was then laid into the 150mm x 150mm x 150mm concrete cubes and was demoulded after 24hours.  A total 

of two hundred and fifty-two (252) concrete cubes and beam moulds were produced with QD and BNSA using varied 

percentage replacement at 2.5% intervals. Replicates of three cubes, were cast for each percentage replacement. The 

cubes were cured by immersion in a curing tank and was crushed after 14, 21, 28 and 56 days to investigate their 

compressive strength. 100mm × 100mm × 400mm beam moulds were used for flexural strength test.  

 

2.2.2 ANN Modeling  

 

The experimental outcome was presented to the MATLAB computational system for ANN model prediction. The 

network comprises of the input layer, the hidden layer and the output layer. The input layer consists of four (4) 

variables and they are; cement, BNSA, aggregates and quarry dust. There are ten (10) neurons in the hidden area. 

There are two outputs; the compressive and flexural strengths. The optimized network architecture is 4-10-2 as shown 

in the Figure 1 below.  This architecture was chosen to make the modelling faster, accurate and efficient as it identified 

only the major input data. Tansig and purelin were the activation functions adopted in the model in order to capture 

the exact non-linear relationship between the inputs and to assist in transforming the input into the two desired output.  

  

                1st  

   Cement           CS 

 BNSA 

 Aggregates 

 Quarry dust                                                                                                                FS 

     Input layer            10th                  Output layer   

Figure 1. ANN Architecture 

 

Fifty percent of the total training data were employed for training while twenty-five percent each were used for 

validation and testing. A total of ninety (90) training data set were introduced to the network. 45 samples were used 

for training, 23 samples each were used for testing and validation. To satisfy the MSE (Mean square error) criteria, 

the process was repeated based on trial and error. Training implies feeding sorted data sets with initialized variables 

and the network is adjusted according to error function. Validation is the evaluation of the network generalization 

performance and to halt training when generalization stops improving. Testing provides performance during and after 

training. The experimental results were compared with the modelled results and the ANN model was validated using 

Students’ t-test. 

 

3.0 Results and Discussions 

3.1. Chemical analysis of portland cement, quarry dust and BNSA 

 

The chemical composition of the constituent materials used in this work are as shown Table 1. The chemical and 

physical properties of the admixtures consisting of Bambara nut shell ash (BNSA) and quarry dust (QD), and Portland 
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cement used in the laboratory methods were presented Table 1. The derived physicochemical characteristics obtained 

from X-ray fluorescence (XRF) test indicate that BNSA has 54.58% SiO2, 16.8% Al2O3 and 8.46% Fe2O3 to obtain a 

sum of 79.84% which signifies good pozzolanic characteristics as a Supplementary Cementitious Materials (SCM) in 

accordance with ASTM C 618, 98 specifications. The abundance of CaO, Al2O3 and Fe2O3 at 11.3%, 20.6% and 

6.405% respectively in the test Portland cement helps to enhance complete cement hydration which improves 

durability and mechanical strength behavior of the produced green concrete. Chemical analysis of QD indicates high 

alumino-silica content with 62.44% SiO2 and 18.73% Al2O3, 4.81% of CaO and 3.15 of K2O. The mechanism is that 

the silicates and aluminates obtained from the admixture react with calcium hydroxide during cement-additives 

hydration reaction to derive hydration products which form hard mass with time. The low LOI of BNSA and QD (3.45 

and 0.48) implies that it has high reactivity when blended in concrete and this enhances strength. Sulphur trioxide 

(S03) which is 1.41% for BNSA and a trace for QD is below 4% maximum recommended by ASTM C618 (2012). 

This shows that the concrete made with these materials will have improved strength. 

 

Table 1. Physicochemical Properties of Admixtures and Cement 

Chemical Analysis Results 

Elemental Oxide BNSA (%) Cement (%) QD (%) 

CaO 10.16 11.3 4.81 

MgO 0.5 0.093 2.59 

Fe2O3 8.46 6.405 6.58 

Na2O 0.36 2.1 Nil 

Al2O3 16.8 20.6 18.73 

SiO2 54.58 52.4 62.44 

ZnO 0.72 Trace 0.102 

MnO 2.56 Trace Trace 

LOI 3.45 3.9 0.48 

SO3 1.41 Trace Trace 

CUO 1 Trace 0.12 

TiO2 Trace 0.52 1.22 

K2O Trace 2.6 3.15 

 

 

3.2 Physical properties of constituent materials 

 

The result of particle size distribution of the aggregates, is as shown in Tables 2 and 3.  The river sand is uniformly 

graded because it has coefficient of uniformity and coefficient of curvature values of 2.23 and 1.11 respectively 

obtained from Table 2; as D10, D30 and D60 were 0.26, 0.41, and 0.58 respectively.  The coarse aggregate has coefficient 

of uniformity and coefficient of curvature values of 1.94 and 1.39 respectively obtained from Table 3; D10, D30 and 

D60 were 9.46, 15.58, and 18.40 respectively. Its coefficient of uniformity and curvature values indicate a poorly 

graded particle. The result of specific gravity test for the fine aggregate, coarse aggregate, portland cement and BNSA 

were 2.76, 2.65, 3.09 and 2.30 respectively. The BNSA has a lower specific gravity when compared with the specific 

gravity of cement. This implies that partially replacing OPC with BNSA will result to reduced weight of concrete 

members. BNSA is 1.4 times lighter than cement. Consequently, concrete incorporating BNSA was lighter in weight 

than the concrete without BNSA. 

 

Table 2. Particle size distribution of river sand 

Sieve size 

(mm) 

Mass of sand passing 

(g) 

Mass of sand 

retained 

(g) 

% passing 

4.75 550 0 100 

2.36 504.5 45.50 91.73 

1.18 438.69 65.81 79.76 

0.850 380.05 58.64 69.10 

0.6 335.27 44.78 60.96 

0.425 195.28 139.99 35.51 

0.3 97.03 98.25 17.65 
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0.212 40.85 56.18 7.44 

0.15 12.99 27.86 2.37 

0.075 0 12.99 0 

Total 550  

 

 

Table 3. Particle size distribution of granite chippings 

Sieve size 

(mm) 

Mass of granite passing 

(g) 

Mass of granite 

retained 

(g) 

% passing 

31.5 2200 0 100 

22.4 2118.78 81.22 96.31 

19 1675.83 442.95 76.18 

16 697.87 977.96 31.73 

12.5 403.72 294.15 18.36 

9.5 254.21 149.51 11.56 

6.3 47.41 206.80 2.16 

4.75 14.74 32.67 0.67 

Pan 0 14.74 0 

Total 2200  

 

 

3.3 Properties of fresh and hardened concrete 

 

The values obtained from the slump test correspond to the designed slump range of 30– 60mm. It is observed from 

Figure 1, that the workability increased with increase in replacement of cement with BNSA and replacement of sand 

with quarry dust. This is attributable to increase in surface area and filler effect of BNSA inclusion in the concrete 

matrix. The inclusion of BNSA in the concrete matrix increased the initial and final setting times from 0 to 50% 

replacement intervals as shown in Figure 2. This led to retardation in the hydration process. Hence the concrete is not 

susceptible to the problem of false set. 

 

 
Figure 1. Workability of QD-BNSA Concrete 
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Figure 2. Setting time of QD-BNSA-concrete 

 

 

The outcome of the compressive strength obtained from different QD-BNSA-concrete mixes at various curing age 

used for this study is shown in Figure 3. The strength increases with the age of curing at both 14, 21, 28 and 56 days 

curing while it decreases with increase in the BNSA-QD contents beyond 23% replacement. Previous studies did not 

consider beyond 28 days. It was observed that prolonged curing makes room for more moisture for hydration and 

strength development. Due to the pozzolanic reaction between Ca(OH)2 from cement hydration with the SiO2 of 

BNSA, strength increased as curing period increased.  The experimental optimum compressive strength of 24.29 

N/mm2, 24.78 N/mm2, 25.14 N/mm2 and 27.36 N/mm2 was achieved at 22.5% replacement and mix ratio of 0.775: 

0.225: 1.55: 0.45: 4, at 14, 21, 28, and 56 days of age respectively. The percentage difference between this optimum 

values and control (0% replacement) values are 10.2%, 5.4%, 2%, and 0.3 % respectively. 

 

From Figure 4, it was observed that flexural strengths reduced with increase in quarry dust content. As the curing age 

increased, the flexural strength increased. This increment is traceable to the bonding and filler effect of BNSA in the 

composite. However, beyond 22.5%, the concrete may not be suitable for resisting high bending stresses. The optimum 

blend was obtained at a mix ratio of 0.775: 0.225: 1.55: 0.45: 4. 

 

 
Figure 3. Compressive strength of BNSA-QD Concrete at different percentage replacements. 
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Figure 4. Flexural strength of BNSA-QD Concrete at different percentage replacements. 

 

 

3.4 ANN Model 

 

The designed framework for ANN model development consists of six input variables (cement, BNSA, fine aggregate, 

QD fractions, coarse aggregate and curing periods) and two output (compressive and flexural strength) variables. In 

order to derive the optimized network, the training data were used to generate the initialized connection weights of 

the neural network with varying number of hidden layer. With respect to the optimized mix ratio of the concrete, the 

model is faster in estimating the strength behaviour of the concrete to a certain degree of precision and this will assist 

the mix-design personnel to make reliable decisions, circumventing the multiple trials with varied mix proportions.    

The plot in Figure 5 indicates that the best performance was derived at 11 Epochs with mu of 0.001. After 6 validation 

checks, a gradient of 0.018226 was achieved. The best validation check occurred at the 5th epoch at a mean square 

error of 10-2 and best performance at 0.19519. After epoch 5, the errors re-occurred and the test was terminated at 

epoch 11. Epoch 5 served as the base and its weights were taken as the final weights.   

 

Figure 6 showed that the best performance of 0.1952 occurred at epoch 5 and ended at epoch 11. The plot displayed 

the training, validation and test. The mean square error and validation performance of the model started at a high value 

and decreased to a little value. The result indicated satisfactory model performance with the smart model capable of 

predicting the target output parameters accurately generalizing the sets of complex input variables with minimum 

error. From the graph presented in Figure 7, the total error range was divided into 20 smaller bins. It was observed 

that the 7th bin had zero error at 0.07763 which produced the best performance for the network.  The corresponding 

point of zero error is not located at the mid of the plot with 25, 30 and 35 instances for training, validation and testing 

respectively. 

 

The statistical computation results obtained show satisfactory performance in terms of prediction accuracy of the ANN 

model with 0.99909, 0.99717 and 0.99846 results obtained for training, testing and validation respectively. In Figure 

8, three plots which represent training, validation and testing datasets were presented while the dashed line in the plots 

represent the regression line at which error is zero. The R-values were very close to 1, which confirms the excellency 

of the ANN model. The R-values obtained herein shows some similarities with the studies of Nwa-David et al., 

(2023b), Awodiji et al., (2018), Ogbodo and Dumde (2017). 
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Figure 5. Training state of the network 

 

 

 
Figure 6. ANN best validation performance 
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Figure 7.  ANN Error Histogram 

 

 
Figure 8. Regression plot 

 

3.5 Model Validation 

 

The validation of developed smart intelligent model is necessary to evaluate the performance of the model in respect 

to prediction accuracy. To achieve this, the results derived from ANN model and experimental results are compared 

statistically using percentage error method and Student’s t-test.  These methods were preferred because the sample 

size is small and with the intent of accurately providing scientific proof that the model is reliable and consistent before 

it can be adopted in routine analysis of structural elements. The experimental results were compared with neural 

network prediction of the compressive strength of concrete containing BNSA and QD using percentage error method, 

as shown in Table 4. These strength values corresponded to concrete specimens Z1, Z2, Z3, Z4, Z5 for the 14 days, 21 
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days, 28days and 56 days’ strength at 0%, 5%, 10%, 15% and 20% BNSA replacement respectively. A two-tailed 

Student’s t- test was carried out and the computations presented in Table 5 and Table 6 for compressive and flexural 

strength test respectively. It can be seen from Table 4, that the highest percentage error obtained was 2.45%, which 

was not up to 10%. This result further confirms that the neural network has been satisfactorily trained, as all outputs 

given by the network, are close to the values of the experimental results. 

 

 

Table 4. Comparison of Experimental Results against Neural Network Prediction for the Compressive Strength 

of BNSA Concrete using Percentage Error Method. 

Mix 

Label 

Curing Age Experimental 

Results (N/mm2) 

ANN Prediction 

(N/mm2) 

Error % Error 

Z1 14 21.82 22.424 -0.604 -2.69354 

Z2 14 21.87 21.347 0.523 2.449993 

Z3 14 22.38 23.328 -0.948 -4.06379 

Z4 14 23.14 23.120 0.020 0.086505 

Z5 14 23.85 24.773 -0.923 -3.72583 

Z1 21 23.45 25.204 -1.754 -6.95921 

Z2 21 22.95 22.534 0.416 1.846099 

Z3 21 23.69 24.321 -0.631 -2.59447 

Z4 21 23.98 24.218 -0.238 -0.98274 

Z5 21 24.55 24.390 0.160 0.656007 

Z1 28 25.64 26.229 -0.589 -2.24561 

Z2 28 23.82 23.739 0.081 0.341211 

Z3 28 24.18 24.538 -0.358 -1.45896 

Z4 28 24.86 24.902 -0.042 -0.16866 

Z5 28 24.91 25.205 -0.295 -1.1704 

Z1 56 27.28 28.112 -0.832 -2.95959 

Z2 56 24.67 25.241 -0.571 -2.26219 

Z3 56 25.48 25.781 -0.301 -1.16753 

Z4 56 26.08 26.345 -0.265 -1.00588 

Z5 56 26.64 26.238 0.402 1.532129 

 

Table 5. Statistical student’s T-test for ANN model validation for compressive strength of BNSA-QD Concrete  

S/No. Ex  

(N/mm2) 

Np  

(N/mm2) 

Di=Ex-Np DA=( ∑Di )/N DA-Di (DA-Di)2 

1 21.82 22.424 -0.604 -0.33745 0.26655 0.071049 

2 21.87 21.347 0.523 -0.33745 -0.86045 0.740374 

3 22.38 23.328 -0.948 -0.33745 0.61055 0.372771 

4 23.14 23.120 0.020 -0.33745 -0.35745 0.127771 

5 23.85 24.773 -0.923 -0.33745 0.58555 0.342869 

6 23.45 25.204 -1.754 -0.33745 1.41655 2.006614 

7 22.95 22.534 0.416 -0.33745 -0.75345 0.567687 

8 23.69 24.321 -0.631 -0.33745 0.29355 0.086172 

9 23.98 24.218 -0.238 -0.33745 -0.09945 0.00989 

10 24.55 24.390 0.160 -0.33745 -0.49745 0.247457 

11 25.64 26.229 -0.589 -0.33745 0.25155 0.063277 

12 23.82 23.739 0.081 -0.33745 -0.41845 0.1751 

13 24.18 24.538 -0.358 -0.33745 0.02055 0.000422 

14 24.86 24.902 -0.042 -0.33745 -0.29545 0.087291 

15 24.91 25.205 -0.295 -0.33745 -0.04245 0.001802 

16 27.28 28.112 -0.832 -0.33745 0.49455 0.24458 

17 24.67 25.241 -0.571 -0.33745 0.23355 0.054546 

18 25.48 25.781 -0.301 -0.33745 -0.03645 0.001329 

19 26.08 26.345 -0.265 -0.33745 -0.07245 0.005249 

20 26.64 26.238 0.402 -0.33745 -0.73945 0.546786 
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Where;  

Ex = Experimental responses. 

Np=Neural network model responses. 

N = the Number of Responses = 20. 

∑Di= -6.749 

∑ (DA -Di)2 = 5.753035 

S2 = [∑(DA -Di)2 ]/(N-1) = 0.302791 

s =√ S2 = 0.550265 

DA x √N = -1.50935 

T = [DA x √N]/s = -2.74294 

Degree of freedom = N-1 

5% significance for a two-tailed test = 0.05 

From standard statistical table, T = T (0.05, n-1) = T (0.05,19) = 2.09 

 

Table 6. Statistical student’s T-test for ANN model validation for flexural strength of BNSA-QD Concrete  

S/No. Ex  

(N/mm2) 

Np  

(N/mm2) 

Di=Ex-Np DA=( ∑Di )/N DA-Di (DA-Di)2 

1 8.56 8.824 -0.264 -0.269 -0.005 0.000025 

2 8.04 8.258 -0.218 -0.269 -0.051 0.002601 

3 7.39 7.807 -0.417 -0.269 0.148 0.021904 

4 6.64 6.985 -0.345 -0.269 0.076 0.005776 

5 6.23 6.263 -0.033 -0.269 -0.236 0.055696 

6 9.49 9.935 -0.445 -0.269 0.176 0.030976 

7 8.76 8.457 0.303 -0.269 -0.572 0.327184 

8 8.22 8.391 -0.171 -0.269 -0.098 0.009604 

9 7.78 7.864 -0.084 -0.269 -0.185 0.034225 

10 7.06 7.928 -0.868 -0.269 0.599 0.358801 

11 9.58 10.759 -1.179 -0.269 0.910 0.828100 

12 9.34 9.654 -0.314 -0.269 0.045 0.002025 

13 9.17 9.320 -0.150 -0.269 -0.119 0.014161 

14 9.09 9.342 -0.252 -0.269 -0.017 0.000289 

15 9.02 9.751 -0.731 -0.269 0.462 0.213444 

16 13.87 13.842 0.028 -0.269 -0.297 0.088209 

17 12.92 13.272 -0.352 -0.269 0.083 0.006889 

18 11.98 11.805 0.175 -0.269 -0.444 0.197136 

19 10.76 10.761 -0.001 -0.269 -0.268 0.071824 

20 10.05 10.112 -0.062 -0.269 -0.207 0.042849 

 

 

Where;  

Ex = Experimental responses. 

Np=Neural network model responses. 

N = the Number of Responses = 20. 

∑Di = -5.38 

∑ (DA -Di)2 = 2.311718 

S2 = [∑ (DA -Di)2 ]/(N-1) = 0.121669 

s =√ S2 = 0.348811 

DA x √N = -1.203 

T = [DA x √N]/s = -3.44887 

Degree of freedom = N-1 

5% significance for a two-tailed test = 0.05 

From standard statistical table, T = T (0.05, n-1) = T (0.05,19) = 2.09 

 

The computed T-value from the ANN predicted results were -2.74 and -3.45 for compressive and flexural strength 

respectively; which are less than the standard T-value of 2.09 obtained from the standard statistical tables. This means 



470  Adebanjo et al./ UNIZIK Journal of Engineering and Applied Sciences 2(3), 458-473 

 

there is no significant difference between the neural network model results and the experimental results. This test of 

adequacy further affirms that the result from the neural network model obtained herein are reliable and the model 

could be used to predict the compressive and flexural strength of BNSA-QD concrete at 95% confidence level. This 

means that the neural networks have been satisfactorily trained, as all the outputs given by the network, are close to 

the values of the experimental results. 

 

4.0. Conclusion  

 

Artificial neural network was adopted in this study, to investigate the optimization of mechanical properties of concrete 

made with bambara nut shell ash and quarry dust. Based on the findings of this investigation, partially replacing OPC 

with BNSA will result to reduced weight of concrete members due to the lower specific gravity of BNSA when 

compared with that of cement. The workability increased with increase in replacement of cement with BNSA and 

replacement of sand with quarry dust, because of increase in surface area and filler effect of BNSA inclusion in the 

concrete matrix. The initial and final setting times increased from 0 to 50% replacement intervals, due to the addition 

of BNSA in the concrete matrix.  As the curing age increased, the flexural and compressive strength increased, while 

the compressive strength decreased with increase in the BNSA-QD contents beyond 22.5% replacement. This study 

recommends the use of bambara nut shell ash and quarry dust in concrete production as they will promote the 

protection of the ecological environment and reduce the gross project cost. 

 

The optimum blend was obtained at a mix ratio of 0.775: 0.225: 1.55: 0.45: 4 at 22.5% replacement. The R-values 

obtained from the regression plot of the model were very close to 1, which validates the excellency of the ANN model. 

The computed T-value from the ANN predicted results were -2.74 and -3.45 for compressive and flexural strength 

respectively; which are less than the standard T-value of 2.09 obtained from the standard statistical table.  This test of 

adequacy certifies that the modelled results are reliable and the network could be used to predict the compressive and 

flexural strength of BNSA-QD concrete at 95% confidence level. This study has shown that ANN modeling is superior 

to the conventional statistical approach.  
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Appendix 1 

 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 07-Feb-2022 21:04:37. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timsteps 

%   Each X{1,ts} = 4xQ matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 2xQ matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 
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x1_step1_xoffset = [0.5;0;0.5;0]; 

x1_step1_gain = [4;4;4;4]; 

x1_step1_ymin = -1; 

  

% Layer 1 

b1 = [2.4721795065877608;1.7225826153827672;-

1.5774221440891794;0.5297731930532783;0.18699427221487475;-

0.50553083659501885;0.96540788595234517;-1.8261676827603135;1.405049026701342;-2.5444881460782822]; 

IW1_1 = [-1.8553038388308851 1.6739773169671976 0.70310381380301668 -0.33675308266081033;-

2.0070422637091254 -1.2331684662348621 1.495686435176959 -0.87490372843804809;0.59448557460452944 

2.2812588308342185 1.0254729456427978 0.98684505160923164;-0.023388174372029297 -

1.9107086265557094 0.65466936811779763 1.6699666311607195;-1.1870943268184524 -1.0549377705005292 

1.8189963602377679 -0.63589248405045873;-0.14714374574601638 -2.4190514011245079 -

1.8641116621768088 1.28080107481976;0.85849034664694324 0.89218427394083977 2.2092666408889734 -

1.0131510743469541;-1.164775659244413 0.61089776227846826 -1.1708832461824858 

1.5175116898664927;0.58187038038997929 0.68300363560971822 -1.7702939710726862 1.5586668142750879;-

1.9558353093148331 -0.23009043927539291 0.42518552026974665 -1.3238701432243845]; 

  

% Layer 2 

b2 = [-0.92291106723101934;-0.92229757551448532]; 

LW2_1 = [-0.28286442495076991 0.47871439670501514 -1.1098775660594056 -0.071118774041882105 

0.2101764522917029 0.78019042827729579 0.86845733735490538 0.54112226797488727 0.3132353632176787 

-0.4419249754720751;-0.2226890964109714 1.2230937858207471 -0.049462368050943173 1.4668941146317931 

-0.27304521861159198 0.7027642203692529 1.1450811850837024 1.032494898518636 0.11341195371050225 -

0.14279533307796349]; 

  

% Output 1 

y1_step1_ymin = -1; 

y1_step1_gain = [0.275482093663912;0.453514739229025]; 

y1_step1_xoffset = [18.38;5.17]; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX, X = {X}; end; 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},2); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1_gain,x1_step1_xoffset,x1_step1_ymin); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 
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    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin); 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX, Y = cell2mat(Y); end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) 

y = bsxfun(@minus,x,settings_xoffset); 

y = bsxfun(@times,y,settings_gain); 

y = bsxfun(@plus,y,settings_ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) 

x = bsxfun(@minus,y,settings_ymin); 

x = bsxfun(@rdivide,x,settings_gain); 

x = bsxfun(@plus,x,settings_xoffset); 

end 

 

 

 

 


