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Abstract  

The conventional techniques for solving optimal power flow (OPF) problems usually become comparatively less effective, and 

the computational difficulties increase significantly with increasing network size and complexity. To overcome the shortcomings 

of the conventional techniques, nature-inspired methods like the particle swarm optimization (PSO) method have been developed 

and applied to OPF problems in the recent years. This paper is hinged on the need to adopt these heuristic approaches in solving 

power flow problems in the Nigeria power system. This was demonstrated in this thesis, by implementing the conventional 

Newton Raphson method and a nature-inspired method, the particle swarm optimization technique in the IEEE 14 Bus network 

and validating the efficacy of the results gotten from the two methods on the Nigeria 330kV 52-Bus network to show the superior 

performance of the PSO technique. The results from the implementation of the PSO algorithm showed that the total active power 

and reactive power losses were substantially reduced to 175.1MW and 81.4MVAR and the system time of convergence was 

faster and occurred after 2 iterations at 2.03seconds. Thus it could be seen that the PSO algorithm have proved to exhibit a 

superior performance for optimisation of a large power system at a better speed of convergence when compared with the Newton 

Raphson method.      
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1. Introduction 

 

The difficulty of solving optimal power flow (OPF) problems increases significantly with increasing network size 

and complexity. Recent industrial developments have greatly increased electric power system complexity. In prior 

decades, utilities had relatively few generators compared to the numbers introduced today by the advent of 

independent power producers and uncertainties in demand response programs add variables to the load side of OPF 

problems. There are many conventional OPF solution methods that exist: bus admittance matrix, Gauss-Seidel 

iterative algorithm, Newton-Raphson method, linear and non-linear programming, gradient-based method, dynamic 

programming, interior point method, Lambda iteration, fast-decoupled algorithms, and integer programming. These 

methods have distinct mathematical characteristics, computational requirements and varying considerably in their 

adaptability to the modelling and solution requirements of different power system applications. These conventional 

OPF techniques are based on mathematical formulations which have to be simplified in order to get an optimal 

solution. Some of the weakness of the conventional methods include: limited ability in solving real-world large scale 

optimization problems, weakness in handling constraints, poor convergence and stagnation, slow computational time 

(especially if the number of variables is large) and expensive in computing large power system solutions (Mota-

Palomino & Quintana 2016). 

 

To overcome the shortcomings of conventional techniques, nature-inspired methods have been developed and 

applied to OPF problems in the recent past. The major advantages of these methods include: fast convergence rate, 

appropriate for solving non-linear optimization problems, ability to find global optimum solutions, suitable for 
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solving multi-objective optimization problems, pertinent in finding multiple optimal solutions in a single simulation 

run and versatile in handling constraints (Mandal & Roy 2013).  

 

Nonetheless, since the objective function of reactive power dispatch problem is not convex, many local optima exist. 

Therefore, the linear programming method is very likely to get trapped into one of these local optima and cannot 

achieve a global optimal solution. Moreover, linear programming ignores the higher-order terms, so the accuracy of 

the results can also be affected (Biskas et al. 2005). The quadratic programming method is another method that can 

be used to solve the reactive power dispatch problem (Nanda, Kothari & Srivastava 2015). Quadratic programming 

is more adaptable to the nonlinear characteristic of reactive power dispatch problem than linear programming. The 

disadvantage is that quadratic programming does not work very well for the high dimensional problems, as the 

dimension increases the computation time would increase dramatically. The OPF provides a useful support to the 

operator to overcome many difficulties in the real time control and operation planning of power systems (Xia & 

Chan 2006). Depending on the specific objectives and constraints, there are different OPF formulations. The typical 

objectives of OPF problems are minimization of the total fuel cost, minimization of the transmission loss, 

maximization of the degree of security of a system, or a combination of some of them. Most researches concentrated 

only on power problems involving very small equations whose matrices can be conveniently handled manually 

(Arrillaga & Arnold 1994). With the advent of digital computers, the solutions to power problems were reduced to 

sets of algorithms solved by computers.  

 

The first of these methods was the Gauss-Seidel iterative algorithm using the nodal-admittance matrix method, with 

the first successful computer program developed by Ward and Hale in 1956 (Arrillaga & Arnold 1994). Like the bus 

admittance matrix method, the Gauss-Seidel iterative algorithm was simple in structure, with lower memory 

requirement and less computational time per iteration. But the major problem was the slow rate of convergence, 

therefore large number of iterations are needed, especially in large systems where the algorithm was discovered to 

be obsolete, as the number of iterations required for a solution was found to be relatively high. The need to study 

power problems for large systems became necessary with the increase in high voltage interconnections between 

systems. A more successful algorithm and the most universally acceptable replacement for the Gauss-Seidel method 

was the Newton-Raphson method. It was found to be very suitable for large-scale power systems, with more degree 

of accuracy, convergence after a few iterations, which are independent on the system size. However, it was a 

difficult solution technique, as calculations were complex, hence more computer time per iteration was involved, 

and large computer memory required.   

 

Other traditional mathematical optimisation methods include: Linear and non-linear programming, gradient-based 

method, dynamic programming, interior point method, Lambda iteration, fast-decoupled algorithms, and integer 

programming (Kumar & Alwarsamy 2011), (Chukwu, Ahiakwo & Nanim 2007), (Mehdinejad et. al 2016). In most 

of these algorithms, optimality of solutions was mathematically formulated, and could be applied to large-scale 

problems. They have no problem-specific parameters, and most of them have high computational efficiency, with 

ease of implementation. However, solutions obtained using them have their inherent implementation limitations. 

The solutions for large-scale systems are not very simple. Many of the techniques fail to get optimal solutions, with 

a possibility of being stuck in local optima (Xia & Elaiw 2010), (Lenin & Reddy 2014), (Lenin, Reddy & Kalavathi 

2016).  

 

Linear programming encounters poor computation efficiency; while dynamic programming suffers from the curse of 

dimensionality, a process whereby the dimensions of the economic load dispatch (ELD) problem become too large 

that it requires massive computational effort (Santos & Da Costa, 2015). These problems affect their application to 

practical generator problems with ramp rates, valve-point effects and prohibited operating zones constraints. The 

conventional methods of optimal power flow are hugely challenged with poor convergence and stagnation, slow 

computational time for large number of variables and expensive in computing large power system solutions. The 

development of evolutionary techniques and their hybrids has ameliorated these challenges (Vlachogiannis & Lee 

2016), (Zhao, Guo & Cao 2015), Singh, Mukherjeeb,  & Ghoshal, 2015).  This paper is hinged on the need to adopt 

these heuristic approaches in solving dispatch and power flow problems in the Nigeria power system. In this paper, a 

nature-inspired algorithm, particle swarm optimisation method was used to solve OPF problems in the Nigeria 

power system so as to overcome the difficulties of using the mathematical methods. 
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2.0 Material and methods 

 

The power flow optimization problem was solved by implementing the Particle Swarm Optimization (PSO) 

algorithm in MATPOWER 7.1 toolbox. A modified MATPOWER code utilizing particle swarm optimization 

algorithm was developed to solve the power flow problem in the power systems. The Particle Swarm Optimization 

method results would be compared with the conventional Newton Raphson method for the IEEE-14 bus network 

and validated on the Nigeria 52-bus power system so as to show the effectiveness of the PSO in solving power flow 

problems. 

 

2.1 Fundamental Equations for PSO Algorithm 

 

2.1.1 Particle 𝑋𝑖(𝑘): 

A candidate solution represented by a d-dimensional real-valued vector, where d is the number of optimized 

parameters; at iteration k, the ith particle 𝑋𝑖(k) can be described as (Bratton & Kennedy 2007): 

𝑥𝑖(𝑘) = [𝑥𝑖1(𝑘), 𝑥12(𝑘), …… . , 𝑥𝑖𝑑(𝑘)]                                                                                        (2.1) 

2.1.2 Population:  

This is a set of N particles at iteration k. 

Pop(k) = [𝑋1(𝑘), 𝑋2(𝑘), …… . . 𝑋𝑁(𝑘)]                                                                                          (2.2) 

Where N represents the number of candidate solutions. 

2.1.3 Particle velocity 𝑉𝑖(𝑘):  
The velocity of the moving particles represented by a d-dimensional real-valued vector; at iteration k, the ith particle 

𝑉𝑖(𝑘) can be described as (Bratton & Kennedy 2007): 

𝑉𝑖(𝑘) = [𝑉𝑖1(𝑘), 𝑉𝑖2(𝑘), …… . . , 𝑉𝑖𝑑(𝑘)]                                                                                       (2.3) 

Where 𝑉𝑖𝑑(𝑘) is the velocity component of the ith particle with respect to the dth dimension. 

𝑉𝑑+1 = 𝑘 ∗ (𝑤 ∗ 𝑉𝑑 + 𝜑1. 𝑟𝑎𝑛𝑑(𝑥) ∗ (𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑑) + 𝜑2. 𝑟𝑎𝑛𝑑(𝑥)

∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑑))                                                                                                       (2.4) 

𝑥𝑑+1 = 𝑥𝑑 + 𝑉𝑑+1                                                                                                                              (2.5) 

Where, 

w is the inertia weight factor, 

𝜑1and 𝜑2 are acceleration factors,  

rand () is a random value between 0 and 1.  

k is the constriction factor. 

2.1.4 Inertia weight w(k):  

(𝑤) = 𝑤𝑚𝑎𝑥 −
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

∗ 𝑖𝑡𝑒𝑟                                                                                       (2.6) 

Where 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the maximum number of iterations and iter is the current number of iterations. 

2.1.5 Constriction Factor χ:  

The velocity update equation with the constriction factor can be expressed as follows: 

𝑉𝑖𝑗
𝑘+1 = 𝜒[𝑤 ∗ 𝑉𝑖𝑗

𝑘 + 𝑐1 ∗ 𝑟1(𝑃𝑏𝑒𝑠𝑡 𝑖𝑗
𝑘 − 𝑋𝑖𝑗

𝑘) + 𝑐2 ∗ 𝑟2 ∗ (𝐺𝑏𝑒𝑠𝑡 𝑖𝑗
𝑘 − 𝑋𝑖𝑗

𝑘)]                             (2.7) 

With ∅ = ∅1 + ∅2;  ∅1 = 𝑐1𝑟1; ∅2 = 𝑐2𝑟2                                                                                  (2.8) 

Eq. (3.6) is used under the constraint that Ø ≥ 4. If Ø < 4, then all particles would slowly spiral toward and around 

the best solution in the searching space without convergence guarantee, but if Ø > 4, then all particles are guaranteed 

to converge quickly (Bratton & Kennedy 2007): 

2.1.6 Individual best 𝑃𝑏𝑒𝑠𝑡 𝑖 and Global best  𝐺𝑏𝑒𝑠𝑡 : 

𝑃𝑏𝑒𝑠𝑡 𝑖 = [𝑃𝑏𝑒𝑠𝑡 𝑖1, 𝑃𝑏𝑒𝑠𝑡 𝑖2, …, 𝑃𝑏𝑒𝑠𝑡 𝑖𝑑]                                                                             (2.9) 

While Global best  𝐺𝑏𝑒𝑠𝑡  is the best position among all of the individual best positions achieved thus far. 

2.1.7 Stopping criteria:  

The search process will be terminated whenever one of the following criteria is satisfied. 

• The number of iterations since the last change of the best solution is greater than a pre-specified number. 

• The number of iterations reaches the maximum allowable number. 
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Fig 2.1: Flow Chart of the PSO Technique 

 

2.2 The Newton-Raphson procedure is as follow: 

 

Step 1: Choose the initial values of the voltage magnitudes |𝑉|(0) of all 𝑛𝑝 loads buses and n-1 angles 𝛿(0) of the 

voltages of all the buses except the slack bus. 

Step 2: Use the estimated  |𝑉|(0)and 𝛿(0)  to calculate a total n-1 number of injected real power 𝑃𝑐𝑎𝑙𝑐
(0)

 and equal 

number of real power discrepancy ∆𝑃(0).  

Step 3: Use the estimated  |𝑉|(0) and 𝛿(0) to calculate a total 𝑛𝑝 number of injected reactive power 𝑄𝑐𝑎𝑙𝑐
(0)

 and equal 

number of real power discrepancy ∆𝑃(0). 

Step 4: Use the estimated  |𝑉|(0)  and 𝛿(0) to formulated the Jacobian matrix 𝐽(0).  

Step 5: Solve the load flow problem for 𝛿(0) and 𝛥|𝑉|(0) ÷ 𝛥|𝑉|(0).  

Step 6: Obtain the updates from: 

𝜹(𝟏) = 𝜹(𝟎) + ∆𝜹(𝟎)                                                                                                    (2.10) 

|𝑉|(1) = 𝛥|𝑉|(0) + [
𝛥|𝑉|(0)

|𝑉|(0)
]                                                                                                       (2.11) 

Step-7: Check if all the mismatches are below a small number. Terminate the process if yes. Otherwise go back to 

step-1 to start the next iteration with the updates given by (1) and (2).  

The result can be found in a form of linear system of equations that can be expressed as: 
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[
∆𝜃
∆|𝑉|

] = 𝐽−1 [
∆𝑃
∆𝑄

] Here, Δ𝑃 and Δ𝑄 are called mismatch equation. 

Where, 

∆𝑃𝑖 = −𝑃𝑖 + ∑|𝑉𝑖||𝑉𝑘|(𝐺𝑖𝑘𝑐𝑜𝑠𝑖𝑘 + 𝐵𝑖𝑘𝑠𝑖𝑛𝜃𝑖𝑘)

𝑁

𝑘=1

                                                                    (2.12) 

∆𝑄𝑖 = −𝑄𝑖 + ∑|𝑉𝑖||𝑉𝑘|(𝐺𝑖𝑘𝑠𝑖𝑛𝑖𝑘 − 𝐵𝑖𝑘𝑐𝑜𝑠𝜃𝑖𝑘)

𝑁

𝑘=1

                                                                  (2.13) 

and J is a matrix of partial derivatives known as a Jacobian Matrix: 

𝐽 =

[
 
 
 
𝜕∆𝑃

𝜕𝜃

𝜕∆𝑃

𝜕|𝑉|
𝜕∆𝑄

𝜕𝜃

𝜕∆𝑃

𝜕|𝑉|]
 
 
 

                                                                                                                             (2.14) 

The sets of linear equations are solved to determine the next guess (m+1) of voltage magnitude and angles based on: 

𝜃𝑚+1 = 𝜃𝑚 + ∆𝜃                                                                                                              (2.15) 

|𝑉|(𝑚+1) = |𝑉|(𝑚) + ∆|𝑉|                                                                                                              (2.16) 

This iteration process continues until a stopping condition is met. A typical stopping condition is to end the iteration 

process if the standard of the iterative conditions is under a standard value. 

 

3.0 Results and Discussions 

The superior performance of the Particle Swarm Optimisation (PSO) method over the Newton Raphson method for 

power flow optimisation was first verified on IEEE 14 bus system and then was validated on the extended Nigeria 

52-bus power system. 

 

 

3.1 Optimal Power Flow Results of the IEEE 14 Bus Network with the Conventional Newton Raphson 

Method  

The runpf function can calculate the power flow of the IEEE 14 bus network In MATLAB 7.10 environment as 

shown in Figure 4.5 below. 

 
Figure 3.1. Optimal Power Flow Results of System Summary for IEEE 14 bus network 
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Figures 3.1 shows the optimal power flow results for the IEEE 14 bus network using the conventional Newton 

Raphson method. The total active power loss and reactive power loss are 13.393MW and 54.54MVAR respectively. 

Bus 1 is assigned as the slack bus. Bus 3 has the minimum voltage magnitude of 1.010p.u while bus 8 has the 

maximum voltage magnitude of 1.090p.u. The minimum voltage angle of -16.03deg was seen at bus 14 while the 

maximum voltage angle of 0.000deg was in bus 1. The maximum line active and reactive power loss was 4.3MW 

and 13.12MVAR at line 1 to 2.  

 

3.2 Case 2- Optimal Power Flow Results of the IEEE 14 bus network with the PSO Algorithm 

The results below show the implementation of the PSO algorithm for the optimal power flow in the IEEE 14 bus 

network. The system Summary of the Optimal Power Flow Results for the  IEEE 14 bus network using the PSO 

method is shown in figure 3.2 below. 

 

 

 
Figure 3.2. Optimal Power Flow Results of System Summary for IEEE 14 bus network using the PSO method 

 

Implementing the PSO method as shown in Fig 3.2, can be seen that the total active power loss and reactive power 

loss for the IEEE 14 bus network were reduced to 9.287MW and 39.16MVAR respectively. The maximum voltage 

magnitude of 1.060 p.u was seen in Bus 1, while Bus 4 has the minimum voltage magnitude of 1.014 p.u. The 

minimum voltage angle was -14.27deg. at Bus 14 while the maximum voltage angle was in bus 1. The maximum 

power loss of 2.90MW and 8.86MVAR was seen on line 1-2.   

Table 3.1. Comparison of the Real Power Loss at Each Branch 

Branch Number From Bus To Bus  Conventional NR Method PSO Optimized 

1 1-2  4.298 MW 2.902MW 

2 1-5  2.763 MW 2.051MW 

3 2-3  2.323 MW 1.344MW 

4 2-4  1.677 MW 1.285MW 

5 2-5  0.904 MW 0.737MW 

6 3-4  0.373 MW 0.099MW 

7 4-5  0.514 MW 0.331MW 

8 4-7  0 .000MW -0.000MW 

9 4-9  0 .000MW 0.000MW 
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10 5-6  0 .000MW 0.000MW 

11 6-11  0.055 MW 0.049MW 

12 6-12  0.072 MW 0.072MW 

13 6-13  0.212 MW 0.208MW 

14 7-8  0 .000MW 0.000MW 

15 7-9  0 .000MW 0.000MW 

16 9-10  0.013 MW 0.015MW 

17 9-14  0.116 MW 0.131MW 

18 10-11  0.013 MW 0.010MW 

19 12-13  0.006 MW 0.006MW 

20 13-14  0.054 MW 0.047MW 

 

 

3.3 Case 3- Optimal Power Flow Results of the Nigeria 52 Bus Network with the Conventional Newton 

Raphson Method 

The runpf function can calculate the power flow of the Nigeria 52 bus network in MATLAB 7.10 environment as 

shown in Figure 3.3 below. 

 

 

 
Fig 3.3: Optimal Power Flow Results of System Summary for Nigeria 52 bus network 

 

The Optimal power result of the Nigeria 52 Bus power system using the conventional Newton Raphson method is 

shown in Fig 3.3.  The total active power loss and reactive power losses were 385.2MW and 183.4MVAR 

respectively. Bus 16 has the minimum voltage magnitude of 0.908p.u while bus 1 has the maximum voltage 

magnitude of 1.000p.u. The minimum voltage angle of -0.80deg was seen at but 14 while the maximum voltage 

angle was in bus 1. The maximum line power losses of 30.4MW and 8.52MVAR were seen on line 3 to 4.  
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3.4 Case 4- Optimal Power Flow Results of the Nigeria 330kV 52 Bus network with the PSO Algorithm 

 

The PSO algorithm was implemented in the Nigeria 52 Bus power network and the results are shown below. The 

system summary for Nigeria 52 bus network with the PSO method is shown in Fig 3.4: 

 

 
Fig 3.4: Optimal Power Flow Results of System Summary for Nigeria 52 bus network with the PSO method 

 

Implementing the PSO method as shown in Fig 3.4, it can be seen that the total active power loss and reactive power 

loss for the Nigeria 330kV 52-Bus power network were reduced to 175.1MW and 81.4MVAR respectively. The 

maximum voltage magnitude of 1.000p.u was seen in Bus 3, while Bus 19 has the minimum voltage magnitude of 

0.969p.u. The minimum voltage angle was -0.87deg. at Bus 19 while the maximum voltage angle was 0.000p.u in 

bus 1. The maximum line power loss of 12.4MW and 1.3MVAR was seen on line 1-2.   

Table 2.2 Comparison of the Real Power Loss at Each Branch of the Nigeria 52 Bus Power System 

Branch 

Number 

From Bus To Bus  Conventional NR Method  

(MW) 

PSO Optimized 

            (MW) 

1 1 2 22.1 12.4 

2 2 3 10.3 5.30 

3 3 4 30.4 5.80 

4 4 5 18.5 6.40 

5 5 6 19.0 3.32 

6 6 7 7.5 2.01 

7 7 8 3.35 3.50 

8 8 9 6.5 3.65 

9 9 10 6.45 3.21 

10 10 11 13.8 7.63 

11 11 12 12.3 6.82 

12 12 13 10.2 5.10 
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13 13 14 10.5 5.25 

14 14 15 10.3 5.13 

15 15 16 15.7 7.50 

16 16 17 4.55 2.44 

17 17 18 7.50 3.56 

18 18 19 9.30 4.87 

19 3 20 15.5 4.57 

20 4 21 8.15 3.56 

21 5 22 0.00 0.00 

22 22 23 2.10 0.00 

23 23 24 1.28 0.00 

24 24 25 0.00 0.00 

25 26 26 0.00 0.00 

26 26 27 0.00 0.00 

27 23 28 0.00 0.00 

28 24 29 0.00 3.21 

29 7 30 11.4 5.52 

30 30 31 15.2 6.11 

31 31 32 12.3 0.00 

32 32 33 10.6 0.00 

33 33 34 0.00 0.00 

34 34 35 0.00 0.00 

35 35 36 0.00 0.00 

36 36 37 0.00 4.30 

37 37 38 0.00 3.20 

38 30 39 0.00 3.50 

39 35 40 3.20 6.53 

40 8 41 7.10 3.50 

41 9 42 2.50 6.34 

42 10 43 5.50 7.14 

43 11 44 12.4 1.22 

44 12 45 0.00 2.35 

45 14 46 13.1 3.18 

46 46 47 12.8 1.21 

47 47 48 9.22 3.01 

48 46 49 2.45 5.32 

49 15 50 5.90 4.15 

50 17 51 10.4 2.10 

51 23 52 5.25 1.01 

 

 

4.0. Conclusion  

 

The results from the Optimal Power Flow for IEEE 14 bus network with the conventional Newton Raphson method 

in Fig. 3.1 showed that the total active and reactive power losses were 13.39MW and 54.54MVAR respectively. 

There was convergence after 2 iterations at 0.98 seconds. The voltage profile was between the minimum value of 

1.010p.u and a maximum of 1.090p.u with a voltage angle of -16.03deg. The maximum line active and reactive 

power losses were 4.3MW and 13.12MVAR at line 1 to 2. When the Particle Swarm Optimisation algorithm was 

implemented on the IEEE 14 bus network for Optimal Power Flow solution as shown in Fig. 3.2, the total active 

power and reactive power losses were reduced to 9.29MW and 39.16MVAR. The system time of convergence was 

faster after 1 iteration at 0.20seconds. Also, the maximum line active and reactive power losses on line 1 to 2 were 

reduced remarkably to 2.902MW and 8.86MVAR respectively. These have shown that the system was better 

optimised with the PSO algorithm than the conventional method. 

 

This was also validated on the Nigeria 330kV 52-Bus network where the total active and reactive power losses were 

385.2MW and 183.4MVAR respectively when the Optimal Power Flow solution was done with the conventional 
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Newton Raphson method as shown in Fig 3.3. The convergence was after 5 iterations at 3.57seconds. The maximum 

line active and reactive power losses were 30.4MW and 8.52MVAR at line 3 to 4.   When the PSO algorithm was 

implemented on the Nigeria 330kV 52-Bus network as shown in Fig. 3.4, it was seen to be better optimised.  The 

total active power and reactive power losses were substantially reduced to 175.1MW and 81.4MVAR. The system 

time of convergence was faster and occurred after 2 iterations at 2.03seconds.  Also, the maximum line active and 

reactive power losses on line 1 to 2 were reduced greatly to 12.4MW and 1.30MVAR respectively. Thus, it could be 

seen that the PSO algorithm have proved to exhibit a superior performance for optimisation of a large power system 

at a better speed of convergence when compared with the conventional method.    

 

5.0 Recommendation 

Further study should be done on the effects of DG incorporation to the optimal power flow solution with the PSO 

method. Other, metaheuristic methods like genetic algorithm and bee colony optimisation methods should be 

compared to ascertain the most effective for power flow solution with DG integration in the Nigeria power system. 
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