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Abstract  

This research study focuses on the buckling analysis of an elastic thick isotropic rectangular plate with three edges simply supported 

and the third edge free (SSFS). The Ritz energy method was employed using Orthogonal Polynomial Displacement Functions 

(OPDF) and polynomial shear deformation function, denoted as f(z). The general governing Equation of the rectangular thick plate 

was formulated which was further analysed to deduce the non-dimensional critical buckling load parameters of the plate under 

uniaxial in-plane compressive load Nx. The meticulous consideration of the SSFS plate involved satisfying pertinent boundary 

conditions.  The stiffness coefficient values were deduced from the employed Orthogonal Polynomial Displacement Functions. 

The resultant direct governing equation was solved to yield a concise analytical expression, subsequently utilized to generate non-

dimensional critical buckling load parameters for the plates. This process was conducted across varying values of the span-depth 

ratio (a/h) and aspect ratios (b/a). To ensure the robustness and accuracy of the findings, the results obtained in this study were 

meticulously compared with the works of other esteemed researchers. This comparative analysis serves to validate the present 

results, contributing to the scholarly discourse on the buckling behaviour of isotropic thick rectangular plates. 

Keywords:  Buckling, displacement functions, Rectangular, Ritz energy method, Shear rotation  

    

 

1. Introduction 

A plate is a flat structural element characterized by a transverse dimension or thickness (h) significantly smaller in 

comparison to its length and width. The study is working on Isotropic plates which have uniform material properties 

in all directions (Onyechere, 2019). The application of thick plates in engineering has witnessed a gradual upsurge 

over the years, driven by their appealing attributes including lightweight construction, cost-efficiency, and the ability 

to withstand substantial loads while being adaptable to specific structural demands (Sayyad, Shinde, and Ghugal, 

2016). Plate structures find applications across various engineering disciplines, including Mechanical Engineering and 

Structural Engineering (Onyeka, 2019). In Structural Engineering, plates serve essential roles in roof and floor slabs, 

bridge deck slabs and more (Onyeka and Okeke, 2021). To harness the characteristics of thick plates effectively, it is 

imperative to gain a comprehensive understanding of their structural behaviour and failure conditions to ensure safer 

and more cost-effective designs (Eze, Onyechere, and Anya, 2018). 

Plates are commonly categorized as either thick or thin, a distinction reliant on the plate's thickness (Onyeka and 

Osegbowa, 2020). Structural stability plays a pivotal role in the design of numerous civil, mechanical, and aeronautical 

structures because plates are predominantly subjected to transverse and compressive loads acting in the middle plane 

of the plate. In-plane compressive loading occurs when a plate experiences an axial load applied at the boundary 

parallel to the mid-plane of the plate and distributed throughout its thickness, see Figure 1.1 (Onyechere, 2019)). The 
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initiation of instability in plate elements under in-plane loads is referred to as "buckling" (Onyeka, Okafor, and Onah, 

2021). The "critical buckling load" represents the maximum load at which an axially loaded plate loses its stability 

(Sayyad and Ghugal, 2014). If in-plane compressive loads surpass their critical values, it results in substantial 

deflections and bending stresses that eventually culminate in complete plate failure (Onyeka, Okeke, and Wasiu, 

2020). To avert such failures, there is a pressing need for more precise and practical investigations into the stability 

analysis of plates. 

The classical plate theory (CPT), introduced by Kirchhoff in 1850, has been found to introduce inaccuracies when the 

span-to-thickness ratio is relatively low (Onyeka, Mama, and Nwa-David, 2022).  While the classical plate theory is 

suitable for thin plates, it neglects the effects of transverse shear deformation and tends to overestimate the critical 

buckling loads of thick plates. Therefore, it is recommended to incorporate the effects of shear deformation in cases 

involving relatively thick plates to ensure reliability (Sayyad, Chikalthankar, and Nandedkar, 2013). In the mid-1900s, 

the Mindlin first-order shear deformation theory (FSDT) was developed to account for shear deformation effects, 

permitting transverse shear strains while keeping the shear strains constant across the plate's thickness (Onyeka, 2019). 

However, both CPT and FSDT fall short of satisfying zero traction boundary conditions on the plate's top and bottom 

surfaces, necessitating the use of shear correction factors to fulfil constitutive relations for transverse shear stresses 

and strains (Sayyad and Ghugal, 2014). These limitations led to the development of higher-order shear deformation 

theories (HSDT) designed to provide a realistic representation of transverse shear strains and stresses across the plate's 

thickness by assuming parabolic shear strain variations (Nguyen-Thoi, Bui-Xuan, Phung-Van, Nguyen-Xuan, and 

Ngo-Thanh, 2013). 

Recent research has explored various shear deformation theories for the buckling analysis of thick plates, including 

exponential shear deformation theory, new trigonometric theory, hyperbolic shear deformation theory, and refined 

trigonometric shear deformation functions (Abdollah, Bahram and Javad, 2016; Eze, Onyechere and Anya, 2018; 

Gunjal, Hajare Sayyad and Ghodle, 2015; Onyeka and Okeke, 2021; Mahi, Adda-Bedia and Tounsi, 2015; Sayyad 

and Ghugal, 2014;). Despite these advancements, none of the existing studies have investigated thick plates using 

polynomial displacement functions within the Ritz energy method. Many researchers resort to thin plate analysis due 

to the complexity associated with the double Fourier series, highlighting a research gap (Gwarah, 2019). This study 

aims to address these challenges by investigating the buckling analysis of thick isotropic SSFS rectangular plates using 

the Ritz energy method with polynomial displacement functions. The utilization of polynomial displacement functions 

offers a potentially more straightforward and efficient approach to thick plate analysis, contributing to the 

advancement of knowledge in this field of Engineering. 

 

2.0 Material and Methods 

2.1 Formulation of Direct Governing Equation for Thick Plate Analysis.   

 Figure 1.1: Applied Axial compressive forces 

x x 
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The SSFS rectangular thick plate is depicted in Figure 2.1. The plate has a length of ‘a’ in the x-direction, ‘b’ in the 

y-direction, and a thickness of ‘h’ in the z-direction. It is assumed that the z-direction is positive when facing 

downward. The plate occupies an area in a Cartesian coordinates system where 0 ≤ x ≤ a, 0 ≤ y ≤ b, and -h/2 ≤ z ≤ 

h/2. The aspect ratio is determined by b/a. Non-dimensional coordinates R = x/a in the x-direction and Q = y/b in the 

y-direction occupying the domain 0 ≤ R ≤ 1 and 0 ≤ Q ≤ 1. The study of buckling in plates is a crucial aspect of plate 

analysis, as it helps to identify the critical buckling loads of a plate. 

The first step in this section is to utilize the theory of elasticity in plate analysis to identify a variety of plate stresses. 

These stresses are then condensed into Total Potential Energy functional, which ultimately allows the establishment 

of the Direct Governing Equation for the thick plate. 

2.1.1 Stress-Displacement Equations.   

The stress displacement equations, as deduced from Equations (2.1a) to (2.1e), emanate from a meticulous analysis of 

the displacement field, the Strain-Displacement Relation, and the Constitutive (stress–strain) Relations. 

𝜎𝑥 =
𝐸

1−𝑣2 [[−𝑗1𝑧 + 𝑗2𝐹(𝑧)]
𝑑2𝐻

𝑑𝑥2 + 𝑣[−𝑗1𝑧 + 𝑗3𝐹(𝑧)]
𝑑2𝐻

𝑑𝑦2]                                            (2.1a) 

𝜎𝑦 =
𝐸

1−𝑣2 [𝑣𝑧 (−𝑗1 +
𝐹(𝑧)

𝑧
𝑗2)

𝑑2𝐻

𝑑𝑥2 + [−𝑗1𝑧 + 𝑗3𝐹(𝑧)]
𝑑2𝐻

𝑑𝑦2]                                                     (2.1b) 

𝜏𝑥𝑦 =
𝐸(1−𝑣)

2(1−𝑣2)
[−2𝑗1𝑧 + 𝑗2𝐹(𝑧) + 𝐽3𝐹(𝑧)]

𝑑2𝐻

𝑑𝑥𝑑𝑦
                                                                       (2.1c) 

𝜏𝑥𝑧 =
𝐸(1−𝑣)

2(1−𝑣2)
𝑗2

𝑑𝐹(𝑧)

𝑑𝑧

𝑑𝐻

𝑑𝑥
                                                                                                            (2.1d) 

𝜏𝑦𝑧 =
𝐸(1−𝑣)

2(1−𝑣2)
𝑗3

𝑑𝐹(𝑧)

𝑑𝑧

𝑑𝐻

𝑑𝑦
                                                                                                                                             (2.1e) 

Where 

ji are the coefficients of integration or deflection. 

F(z) the shear deformation function along the z-direction 

2.1.2 Total potential energy. 

The total potential energy, 𝛱, is mathematically determined in Equation (2.1):  

 𝛱 = U + 𝛺                                           (2.1f) 

Where: 

 𝑈 = ∫  
𝑥

∫  
𝑦

[∫  
ℎ

2

−
ℎ

2

𝜎 ⋅ 𝜀𝑑𝑧] 𝑑𝑥𝑑𝑦                                                                                                                                     (2.2a) 

Expanding Equation (2.2a), Equation (2.2b) is obtained. 

𝑈 = ∫  
𝑥

∫  
𝑦

[∫  
ℎ

2

−
ℎ

2

(𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛾𝑥𝑧 + 𝜏𝑦𝑧𝛾𝑦𝑧)𝑑𝑧] 𝑑𝑥𝑑𝑦                                                 (2.2b) 

Substituting Equations (2.1a) to (2.1e) into Equation (2.2b), Equation (2.2c) is obtained. 

Figure 2.1.  SSFS Rectangular Plate 

 

 

Figure 0.1: 
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𝑈 =
𝐸

1 − 𝑣2
[[𝑧2𝑗2

1
− 2𝑗1𝑗2𝑧𝐹(𝑧) + 𝑗2𝐹(𝑧)2] (

𝑑2𝐻

𝑑𝑥2
)

2

] +
𝐸

1 − 𝑣2
[[𝑧2𝑗2

1
− 2𝑗1𝑗3𝑧𝐹(𝑧) + 𝑗2

3
𝐹(𝑧)2] (

𝑑2𝐻

𝑑𝑥2
)

2

]

+
𝐸(1 − 𝑣)

2(1 − 𝑣2)
[4𝑗1

2𝑧2 − 4𝑗1𝑗2𝑧𝐹(𝑧) − 4𝑗1𝑗3𝑧𝐹(𝑧) + 𝑗2
2𝐹(𝑧)2 + 2𝑗2𝑗3𝐹(𝑧)2 

                         +𝑗3
2𝐹(𝑧)2] (

𝑑2𝐻

𝑑𝑥𝑑𝑦
)

2

+ 𝑗2
2 [

𝑑𝐹(𝑧)

𝑑𝑧
]

2 𝐸(1−𝑣)

2(1−𝑣2)
(

𝑑𝐻

𝑑𝑥
)

2

+ 𝐽3
2 [

𝑑𝐹(𝑧)

𝑑𝑧
]

2 𝐸(1−𝑣)

(1−𝑣2)
(

𝑑𝐻

𝑑𝑦
)

2

     (2.2c) 

𝛺 = 𝑁𝑥 2⁄ ∫∫ (𝜕𝑤 𝜕𝑥⁄ )2𝜕𝑥𝜕𝑦
𝑦

𝑥

                             (2.3) 

Where: 

𝛱 is the total potential energy of the system. 

U the strain energy of deformation (the potential of internal forces). 

𝛺 the potential energy of external forces (the potential of external forces). 

Nx the axial compressive load applied at the mid-plane of the plate. 

v the poison’s ratio. 

Integrating the total potential energy functional within the intervals of the non-dimensional parameters in the 

𝑥 and 𝑦 directions, Equation (2.6) is obtained.  

Π =
𝑎𝑏𝐷

2𝑎4 ∫  
1

0
∫  

1

0
[𝑞1𝑗1

2 − 2q𝑗1𝑗2 + 𝑞3𝑗2
2] (

𝑑2𝐻

𝑑𝑅2)
2

 +
1

𝛽2
[2𝑞1𝑗1

2 − 2𝑞2𝑗1𝑗2 − 2𝑞2𝑗1𝑗3] (
𝑑2𝐻

𝑑𝑅𝑑𝑄
)

2

+
(1+𝑣)

𝛽2 𝑔3𝑗2𝑗3 (
𝑑2𝐻

𝑑𝑅𝑑𝑄
)

2

    

+
(1−𝑣)

2𝛽2
[𝑞3𝑗2

2 + 𝑞3𝑗3
2] (

𝑑2𝐻

𝑑𝑄2)
2

+
(1−𝑣)𝜌2

2
𝑞4𝑗2

2 (
𝑑𝐻

𝑑𝑅
)

2

+
(1−𝑣)𝜌2

2𝛽2 𝑞4𝑗3
2 (

𝑑𝐻

𝑑𝑄
)

2

] 𝑑𝑅𝑑𝑄 

−
𝑁𝑥

2
∫  

1

0
∫  

1

0
(

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑅𝑑𝑄                                                                                                                                             (2.4) 

𝜌 = 𝑎 ℎ⁄                   (2.5) 

𝛽 = 𝑏 𝑎⁄  𝑎𝑛𝑑 𝑏 = 𝑎𝛽                                                                                                                                                  (2.6) 

𝑎 is the length of the plate along the x-axis.  

𝑏 is the breadth of the plate along the y-axis and h is the thickness of the plate along the z-axis. 

2.1.3 Direct governing equation. 

To establish the governing equation for the thick plate, the Ritz method is employed, involving the minimization of 

the potential energy functional by differentiating it with respect to the three coefficients of displacement, namely J1, 

J2, and J3. Simultaneously solving the three equations derived from this process yields the direct governing equation 

for the thick plate. 

𝑑Π

𝑑𝑗1
=

𝑑Π

𝑑𝑗2
=

𝑑Π

𝑑𝑗3
= 0                                                                                                                                                           (2.7) 

Substituting Equation (2.4) into Equation (2.7), Equations (2.8) to (2.10a) are obtained. 

𝑑Π

𝑑𝐽1

=
𝐷

𝑎4
∫  

1

0

∫  
1

0

[𝐽1 + 𝑞2𝑗2] (
𝑑2𝐻

𝑑𝑅2
)

2

+
1

𝛽2
[2𝑞1𝑗1 + 𝑞2𝑗2 + 𝑞𝑗3] (

𝑑2𝐻

𝑑𝑅𝑑𝑄
)] 𝑑𝑥𝑑𝑦2 

− ∫  
1

0
∫  

1

0

𝑑𝐹𝐹

𝑑𝑐1
𝑑𝑅𝑑𝑄 = 0                                           (2.8) 
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𝑑Π

𝑑𝑗2

=
𝐷

𝑎4
∫  

1

0

∫  
1

0

[𝑞3𝑗2 − 𝑞2𝑗1] (
𝑑2𝐻

𝑑𝑅2
)

2

+
1

𝛽2
[−𝑞2𝑗1] (

𝑑2𝐻

𝑑𝑅𝑑𝑄
)

2

 

+
(1−𝑣)

𝛽2 [
1

2
𝑞3𝑗3] (

𝑑2𝐻

𝑑𝑅𝑑𝑄
)

2

+
(1−𝑣)

2𝛽2
[𝑞3𝑗2] (

𝑑2𝐻

𝑑𝑄2)
2

+
(1−𝑣)

2
(𝑞4𝑗2) (

𝑑𝐻

𝑑𝑅
)

2

] 𝑑𝑅𝑑𝑄 = 0                                                  (2.9) 

𝑑Π

𝑑𝑗3

=
𝐷

𝑎4
∫  

1

0

∫  
1

0

1

𝛽2
[−𝑞2𝑗1] (

𝑑2𝐻

𝑑𝑅𝑑𝑄
)

2

+
(1 − 𝑣)

𝛽2
[
1

2
𝑞3𝑗2] (

𝑑2𝐻

𝑑𝑅𝑑𝑄
)

2

 

+
(1−𝑣)

2𝛽2
[𝑞3𝑗3] (

𝑑2𝐻

𝑑𝑄2)
2

+
(1−𝑣)𝜌2

2𝛽2
(𝑞4𝑗3) (

𝑑𝐻

𝑑𝑄
)

2

] 𝑑𝑅𝑑𝑄 = 0  

−
𝑎𝑏𝑁𝑥𝑗1

2

2
∫  

1

0
∫  

1

0
(

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑅𝑑𝑄                                                                                                         (2.10a) 

A parameter 𝜆𝑖𝑗 is introduced in Equation (2.10b). Deducing their values from Equations (2.8) to (2.10a), Equation 

(2.10b) is obtained. 

 𝜆11 = 𝑞1 (𝑘1 + 2
𝑘2

𝛽2 +
𝑘3

𝛽4), 𝜆12 = −𝑞2 (𝑘1 +
𝑘2

𝛽2),  𝜆13 = −𝑞2 (
𝑘2

𝛽2 +
𝑘3

𝛽4) 

𝜆22 = 𝑞3𝑘1 +
(1 − 𝑣)

2𝛽2
𝑞3𝑘2 +

(1 − 𝑣)𝜌2

2
𝑞4𝑘4,  

𝜆23 =
(1+𝑣)

2𝛽2 𝑞3𝑘2, 𝜆33 =
(1−𝑣)

2𝛽2 𝑞3𝑘2 +
1

𝛽4 𝑞3𝑘3 +
(1−𝑣)𝜌2

2𝛽2 𝑞4𝑘5                                                                               (2.10b) 

The stiffness coefficient ki expressions were also deduced from Equation (2.8) to (2.10a). They are obtained here as 

Equation (2.10c). 

𝑘1 = ∫  
1

0
∫  

1

0
(

𝑑2𝐻

𝑑𝑅2)
2

𝑑𝑅𝑑𝑄, 𝑘2 = ∫  
1

0
∫  

1

0
(

𝑑2𝐻

𝑑𝑅𝑑𝑄
)

2

𝑑𝑅𝑑𝑄 𝑘3 = ∫  
1

0
∫  

1

0
(

𝑑2𝐻

𝑑𝑄2)
2

𝑑𝑅𝑑𝑄 

𝑘4 = ∫  
1

0
∫  

1

0
(

𝑑𝐻

𝑑𝑅
)

2

𝑑𝑅𝑑𝑄, 𝑘5 = ∫  
1

0
∫  

1

0
(

𝑑𝐻

𝑑𝑄
)

2

𝑑𝑅𝑑𝑄, 𝑘6 = −
𝑎𝑏

2
∫  

1

0
∫  

1

0

𝑁𝑥𝑗1
2

𝑎2 𝑑𝑅𝑑𝑄                                               (2.10c) 

Defining the qi values in Equations (2.8) to (2.10a), Equation (2.10d) is obtained. 

Α ̅ =
ℎ3

12
,  𝑞1 =

(∫  

ℎ
2

−
ℎ
2

𝑧2𝑑𝑧)

Α̅
= 1,  𝑞2 =

(∫  

ℎ
2

−
ℎ
2

𝑧𝐹(𝑧)𝑑𝑧)

Α̅
,  𝑞3 =

(∫  

ℎ
2

−
ℎ
2

𝐹(𝑧)2𝑑𝑧)

Α̅
, 

  𝜌2𝑞 4 =

(∫  

ℎ
2

−
ℎ
2

[
𝑑𝐹(𝑧)

𝑑𝑧
]
2

𝑑𝑧)

Α̅
                                        (2.10d) 

Deducing Equation (2.10b) to matrix form, Equation (2.11) is obtained. 

      [

𝜆11 𝜆12 𝜆13

𝜆21 𝜆22 𝜆23 
𝜆31 𝜆32 𝜆33

] [

𝑗1

𝑗2

𝑗3

] =
𝑎4

𝐷
[

𝑁 𝑥

𝑎2𝑘4𝑗1

0
0

]                                                      (2.11) 

Let Γ𝑖𝑗 = 𝜆𝑖𝑗 ×
1

𝑘4
                                                                                                                                              (2.12) 

Equation (2.12) is the direct governing Equation for thick rectangular plates (using traditional third-order shear 

deformation theory) of arbitrary boundary conditions. 
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Dividing through Equation (2.11) by Equation (2.12), Equation (2.13) is obtained 

      [

Γ11 Γ12 Γ13

Γ21 Γ22 Γ23 
Γ31 Γ32 Γ33

] [

𝑗1

𝑗2

𝑗3

] =
𝑎2𝑁𝑥𝑐𝑟

𝐷
[

𝑗
0
0

]                                                                  (2.13) 

Determining the determinant of the matrix in Equation (2.13), Equation (2.14) is obtained. 

Γ11 + Γ12 [
−Γ23Γ31+Γ33Γ21

Γ23Γ32−Γ33Γ22
] + Γ13 [

−Γ23Γ21+Γ22Γ31

Γ32Γ23−Γ33Γ22
]   =

𝑎2𝑁𝑥𝑐𝑟

𝐷
                                                                                     (2.14) 

For nontrivial solutions to be viable, the determinant of the coefficient matrix in Equation (2.14) must equate to zero. 

This condition establishes expression (2.15) as the non-dimensional critical buckling load parameter for the thick 

plate. 

Γ11 + Γ12 [
−Γ23Γ31+Γ33Γ21

Γ23Γ32−Γ33Γ22
] + Γ13 [

−Γ23Γ21+Γ22Γ31

Γ32Γ23−Γ33Γ22
]    =

𝑎2𝑁𝑥𝑐𝑟

𝐷
= Φ𝑎                                                                          (2.15)   

Substituting  𝜌 = 𝑎 ℎ⁄   and the D value into the right side of Equation (2.14) and making 𝑁𝑥𝑐𝑟  the subject of the 

formula, Equation (2.16) is obtained. 

𝑁𝑥𝑐𝑟 = 𝜙𝑎 ∗  
Eh

12(1−𝑣2)
∗

ℎ2

𝑎2                                                        (2.16) 

𝐷 =
𝐸ℎ3

12(1−𝑣)
                                                                                                                        (2.17) 

𝑏2𝑁𝑥𝑐𝑟

𝐷𝛽2 = Φ𝑎                                   (2.18) 

𝑏2𝑁𝑥𝑐𝑟

𝐷
= 𝛽2Φ𝑎 = Φ𝑏                             (2.19) 

With Further simplifications, Equations (2.20) and (2.21) are obtained  

𝜓𝑎 = 𝜙𝑎 ∗ (
1

𝜌 2
) =

𝜙𝑎

𝜌 2
                                         (2.20) 

𝜓𝑏 = 𝜙𝑏 ∗ (
1

𝜌 2
) =

𝜙𝑏

𝜌 2
 =

 𝜙𝑎𝛽2

𝜌2                             (2.21)  

Where:  

D is the flexural rigidity of the plate. 

𝑁𝑥𝑐𝑟  is the critical buckling in-plane load applied to the plates under study. 

𝜙𝑎 is the non-dimensional critical buckling load parameter of the plate in the x-direction and. 

𝜙𝑏  the non-dimensional critical buckling load parameter of the plate in the y-direction. 

2.2 Formulation of Polynomial Shear Deformation Function. 

The polynomial shear deformation function f(z) delineates the deformed configuration of the normal to the mid-plane 

of the plate during deformation. This function, derived through the Touratier model in 1991, is formulated herein as 

Equation (2.22). 

𝑓(𝑧) =
𝑧

5
[

99

20
− 7 (

𝑍

ℎ
)

2

]                                       (2.22) 

𝑆 =
𝑍

ℎ
 or 𝑧 = ℎ𝑧                                                                                                                                                         (2.23) 
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Where: 

‘S’ is a non-dimensional parameter along the z-axis, and ‘h’ is the thickness of the plate 

With the shear deformation function 𝑓(𝑧) established, the qi values in Equation (2.10d) will be obtained as in 

Equations (2.23a) to (2.23d). 

𝑞1 =

(∫  

ℎ
2

−
ℎ
2

𝑧2𝑑𝑧)

Α̅
= 1                                                  (2.23a) 

𝑞2 =

(∫  

ℎ
2

−
ℎ
2

𝑧𝐹(𝑧)𝑑𝑧)

Α̅
,       ∫ 𝑧𝐹(𝑧)𝑑𝑧 =

ℎ

2

−
ℎ

2

 [
99𝑧3

300
−

7

25
(

𝑍

ℎ
)

5

]
−

ℎ

2

ℎ

2

= [
99ℎ3

2400
−

7ℎ5

800ℎ2] ∗ 2 =        

𝑞2 =
13ℎ3

200
∗

12

ℎ3 = 0.78                                                                                                              (2.23b) 

𝑞3 =

(∫  

ℎ
2

−
ℎ
2

𝐹(𝑧)2𝑑𝑧)

Α̅
 ,       ∫ (𝐹(𝑧))

2
𝑑𝑧 =

ℎ

2

−
ℎ

2

[
980𝑧3

30000
−

695𝑧5

1250ℎ2 +
49𝑧7

175ℎ4]
−

ℎ

2

ℎ

2
=                       

𝑞3 =
2052ℎ3

40000
∗

12

𝑡3 = 0.6156                                                     (2.23c) 

𝜌2

𝑎2 𝑞4 =

(∫  

ℎ
2

−
ℎ
2

[
𝑑𝐹(𝑧)

𝑑𝑧
]
2

𝑑𝑧)

Α̅
 ,        (∫  

ℎ

2

−
ℎ

2

[
𝑑𝐹(𝑧)

𝑑𝑧
]

2

𝑑𝑧) = [
9801𝑧

10000
−

2079𝑧3

750
+

441𝑧5

125ℎ4]
−

ℎ

2

ℎ

2
=    

𝑞4 = 6.0912                        (2.23d) 

Summarizing 𝑞𝑖 values, Equation (2.23e) is obtained. 

𝑞1 = 1,       𝑞2 = 0.78,       𝑞3 = 0.6156, 𝑞4 = 6.0912                                                                            (2.23e) 

2.3 Rectangular Thick Plate with three Edges Simply Supported and the third edge free (SSFS) 

The overarching polynomial displacement function w=(x,y), as formulated by Onyechere (2019), is employed in this 

study and is expressed through Equations (2.24) and (2.25). 

𝑤𝑥 = 𝑎0 + 𝑎1𝑅 + 𝑎2𝑅2 + 𝑎3𝑅3 + 𝑎4𝑅4 + 𝑎5𝑅5                                                                         (2.24) 

𝑤𝑦 = 𝑎0 + 𝑎1𝑄 + 𝑎2𝑄2 + 𝑎3𝑄3 + 𝑎4𝑄4 + 𝑎5𝑄5                                                          (2.25) 

Where, 

𝑤𝑥 is the out-of-plane displacement along the x-axis and 

 

Figure 2.2. SSFS Rectangular Plate 
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𝑤𝑦 is the out-of-plane displacement along the y-axis  

𝑤 = 𝑤𝑥. 𝑤𝑦 = (𝑎0 + 𝑎1𝑅 + 𝑎2𝑅2 + 𝑎3𝑅3 + 𝑎4𝑅4 + 𝑎5𝑅5)( 𝑎0 + 𝑎1𝑄 + 𝑎2𝑄2 + 𝑎3𝑄3 + 𝑎4𝑄4 + 𝑎5𝑄5)        (2.26a)   

The boundary conditions for the SSFS rectangular thick plate as shown in Figure 2.2 are presented in Equations (2.26b) 

for the R-direction and Equation (2.26c) for the Q-direction. Ibearugbulem et.al (2014) assumed the value of slope to 

be equal to (− 2 3⁄ ) of the deflection coefficient for a pin-free strip case (S-F).  

𝑅 − Direction 

𝐴𝑡 𝑅 = 0, 𝑤𝑥 = 0; 𝐴𝑡 𝑅 =
1

2
,

𝜕𝑤

𝜕𝑅
= 0;    𝐴𝑡 𝑅 = 0,

𝜕2𝑤

𝜕𝑅2 = 0; 𝐴𝑡 𝑅 = 1, 𝑤1 = 0;  𝐴𝑡 𝑅 = 1,
𝜕2𝑤

𝜕𝑤2 = 0;   

𝐴𝑡 𝑅 =
1

2
,   

𝜕3𝑤

𝜕𝑤3 = 0;            (2.26b) 

     

𝑄 −Direction (Free end at Q=1)  

 𝐴𝑡 𝑄 = 0, 𝑤𝑦 = 0; 𝐴𝑡 𝑄 = 1,
𝜕𝑤

𝜕𝑄
= −

2𝑎5

3
;  𝐴𝑡 𝑄 = 0,

𝜕2𝑤

𝜕𝑄2 = 0; 𝐴𝑡 𝑄 = 1,     
𝜕2𝑤

𝜕𝑄2 = 0; 𝐴𝑡 𝑄 = 1,     
𝜕3𝑤

𝜕𝑄3 = 0 (Free 

end) (shear force)                                                                   (2.26c)  

Differentiating Equation (2.24) three times, Equation (2.26d) to (2.26f) are obtained 

a)   
𝜕𝑤

𝜕𝑤
= 𝑎1 + 2𝑎2𝑅 + 3𝑎3𝑅2 + 4𝑎4𝑅3 + 5𝑎5𝑅4                                                                                         (2.26d) 

b) 
𝜕2𝑤

𝜕𝑤2 = 2𝑎2 + 6𝑎3𝑅 + 12𝑎4𝑅2 + 20𝑎5𝑅3                                     

(2.26e) 

c) ,   
𝜕3𝑤

𝜕𝑤3 = 6𝑎3 + 24𝑎4𝑅 + 60𝑎5𝑅2                                                   (2.26f) 

Equation (2.25) should be Differentiated in the same manner as Equation (2.24) 

The boundary conditions in Equations (2.26b) in the R-direction and Equation (2.26c) in the Q-direction were 

substituted into Equations (2.26d) to (2.26f) and the polynomial displacement function for the SSFS plate was 

determined and presented here as Equation (2.27)  

𝑤 = (𝑤𝑥 , 𝑤𝑦) = −𝑎4𝑏5(𝑅 − 2𝑅3 + 𝑅4) (
7𝑄

3
+

10𝑄3

3
−

10𝑄4

3
+ 𝑄5)                                                   (2.27) 

Let, B = −𝑎4. 𝑏5                                                                                                                                                      (2.28)  

And 𝐻 = (𝑅 − 2𝑅3 + 𝑅4) (
7𝑄

3
−

10𝑄3

3
+

10𝑄4

3
− 𝑄5)                                            (2.29a) 

Where:  

−𝑎4. 𝑏5 is the Amplitude and 

𝐻 = the Shape Function for SSFS thick rectangular plate. 

Differentiating Equation (2.29a) to correspond to the stiffness expressions in Equation (2.10c), Equations (2.29b) to 

(2.29g) are obtained. 

𝜕𝐻

𝜕𝑅
= (1 − 6𝑅2 + 4𝑅3) (

7𝑄

3
−

10𝑄3

3
+

10𝑄4

3
− 𝑄5)                                                                 (2.29b) 

𝜕2𝐻

𝜕𝑅2 = (−12𝑅 + 12𝑅2) (
7𝑄

3
−

10𝑄3

3
+

10𝑄4

3
− 𝑄5)                                                                (2.29c) 
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𝜕𝐻

𝜕𝑄
= (𝑅 − 2𝑅3 + 𝑅4) (

7

3
−

30𝑄2

3
+

40𝑄3

3
− 5𝑄4)                                                                                                     (2.29d)      

𝜕2𝐻

𝜕𝑄2 = (𝑅 − 2𝑅3 + 𝑅4)(−
60𝑄

3
+

120𝑄2

3
− 20𝑄3)                          (2.29e) 

𝜕2𝐻

𝜕𝑅𝜕𝑄
= (1 − 6𝑅2 + 4𝑅3) ∗ (

7

3
− 10𝑄2 +

40𝑄3

3
− 5𝑄4)                                    (2.29f) 

(
𝜕𝐻

𝜕𝑅
)

2

= [(1 − 6𝑅2 + 4𝑅3) (
7𝑄

3
−

10𝑄3

3
+

10𝑄4

3
− 𝑄5)]

2

                                   (2.29g) 

2.3.1 Determination of the stiffness coefficient values for SSFS thick plate  

The stiffness coefficient 𝑘𝑖 expressions were determined in Equation (2.10c). Equations (2.29b) to (2.29g) were 

substituted into Equation (2.10c) and integrated to obtain the various values of 𝑘𝑖 as summarized here in Equation 

(2.30). 

𝑘1 =4.025782, 𝑘2 =0.601361,  𝑘3 =0.187453, 𝑘4 =0.407371, 𝑘5 =0.104661,  

𝑘6 =0.04127                             (2.30) 

 

2.4 Numerical example.  

An Example Illustrating the Buckling Analysis of SSFS Rectangular Plates. 

Consider a plate that is simply supported at its three edges and free at the third edge (SSFS). Let's assume that the 

aspect ratio, which is the ratio of the plate's width (b) to its length (a) (𝛽 = 𝑏 𝑎⁄ ) is equal to 1. The span-depth 

ratio, (𝜌 = 𝑎 ℎ⁄ ) which is the ratio of the plate's length (a) to its thickness (h), is equal to 5. The Poisson's ratio, 

denoted by v', is equal to 0.3. The 𝑞𝑖 values were determined and presented here as Equation (3.1). The non-

dimensional critical load parameters are determined in the following Equations.   

𝑞1 = 1,       𝑞2 = 0.78,       𝑞3 = 0.6156, 𝑞4 = 6.0912                                                                              (2.31) 

The stiffness coefficient values ′𝑘𝑖′  in Equation (2.30) are reproduced here as Equation (2.32) 

𝑘1 =4.025782, 𝑘2 =0.601361,  𝑘3 =0.187453, 𝑘4 =0.407371, 𝑘5 =0.104661,  

𝑘6 =0.04127                                          (2.32) 

The expressions for 𝜆𝑖𝑗 obtained in Equation (2.10b) are reproduced here as Equation (2.33). 

𝜆11 = 𝑞1 (𝑘1 + 2
𝑘2

𝛽2 +
𝑘3

𝛽4), 𝜆12 = −𝑞2 (𝑘1 +
𝑘2

𝛽2),  𝜆13 = −𝑞2 (
𝑘2

𝛽2 +
𝑘3

𝛽4) 

𝜆22 = 𝑞3𝑘1 +
(1 − 𝑣)

2𝛽2
𝑞3𝑘2 +

(1 − 𝑣)𝜌2

2
𝑞4𝑘4,  

𝜆23 =
(1+𝑣)

2𝛽2 𝑞3𝑘2, 𝜆33 =
(1−𝑣)

2𝛽2 𝑞3𝑘2 +
1

𝛽4 𝑞3𝑘3 +
(1−𝑣)𝜌2

2𝛽2 𝑞4𝑘5                                                                                 (2.33) 

Substituting the ki and qi values in Equation (2.32) and (2.31) respectively into Equation (2.33), the  𝜆𝑖𝑗 values in 

Equation (2.33) are obtained in Equation (2.34). 

𝜆11 =5.415957,  𝜆12 − 3.6092,  𝜆13 = −0.6153,  𝜆22 = 24.3199,  𝜆23 = 0.2406  

   𝜆33 = 5.8232                                                                                                                                                          (2.34) 

The Γ𝑖𝑗  expressions in Equation (2.12) are reproduced here as Equation (2.35) 
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 Γ𝑖𝑗 = 𝜆𝑖𝑗 ×
1

𝑘4
                                                                                                                                                             (2.35) 

Equation (2.15) is reproduced here as Equation (2.36) 

Γ11 + Γ12 [
−Γ23Γ31+Γ33Γ21

Γ23Γ32−Γ33Γ22
] + Γ13 [

−Γ23Γ21+Γ22Γ31

Γ32Γ23−Γ33Γ22
]    =

𝑎2𝑁𝑥𝑐𝑟

𝐷
= Φ𝑎                                                                          (2.36)   

The Γ𝑖𝑗  values are determined by substituting Equation (3.3a) into Equation (3.2b). 

The Γ𝑖𝑗  values obtained from Equation (2.34) are substituted into Equation (2.36). The non-dimensional critical 

buckling load parameters for the SSFS thick plate in the x and y directions are obtained in Equations (2.37) and (2.38). 

𝑎2𝑁𝑥𝑐𝑟

𝐷
= 𝜙𝑎 =11.8384                                                                                                                                                   (2.37) 

Φ𝑏 =
𝑏2𝑁𝑥𝑐𝑟

𝐷
= 𝛽2Φ𝑎 = 11.8384 ∗ 12 = 11.8384                                                   (2.38) 

Substituting Equation (2.38) into Equation (2.21), Equation (2.39) is obtained. 

𝜓𝑏 = 11.8384 ∗
12

52 =0.4735                                                                   (2.39) 

 

3.0 Results and Discussions 

3.1. Results Presentation 

The non-dimensional critical buckling load parameter 𝜙𝑎 and Φ𝑏 of thick rectangular SSFS plate for span depth ratio 

(𝜌 = 𝑎 ℎ⁄ = 5) and aspect ratio (𝛽 = 𝑏 𝑎 = 1⁄ ) were obtained in Equations (2.37) and (2.38)  and summarised here 

as Equation 3.1) 

𝜙𝑎 =11.8384,  Φ𝑏 = 11.8384,                                                                                    (3.1) 

The objective of this numerical illustration is to exemplify the computation of non-dimensional critical load parameters 

across varying aspect and span-depth ratios. The selection of the SSFS plate for this example is deliberate, as other 

configurations such as SSSS plate have been extensively examined in existing literature. 

3.1.1. Buckling analysis of SSFS thick plates. 

Table 3.1 provides a comparative analysis between the current investigation and previous research conducted by 

Onyechere (2019) and Ezeh et al. (2018). Additionally, the table presents non-dimensional critical buckling load 

parameters for the SSFS thick plate for this study, encompassing various values of span-depth ratios (𝜌 = 𝑎 ℎ⁄ ) and 

aspect ratios (𝛽 = 𝑏 𝑎⁄ ). 



Godwin et al./ UNIZIK Journal of Engineering and Applied Sciences 2(3), 285-297       295 

 

 
 

 

3.2. Discussions on the non-dimensional critical Buckling load parameters of the SSFS Thick Isotropic 

Rectangular Plate. 

In Table 3.1, when considering an aspect ratio (β) of 1 and a span-depth ratio (ρ) of 5, the non-dimensional critical 

buckling parameter (ϕₐ) is recorded as 11.8384. Conversely, at an equivalent span-depth ratio (ρ) of 5 and an aspect 

ratio (β) of 2, the non-dimensional critical buckling parameter (ϕₐ) is noted as 9.5682. The discernible reduction in the 

non-dimensional critical buckling load parameters as the aspect ratio increases suggests an elevated susceptibility of 

the plate to buckling. This observation holds significance for engineers involved in the optimization of plate designs, 

emphasizing the need to ensure structural stability under diverse loading conditions. 

In contrast, at a span-depth ratio (ρ) of 5, the non-dimensional critical buckling load parameter is measured at 11.8384. 

At a subsequent span-depth ratio (ρ) of 100, the non-dimensional critical buckling load parameter elevates to 13.2908. 

This increase implies enhanced stability, as a higher non-dimensional critical buckling load parameter necessitates 

greater loads to induce instability. Such findings are pertinent to structural engineers seeking to optimize designs for 

improved stability, particularly in applications where resistance to buckling is paramount. 

Table 3.1 presents a comprehensive comparison of the non-dimensional critical buckling load parameter values 

obtained in this study with those derived from the investigations conducted by Ezeh et al. (2018) and Onyechere 

(2019). The percentage differences between the non-dimensional critical buckling load parameters of this study and 

the referenced studies are consistently minimal, with a maximum value of 1.7668% observed at an aspect ratio (β = 

b⁄a) of 1 and a span depth ratio (ρ = a/h) of 100, corresponding to the research conducted by Ezeh et al. (2018). Notably, 

Table 3.1:  Results of the Present Study Compared with the Results of Other Researchers for SSFS thick Plate.   

          𝜙𝑎 = 
𝑎2𝑁𝑥𝑐𝑟

𝐷
  

    𝛽 = 𝑏 𝑎⁄    

𝜌 = 

𝑎 ℎ⁄   

Theory  1.0  1.1 1.2.  1.4  1.6  1.8  2  

5  Present Study (P.S) 11.8384 11.2923 10.8837 10.3258 9.9728 9.7354 9.5682 

Onyechere (2019), (O) 11.8382 11.2714 10.8552 10.2960 9.9467 9.7134 9.5498 

Ezeh et al. (2018) ,(E) 11.8382 11.2920 10.8835 10.3256 9.9726 9.7352 9.5680 

% Difference btw P.S and O  0.0017 0.1851 0.2619 0.2886 0.2617 0.2260 0.1923 

% Difference btw P.S and E  0.0017 0.0027 0.0018 0.0019 0.0020 0.0021 0.0021 

10 Present Study (P.S) 12.8975 12.2703 11.8086 11.1870 10.7981 10.5383 10.3560 

Onyechere (2019), (O) 12.8974 12.2646 11.8008 11.1869 10.7910 10.5323 10.3509 

Ezeh et al. (2018), (E) 12.8974 12.2702 11.8085 11.1869 10.7980 10.5382 10.3559 

% Difference btw P.S and O  0.0008 0.0465 0.0661 0.0009 0.0658 0.0569 0.0492 

% Difference btw P.S and E  0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 

20 Present Study (P.S) 13.1932 12.5429 12.0661 11.4263 11.0272 10.7610 10.5743 

Onyechere (2019), (O) 13.1932 12.5756 12.0641 11.4242 11.0254 10.7595 10.5730 

Ezeh et al. (2018) ,(E) 13.1932 12.5429 12.0660 11.4263 11.0272 10.7610 10.5743 

% Difference btw P.S and O 0.0000 -0.2607 0.0166 0.0184 0.0163 0.0139 0.0123 

% Difference btw P.S and E 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 

50  Present Study (P.S) 13.2785 12.6216 12.1403 11.4952 11.0932 10.8251 10.6371 

Onyechere (2019), (O) 13.2785 12.6213 12.1400 11.4949 11.0929 10.8249 10.6369 

Ezeh et al. (2018), (E) 13.2785 12.6215 12.1403 11.4952 11.0932 10.8251 10.6371 

% Difference btw P.S and O 0.0000 0.0024 0.0025 0.0026 0.0027 0.0018 0.0019 

% Difference btw P.S and E  0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 

100   Present Study (P.S) 13.2908 12.6329 12.1510 11.5051 11.1027 10.8343 10.6462 

Onyechere (2019), (O) 13.2908  12.6328   12.1509 11.5051 11.1026 10.8343 10.6461 

Ezeh et al. (2018), (E) 13.2908 12.6329 12.1510 11.5051 11.1027 10.8343 10.8343 

% Difference btw P.S and O 0.0000 0.0008 0.0008 0.0000 0.0009 0.0000 0.0009 

% Difference btw P.S and E  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.7668 
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the minimum percentage difference recorded is 0.0000%, corresponding to the comparison between Ezeh et al. (2018) 

and Onyechere (2019) at an aspect ratio (β = b⁄a) ranging from 1 to 1.8 and a span depth ratio (ρ = a⁄h) of 100. 

It is crucial to emphasize that any result falling within the range of 0% to 5% is considered acceptable in engineering 

calculations, aligning with established statistical principles for result comparison. Therefore, the findings of this study 

affirm its reliability and provide a robust solution for the buckling analysis of isotropic thick rectangular plates. 

4.0. Conclusion  

Based on the findings of this study, it can be concluded that: 

The non-dimensional critical buckling load parameter Equation, derived from the simultaneous Equations of the 

governing equation employed in this study, yields precise and satisfactory results for the buckling analysis of isotropic 

thick rectangular plates. 

The third-order polynomial shear deformation function F(z), formulated for this study, demonstrates its effectiveness 

by producing results that align with acceptable statistical intervals when compared with other research endeavours, as 

delineated in Table 4.1. This function introduces a parabolic variation of transverse shear strains and stresses across 

the plate thickness, eliminating the necessity for a shear correction factor employed in the first-order shear deformation 

theory (FSDT). 

The general Orthogonal Polynomial Displacement Functions 'w,' employed for the analysis of isotropic rectangular 

thick SSFS plates, exhibit notable adaptability for plates featuring various boundary conditions, requiring no intricate 

mathematical formulations. 

The stiffness coefficient values (ki) determined for the rectangular thick plate with SSFS boundary conditions in this 

research exhibit high reliability and consistency with the findings of Ezeh et al. (2018) and Onyechere (2019). 

 

5.0 Recommendation 

i) This research employs the user-friendly Shear Deformation Function F(z) for thick plate analysis. Designers 

are encouraged to utilize this function, as its results are both reliable and efficient.  

ii) The Orthogonal Polynomial Displacement Functions developed for this study prove highly effective for 

analyzing thick rectangular SSFS plates. It is suggested that this efficiency could extend to other complex plate 

systems with multiple unsupported edges.  

iii) Future researchers should consider applying the theories presented in this study to explore the combined 

effects of in-plane compression, transverse, and dynamic loads on thick rectangular plates.  

iv) To achieve more efficient results for critical buckling load of thick plates, it is recommended that further 

research be conducted on the Shear Deformation Theory using the fifth and seventh order. 

       5.2. Contribution to Knowledge: 

This study introduces a novel simultaneous linear equation, defined as the direct governing Equation of the plate, 

establishing a clear relationship between the plate's stiffness and the applied buckling load see Equations (2.10b) 

and (2.11). Unlike prevalent equations in the literature, often characterized by parabolic complexity, the proposed 

linear equation offers a straightforward and less cumbersome approach for efficient solutions. 

In contrast to existing equations prevalent in thick plate analysis, which frequently adopt parabolic forms posing 

challenges in terms of computational complexity, the linear equation proposed in this study enhances solvability. 

Its straightforward nature facilitates ease of computation, providing a more accessible method for researchers and 

practitioners in the field of Engineering. 

In essence, these contributions enhance the overall understanding and practical utility of thick plate analysis, 

providing a more accessible framework for researchers and engineers engaged in structural analysis and design. 
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