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Abstract  

Due to the frequent and unpredictable occurrence of fault in our power transmission system, a need for the method 

intelligent enough to identify, categorize, and locate faults becomes imminent so as to ensure and guarantee an optimal 

reliability of the protection system of the transmission system/network. This paper presents an integral approach for 

fault diagnosis using a time-frequency (S-Transform) technique for fault detection, an Artificial Neural Network 

(ANN) called Pattern Recognition Algorithm for fault classification and a Travelling Wave technique for fault location 

on 47.39km Ajaokuta to Lokoja 330kV transmission line based on MATLAB/SIMULINK simulation and analysis. 

The S-Transform method employs a scalable and moving localizing Gaussian window to identify fault using the 

energy of the voltage and current signals, the chosen ANN classification network makes use of the pre-fault and fault 

voltages and current data to train the neural network to be able to classify fault and the Traveling wave approach uses 

the line voltage, current, propagation velocity, inductance, capacitance and length of line to find the fault distance. 

Various fault types were simulated on MATLAB/SIMULINK software and for each, the value of current magnitude 

of the energy signal were greater than the value of the voltage magnitude of the energy signal in accordance to 

conventional circuit theorem, a successful fault classification with a good performance and gradient value and the 

fault distance located along the transmission line. 
 

Keywords:  S-Transform, Pattern Recognition, Travelling Wave, Waveform and Signal. 

1. Introduction 

The transmission line is a crucial component of the electrical power system that transfers generated power to 

consumers. Transmission line can either be overhead or underground type depending on how they are installed. The 

overhead type of transmission line system seems to be quite the cheaper and effective means of transferring electrical 

power over a long distance. Transmission lines are one of the most vulnerable engineering systems due to their large 

length and considerable environmental exposure. Storms, rain, wind, and other natural disasters, as well as wildlife, 

birds, and even developing vegetation, all result in short circuits between the intermediate lines and the grounds. 

Supplying uninterrupted power to end user becomes a huge challenge due to this frequently occurring faults in the 

transmission line. Although these faults are unavoidable, it is imminent to accurately identify, categorize, and pinpoint 

fault distance. Relays quickly and accurately detect faults, allowing the faulty part to be isolated from the system. This 

is essential to protect equipment and maintain continuity of power to healthy parts of the system. Additionally, accurate 

fault classification also provides critical information about fault location, speeding up repair efforts thereby reducing 

system downtime (Moursalou, 2015; Luke and Erika, 2020). 
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Several studies have established several approaches for fault identification on a transmission line, which have been 

fully evaluated. Each of these studies emphasized the important discoveries, methodologies, and contributions made 

to the subject of fault analysis in power system engineering. Shafiullah, Abido and Al-Mohammed in “Advanced 

signal processing techniques (SPTs) for feature extraction”, introduced the importance of SPTs in analyzing power 

system transients. They illustrated two advanced SPTs: the discrete wavelet transforms and the Stockwell transform. 

After the illustration of the targeted SPT, they presented a step-by-step feature extraction process from the recorded 

three-phase faulty current signals. S-transform was also used to extract useful features from the phasor measurement 

units (PMU) recorded current signals. The approach fetches the extracted features as inputs to the machine learning 

tools including the multilayer perception neural network, support vector machine and extreme learning machine to 

diagnose i.e., to detect, classify and locate the faults. (Shafiullah, 2022). Additionally, in "S-transform based fault 

detection algorithm for enhancing distance protection performance," Jose, Marjan, David, Sadegh, and Vladimir 

(2021) proposed a fault detection algorithm based on the Fast Discrete Stockwell Transform. This algorithm can 

address issues found during fault detection and improve the functionality of the current distance protection during 

fault occurrence in systems with high penetration of power electronics-based generators.  

In Ravi, Ebha, Anamika, and Thoke's article from 2014, "fault classification of phase-to-phase fault in six phase 

transmission line using Haar wavelet and ANN," They discovered that the two approaches depended on the standard 

deviation of the estimated coefficients of voltage and current obtained for all potential line-to-line faults from a single 

side only. It was shown that both approaches were accurate in identifying all fifteen types of line faults for a six-phase 

transmission line. These two approaches work for all sorts of line-to-line fault resistance, therefore changing the 

inception angle or even the resistance fault will not impact the classification result. Ahmed Sabri Altaie (2015) focuses 

on a novel way to detect, classify, and localize transmission line faults in "Design of a new digital relay for 

transmission line fault detection, classification, and localization based on new composite relay and artificial neural 

network approach." First, the novel composite relay (CR) was employed to detect failures of any kind, including series 

faults. Second, the Feed Forward Artificial Neural Network (FFANN) was used to classify faults and determine the 

most effective way to use it. The three-phase series compensated network in MATLAB/SIMULINK served as the data 

source.  

Lastly, the type of fault localization to use was selected using FFANN in combination with a digital controller. In 

"Accurate two-terminal transmission line fault location using travelling waves," Lopes, Dantas, Silva, and Costa 

(2017) introduced a fault localization method based on two-terminal TW approach. Data synchronization of the line 

parameter is not required since this approach relies on the time delay between the initial incident wave and the 

subsequent reflection from the fault spot at both ends of the line. Another TW-based protection algorithm for parallel 

transmission lines is described by Hasheminejad, Seifossadat, Razaz, and Joorabian (2016) in "Traveling-wave-based 

protection of parallel transmission lines using Teager energy operator and fuzzy systems," which makes use of 

Karenbaher's phase to modal transform and Teagar energy operator. It proved to be quite successful as a high accuracy 

of 0.9% for the greatest error and 0.15% for the least error was reached. 

Despite the numerous and significant discovery in the subject of fault analyses, most researchers have failed to 

integrate some of the techniques together to achieve a more efficient model. This paper presents an integral approach 

for fault diagnosis using S-Transform technique based on a moving and scalable localizing Gaussian window for fault 

detection, Pattern Recognition Algorithm of ANN using the pre-fault, fault voltage and current of the transmission 

line were used as inputs of the ANN network selected for fault classification and Traveling Wave technique which 

uses the voltage and current coming from the transmission line as well as distance of the line, the propagation velocity, 

inductance of the line, capacitance of the line and change in the time that the fault occurs for fault location. The various 

techniques employed for the diagnosis were discussed in details. The 47.39km Ajaokuta to Lokoja 330kV transmission 

line was extracted from the MATLAB/SIMULINK Nigeria 58 bus system model and used as a case study to simulated 

the various fault conditions (phase to ground, double phase, phase to phase and three phase fault) which acts an input 

to the S-Transform model, Patten Recognition model and Travelling wave model in MATLAB/SIMULINK. The 

results from the diagnosis of each fault case were also discussed. 
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2.0 Material and methods 

 

The methodology employed in carrying out this study is presented. A three-method (ANN, S-Transform, and Traveling 

wave) case study approach was used. The 47.39km Ajaokuta-Lokoja 330kV transmission line was extracted and 

modelled from the Nigerian 58-bus system in MATLAB/SIMULINK. The S-Transform equation was modelled using 

MATLAB/SIMULNK blocks. The pre-fault and fault values of the voltage and current was used as an input to the 

ANN model to train the pattern recognition algorithm against the target truth table of table 3. The traveling wave 

equation was also modelled using the MATLAB/SIMULNK blocks. The integral model was simulated at pre-fault 

and various fault conditions. At various fault conditions, the magnitude of the energy of the voltage and current signal 

were used to detect whether fault occurred, the ANN model performance and gradient were used to check for 

successful classification and the estimated distance at which the fault occurred was displayed in the travelling wave 

model. The block diagram in figure 1 represents the methodological procedure for this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Block Diagram Illustrating the Research's Methodology.  

The input phase voltage (𝑉𝑎 , 𝑉𝑏 𝑎𝑛𝑑 𝑉𝑐) and phase current (𝐼𝑎 , 𝐼𝑏  𝑎𝑛𝑑 𝐼𝑐) are the input parameters to the power system 

network model gotten from the 47.39km Ajaokuta-Lokoja 330kV transmission line of the 58-Bus power system 

network as shown in Table 1. 

  

Calculate the Propagation Velocity using the Traveling 

Wave Propagation Velocity Equation 

Estimating the Fault Location using the Traveling Wave 

Fault Location Equation Model 

Selecting the Multi-layer Perception Neural Network 

Architecture and Applying Back-propagation 

Learning/Training Rule 

Classification of the Fault using the Trained Neural 

Network 

Modelling of the 47.39km Ajaokuta-Lokoja 330kV 

Transmission Line in MATLAB/SIMULINK 

Recording of Pre-fault and Fault Values of the Voltage 

and Current Signals 

Modeling and Simulation of the Voltage and Current 

Signal Discrete S-Transform Computation Model 
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Table 1: Pre-fault Voltage and Pre-fault Current Parameter (Input Data) Obtained from the 47.39km Ajaokuta-

Lokoja 330kV Transmission Line of the 58-Bus Power System Network 

Pre-Fault Voltage and Current Parameter in pu 

𝑽𝒂 𝑽𝒃 𝑽𝒄 𝑰𝒂  𝑰𝒃  𝑰𝒄 

0.330226 -0.66065 0.330427 -0.31355 0.158394 1.55E-01 

0.339173 -0.66057 0.3214 -0.31354 0.154124 0.159412 

0.348036 -0.66033 0.312294 -0.31345 0.149817 0.163635 

0.356813 -0.65992 0.303111 -0.31329 0.145473 0.167817 

0.365503 -0.65936 0.293853 -0.31305 0.141094 0.171957 

0.374102 -0.65863 0.284523 -0.31273 0.136678 0.176055 

0.382609 -0.65773 0.275122 -0.31234 0.132229 0.18011 

0.391022 -0.65668 0.265654 -0.31187 0.127747 0.184119 

0.399338 -0.65546 0.25612 -0.31132 0.123234 0.188084 

0.407555 -0.65408 0.246523 -0.31069 0.11869 0.192002 

0.415672 -0.65254 0.236865 -0.30999 0.114117 0.195872 

0.423687 -0.65084 0.227148 -0.30921 0.109515 0.199694 

0.431597 -0.64897 0.217376 -0.30835 0.104886 0.203466 

0.4394 -0.64695 0.20755 -0.30742 0.100231 0.207188 

0.447095 -0.64477 0.197672 -0.30641 0.09555 0.210857 

0.454679 -0.64243 0.187746 -0.30532 0.090846 0.214475 

0.462152 -0.63993 0.177774 -0.30416 0.086121 0.218041 

 

The fault voltage (𝑉𝑎𝑓, 𝑉𝑏𝑓 and 𝑉𝑐𝑓) and fault current (𝐼𝑎𝑓 , 𝐼𝑏𝑓  𝑎𝑛𝑑 𝐼𝑐𝑓) are the output parameters of the modelled 

system as shown in the Table 2 indicating the different fault conditions simulated. 

Table 2: Fault Voltage and Fault Current Parameter (Output Data) of the Different Fault Simulation Obtained 

from the 47.39km Ajaokuta-Lokoja 330kV Transmission Line of the 58-Bus Power System Network 

Fault Voltage and Current Parameter in pu 

Condition 𝑽𝒂𝒇 𝑽𝒃𝒇 𝑽𝒄𝒇 𝑰𝒂𝒇  𝑰𝒃𝒇  𝑰𝒄𝒇 

No Fault 0.330226 -0.66065 0.330427 -0.31355 0.158394 1.55E-01 

A – G 0.3511 -0.6603 0.3091 -1.721 0.3015 0.2968 

B – G 0.3801 -0.7106 0.3305 -0.1471 1.318 0.3172 

C – G 3.31E-01 -0.6185 2.88E-01 0.1576 6.36E-01 -0.7676 

A – B 0.2419 -0.617 0.3752 2.296 -2.447 0.1505 

B – C 0.4102 -0.8198 0.4095 -0.3147 -0.5994 0.9139 

C – A 0.3331 -0.6586 0.3256 2.417 0.1653 -2.583 

AB – G 0.3324 -0.7272 0.3949 -0.4051 0.8533 2.7 

BC – G 0.2724 -0.6411 0.3687 2.08E+00 -0.554 -0.02734 

CA – G 0.4059 -0.7511 0.3452 -0.6231 -0.6858 0.3115 

A – B – C 0.2425 -0.7084 0.4659 3.1 -1.644 -1.456 

 

2.1 Modeling of the S-Transform Equation for Detection of Fault Using MATLAB/SIMULINK 

Stockwell et al. (1996) presented the S-transform in "Localization of the Complex Spectrum: The S-transform," which 

is a variation that shows some of the desirable properties that are lacking in the continuous wavelet transform like the 

ability to detect the disturbance correctly in the presence of noise. While keeping its link with the Fourier spectrum, 

the S-transform provides a unique frequency dependent resolution. 

S-Transform of a basic continuous signal (voltage and current signal) h(t) of a transmission line is defined by the 

following equation; 

S(τ, f) =  ∫ ℎ(t) w(f, τ − 𝑡) e(−2πift)∞

−∞
dt   (1) 
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But, 

w(f, τ)  =  
|𝐹|

√2𝜋
 e−(

𝑡²

2𝛼²
)
     (2)  

Where equation (2) is called the Gaussian modulating function 

S(τ, f) =  ∫ h(t) {
│f│

α√2π
} . e

(
−f2(τ−t)2

2α2 )
. e(−2πift)∞

−∞
dt  (3) 

Combining equation (1) and (2), we obtain equation (3) 

Where f is the frequency in hertz, t is the time in seconds, and τ is the time location in seconds also known as the 

parameter determining the position of the Gaussian window on the t-axis and α is the standard deviation, which 

functions as a control factor for the transform's time and frequency resolution. Lower α values correspond to lower 

frequency and better temporal resolution, and vice versa. 

A reasonable value for α falls between 0.2 and 1. 

Equation (4) provides the DST expression while taking the discrete form of the continuous S-Transform into 

consideration. 

S(j, n) =  ∑ H(m + n). e
(

−2π2m2α2

n2 )
. e(i2πmj)N−1

m=0   (4) 

Where, j = 1 … N-1, n = 0, 1 … N-1. But the time samples and frequency step are indicated by j and n respectively. 

Next, the S-Transform yields the signal's energy E, which is as  

E =  {abs(S(j, n1))}2                    (5) 

The energy signal that you acquire from the S-Transform is used for the identification and classification of the 

transmission line fault (Anazia, Ogboh and Anionovo, 2020, Iwuamadi, Ezechukwu and Ogboh, 2022). 

The DST S-Transform equation from (4) is modelled in MATLAB/SIMULINK for the voltage and current signal and 

the result model is shown in Figure 2 and 3. 

Figure 2: The S-Transform Discrete Model           Figure 3: The S-Transform Discrete Model      for 

Voltage Signal.             for Current Signal. 

The discrete energy signal of voltage and current is the signal that depicts the magnitude, severity, and frequency of 

line faults. The Simulink model is displayed below.  
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Figure 4: The Voltage and Current Discrete S-Transform Energy Signal Simulink Model. 

Conventional theories of networks or circuits state that when a fault arises in an electrical circuit, the magnitude of 

the voltage drops and the magnitude of the current rises. Consequently, the voltage energy signal's amplitude can only 

exceed the current energy signal's size in the absence of fault in the network. It is expected that the voltage energy 

signal would be less than the current energy signal when a fault occurs in the network. If, following fault simulations, 

the voltage energy signal output is larger than the current energy signal output, the energy equation of (5) is not true 

(Iwuamadi et al., 2022). 

 

Figure 5: The Discrete S-Transform Model for the Voltage and Current Signal: A Comprehensive 

MATLAB/SIMULINK Subsystem. 

The MATLAB/SIMULINK subsystem model is used to compute the discrete values of the voltage and current during 

pre-fault and fault conditions, as well as the energy models for the voltage and current signal and the S-Transform 

fault detection model, as shown in Figure 6. The output of the MATLAB/SIMULINK voltage-current measurement 

block is linked to the inputs of the S-Transform fault detection model to extract the phase voltage and current signals, 

which are then evaluated using the mathematical model. The outcome is provided to demonstrate whether there is a 

fault or not. 

2.2 Modeling of the Fault Classification Technique Based on Pattern Recognition Algorithm of Artificial 

Neural Network (ANN) Using MATLAB/SIMULINK 

According to Ogboh, Nwangugu and Anyalebechi (2019) in “Fault detection on power system transmission line using 

artificial neural network (A comparative case study of Onitsha-Awka-Enugu transmission line)”, the mapping process 

of a function Ø that characterizes the input-output ANN operating technique is given below. 

y = Øx       (6) 

where Ø is the neural network's mapping function; Input vector: x; Output vector: y. 

The Neural Network's Learning Process 
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To achieve the intended design goal, the learning algorithm adjusts the synaptic weights in the network to match the 

aim. After the neural network has been trained, the output is generalized using a mathematical procedure. The neural 

network has the ability to produce logical results for inputs that were not present during training, this is referred to as 

generalization. The following fundamental attributes of the neural network are significant to this work: 

• Input-Output Mapping: For both real and simulation-based situations, the input signals to the network are the 

pre-fault and fault voltage and fault current phase values. The weights are adjusted to reduce the discrepancy 

between the desired and network outputs. It is necessary to be aware of the target values representing the 

desired output so as to use the supervised learning. The network is then continuously trained until there is no 

significance weight change which is known as a converging point. 

• Non-linearity: Each non-linear component is represented by a neuron. The group of neurons makes up the 

neural network also known as a non-linear system. 

• Adaptively: Once selected, the artificial neural network may be swiftly retrained to accommodate minor 

changes in the environment while being trained for a specific function (input-output pairs) in that 

environment. 

Selecting the Proper Network 

The ANN pattern recognition algorithm makes it feasible to differentiate between electrical power systems that are 

malfunctioning and those that are functioning normally by identifying which phase is experiencing a fault among the 

three-phase system.  

The pre-fault and fault values of the voltage and current of the corresponding line are determined by the different fault 

types. The neural network is utilized for fault classification based on the patterns of the pre-fault and fault voltage and 

current values obtained from the transmission line at one point. The neural network’s input (6) consists of the three 

phases’ voltages and currents which is used to train the network. The types of faults make up the four outputs of the 

neural network (Ogboh, Obute and Eleanya, 2019, Majid, Sanjeer and Rajveer, 2015). 

Table 3: The Truth Table of Back Propagation Neural Network for Fault Classification 

Fault Condition Network Outputs 

Phases A B C G 

No Fault  1 1 1 1 

A – G 1 0 0 1 

B – G 0 1 0 1 

C – G 0 0 1 1 

A – B  1 1 0 0 

B – C 0 1 1 0 

C – A  1 0 1 0 

A – B – G 1 1 0 1 

B – C – G 0 1 1 1 

C – A – G  1 0 1 1 

A – B – C  1 1 1 0 

 

Using the simulated and real data for fault classification network, the above truth table (table 3) gives the desired 

output of the network. The classification of the fault type occurs immediately the fault happened. The learning strategy 

used is the back propagation (BP) algorithm. The process of changing the weights and biases of the network to train 

it to do a particular job is known as the learning rule or training algorithm. So therefore, the back propagation learning 

rule or training algorithm is used to train the fault classification multi-layer perception neural network.  

According to Tables 1 and 2, the neural network with six neurons in the input layer, one hidden layer, ten hidden 

neurons, and four neurons in the output layer, or 6-10-4, achieved satisfactory performance among the back-

propagation networks with various combinations of hidden layers and different numbers of neurons in each hidden 

layer that were analyzed. The training set has a total of 1001 input and output patterns (1000 for each of the ten fault 

types), with six inputs and one output in each input output combination. 
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Figure 6: The Classification Network ANN Training Procedure. 

Figure 6 depicts the ANN training process for the chosen classification network. It displays the gradient at 8.59𝑥107, 

the number of iterations (687), and the best validation performance of the network was 0.609 at 687 epochs. Since the 

network is fitted, and the training, testing, and validation curves all have comparable features, indicating effective 

training and a strong performance.   

 

Figure 7: The Classification Network Confusion Matrix. 

The training, testing and validation stages has its confusion matrix presented in figure 7. Another way to evaluate the 

neural network’s performance is by plotting the confusion matrices of the fault’s types. The number of instances the 

neural network correctly classified are indicated by the diagonal green cells while the incorrect classifitions are 

indicated by the off-diagonal red cells. The last blue cell in each matrix represents the overall proportion of properly 

categorized instances in green, and vice versa for ash. The trained neural network's 63.8 percent effectiveness in 

determining the kind of defect is displayed in figure 7. In conclusion, the neural network can distinguish between each 

of the 10 various kinds of transmission line faults. 
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Figure 8: The Fault Classification Simulink Discrete Pattern Recognition ANN Subsystem Model. 

The classification model was extracted into a Simulink system model for easy integration as seen in figure 8. 

2.3 Modelling of the Fault Location Based on Traveling Wave Technique Using MATLAB/SIMULINK 

The reliability of power system operation depends on its ability to detect, locate, isolate and repair fault quickly as 

they occur. The voltage value at the point of failure drops dramatically as a fault occur on the transmission line. The 

sudden change generates a high frequency electromagnetic impulse known as a Travelling Wave (TW). The 

travelling wave accelerates away from the fault in both directions at nearly the speed of light. The fault is subsequently 

located and detected using the filtered signal (Raza, Benrabah, Alquthami and Akmal, 2020). 

A traveling wave is used in some of the most popular and trustworthy fault techniques; the two-ended idea is illustrated 

here. 

 

Figure 9: Two Ended Fault Locations Depending on When the First Arrivals Happened. 

Figure 9 illustrates the two-end fault location idea using traveling waves. It displays the location of the fault, and the 

traveling wave components that are reflected back to both the local and distant ends and the length of the line.  

The fault location m is determined by comparing the arrival timing of the traveling waves at both ends of the line. 

   m = 
[(𝑙+(𝑡𝐿−𝑡𝑅)𝑣)]

2
      (7) 

where the transmission line length is l; local end arrival time is tL; remote end arrival time is tR and the velocity of 

propagation is V.  

The propagation velocity is given as in equation 8 

v = √
1

(
𝑉²𝐶

𝐼
)𝑥 (

𝐼²𝐿

𝑉²
)
      (8) 



Ojukwu et al./ UNIZIK Journal of Engineering and Applied Sciences 3(1), 584-607       593 

 

 
 

 

Figure 10: The Propagation Velocity of the Traveling Wave Equation Simulink Model 

Modelling the propagation velocity of the traveling wave equation of (8) in MATLAB/SIMULINK gives the Simulink 

model in Figure 10. 

 

Figure 11: The Simulink Traveling Wave Fault Location Equation Model. 

The MATLAB/SIMULINK model for the fault location equation model as in equation (7) is shown in Figure 11. 

After replacing the propagation velocity, the fault distance (m) may be computed using the formula below: (John, 

Anionovo, and Obi, 2020) 

m = 

𝑙+(𝑡𝐿−𝑡𝑅)
√

1

(
𝑉²𝐶

𝐼 )𝑥 (
𝐼²𝐿
𝑉²

)

2
     (9) 
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Figure 12: The Simulink Traveling Wave Fault Location Equation Model with Propagation Velocity Equation. 

The Simulink model for the travelling wave fault localization equation is displayed in Figure 12, and it uses the 

propagation velocity equation to determine the fault's distance from the source. 

 

Figure 13: The Simulink Subsystem Traveling Wave Fault Location Model. 

The MATLAB/SIMULINK subsystem model as seen in Figure 13 is used for the location of the distance at which the 

fault occurred from the source on the transmission line. 
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Figure 14: The MATLAB/SIMULINK Model Used for the Fault Diagnosis of the 330 kV Ajaokuta to Lokoja 47.39km 

Transmission Line Network using S-Transform, Pattern Recognition and Travelling Wave Techniques. 

3.0 Results and Discussions 

 

The results covered the finding from the fault diagnosis of the Nigerian 58-Bus network using a case study of the 

47.39km Ajaokuta-Lokoja 330kV power transmission line. The outcomes were obtained using the several approaches 

that this study described. The following conclusions were reached as a result of simulating the Simulink model for the 

fault diagnostics for the different fault conditions. 

i. At Pre-fault Condition 

Figure 15 depicts the pre-fault voltage waveform of the system after modeling it with no fault. When there is no fault 

in the system, the three-phase voltage waveform moves in a uniform sinusoidal shape. The magnitude of the three-

phase gaussian window width looks to be 0.65pu. Figure 16 depicts the pre-fault current wave of the system under 

consideration. Because there is no fault current in the system, the magnitude of the current is relatively the same for 

each phase at 0.3pu less than the value of the voltage at 0.65pu. 

 

Figure 15: Pre-fault Voltage Waveform for the System Modelled       
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Figure 16: Pre-fault Current Waveform for the System Modelled.              

Figure 17 depicts the energy of the voltage signal in the pre-fault situation. The magnitude of the voltage energy signal 

obtained from the S-transform model is 1.6947𝑥1027𝐽, with a constant gaussian waveform throughout the plane. 

Figure 18 shows that the energy of the current signal obtained from the S-transform model is 1.2725𝑥1026𝐽. Since 

there is no failure in the system, the magnitude of the energy of the voltage signal at 1.6947𝑥1027𝐽 is larger than that 

of the energy of the current signal. 

 

Figure 17: The Voltage Signal Energy Waveform during Pre-fault Condition. 

 

Figure 18: The Current Signal Energy Waveform during Pre-fault Condition.   

Table 4: The Result Obtained at No Fault Condition 

S/N PARAMETER MAGNITUDE (PU) 

1 Voltage (V) 0.65 
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2 Current (I) 0.3 

3 Energy of the voltage signal Ej (J) 1.6947𝑥1027 

4 Energy of the current signal Ej (J) 1.2725𝑥1026 

 

ii. At Single Phase to Ground Fault 

The following data were obtained when a single phase to ground fault was simulated on the system, say on phase A, 

B, or C, at a time of 17msecs and persisted until it was cleared at 85msecs, which lasted roughly 68msecs. 

During failure simulation, a spike was seen in the defective phase. The magnitude of the current in the defective phase 

grew to around 40pu for the single phase to ground, while the current in the remaining healthy phases remained 

unchanged. After the fault is resolved, the amplitude of the defective phase's current becomes uniform with the size 

of the remaining healthy phases' current. Figures 20 shows the current waveform.   

 

Figure 19: Single Phase to Ground Fault Voltage Waveform for the System Modelled.               

 

Figure 20: Single Phase to Ground Fault Current Waveform for the System Modelled. 

Furthermore, the magnitude of the voltage energy signal from the S-Transform model in Figure 21 gets distorted at 

1.7𝑥1027𝐽 during the fault condition, which is now smaller than the magnitude of the current energy signal in Figure 

22 at 2.0𝑥1030𝐽. When the fault occurs at 17msecs, the current energy signal magnitude spikes to 2.0𝑥1030𝐽 and is 

recovered once the fault is cleared at 85msecs.  
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Figure 21: The Voltage Signal Energy Waveform during Single Phase to Ground Fault Condition  

 

Figure 22: The Current Signal Energy Waveform during Single Phase to Ground Fault Condition. 

Figure 23 depicts the fault classification back propagation ANN training approach chosen for the phase to ground (A-

G, B-G, or C-G) fault. It displays the number of iterations (111), the network's performance (0.0385, which is good) 

and the gradient (which is 0.00184). 

 

Figure 23: The Fault Classification BP ANN Training Procedure Selected for Single Phase to Ground Fault. 

The distance at which the phase to ground fault occurred is locate at 44.03km gotten from the output of the traveling 

wave model. 
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Table 5: The Result Obtained at Phase to Ground Fault Condition 

S/N PARAMETER MAGNITUDE (PU) 

1 Voltage (V) 0.4 

2 Current (I) 40 

3 Energy of the voltage signal Ej (J) 1.7𝑥1027 

4 Energy of the current signal Ej(J) 2.0𝑥1030 

5 Mean Square Error (MSE) 0. 0385 

6 Gradient & Validation  0. 00184 

7 Fault Distance in km 44.03 

 

iii. At Phase-to-Phase Fault Condition 

The following findings were obtained when a phase-to-phase fault was simulated on the system, at a time of 17msecs 

and persisted until it was cleared at 94msecs, which lasted roughly 77msecs. 

The current waveform reveals that once the fault arose, the faulty phase current magnitudes climbed to 120pu and 

persisted in this manner until the fault was cleared up. It was discovered that at the healthy phase, the amplitude of the 

current passing through it did not vary during the fault period. After the fault is resolved, the amplitude of the current 

in the faulty phases becomes uniform with the size of the current in the remaining healthy phase. Figures 25 shows 

the current waveform. 

 

Figure 24: Phase to Phase Fault Voltage Waveform for the System Modelled.  

 

Figure 25: Phase to Phase Fault Current Waveform for the System Modelled.     
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Furthermore, the magnitude of the voltage energy signal from the S-Transform model in Figure 26 gets distorted at 

1.7𝑥1027𝐽 during the fault condition, which is now smaller than the size of the current energy signal in Figure 27 at 

2.7𝑥1031𝐽. When the fault occurs at 17msecs, the current energy signal magnitude spikes to 2.7𝑥1031𝐽 and is 

recovered once the fault is cleared at 94msecs. 

  

Figure 26: The Voltage Signal Energy Waveform during Phase-to-Phase Fault Condition.   

 

Figure 27: The Current Signal Energy Waveform during Phase-to-Phase Fault Condition. 

Figure 28 depicts the fault classification back propagation ANN training process chosen for phase to phase (A-B, B-

C, or C-A) fault. It displays the number of iterations (43), the network's performance (0.00767, which is good), and 

the gradient (0.000805). 



Ojukwu et al./ UNIZIK Journal of Engineering and Applied Sciences 3(1), 584-607       601 

 

 
 

 

Figure 28: The Fault Classification BP ANN Training Procedure Selected for Phase-to-Phase Fault. 

The distance at which the phase-to-phase fault occurred is locate at 44.2km gotten from the output of the traveling 

wave model. 

Table 6: The Result Obtained at Phase-to-Phase Fault Condition 

S/N PARAMETER MAGNITUDE (PU) 

1 Voltage (V) 0.5 

2 Current (I) 120 

3 Energy of the voltage signal Ej (J) 1.7𝑥1027 

4 Energy of the current signal Ej (J) 2.7𝑥1031 

5 Mean Square Error (MSE) 0.00767 

6 Gradient & Validation  0.000805 

7 Fault Distance in km 44.2 

 

iv. At Double Phase to Ground Fault Condition  

The following data were obtained when a double phase to ground fault was begun on the system, at a time of 17msecs 

and persisted until it was cleared at 94msecs, which lasted roughly 77msecs. 

The current waveform reveals that once the fault occurs, the faulty phase current magnitudes increase to 120pu for the 

double phase to ground fault and continue in this manner until the fault is removed. During the fault period, the 

amplitude of the current flowing through the healthy phase remained constant. After the fault is resolved, the amplitude 

of the current in the faulty phases becomes uniform with the size of the current in the remaining healthy phase. Figure 

30 illustrates the current waveform. 
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Figure 29: Double Phase to Ground Fault Voltage Waveform for the System Modelled. 

 

Figure 30: Double Phase to Ground Fault Current Waveform for the System Modelled. 

Furthermore, the magnitude of the voltage energy signal from the S-Transform model in Figure 31 gets distorted at 

1.7𝑥1027𝐽 during the fault condition, which is now smaller than the size of the current energy signal in Figure 32 at 

 2.7𝑥1031𝐽. When the fault occurs at 17msecs, the current energy signal magnitude spikes to 2.7𝑥1031𝐽 and is 

recovered once the fault is cleared at 94msecs. 

  

Figure 31: The Voltage Signal Energy Waveform during Double Phase-to- Ground Fault Condition. 
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Figure 32: The Current Signal Energy Waveform during Double Phase-to-Ground Fault Condition. 

Figure 33 depicts the fault classification back propagation ANN training process chosen for a double phase-to-ground 

fault. It displays the number of iterations (54), the network's performance (0.00553, which is good), and the gradient 

(0.00101). 

 

Figure 33: The Fault Classification BP ANN Training Procedure Selected for Double Phase to Ground Fault. 

The distance at which the double phase ground fault occurred is locate at 44.74km gotten from the output of the 

traveling wave model. 

Table 7: The Result Obtained at Double Phase to Ground Fault Condition. 

S/N PARAMETER MAGNITUDE (PU) 

1 Voltage (V) 0.5 

2 Current (I) 120 

3 Energy of the voltage signal Ej (J) 1.7𝑥1027 

4 Energy of the current signal Ej (J) 2.7𝑥1031 

5 Mean Square Error (MSE) 0.00553 

6 Gradient & Validation  0.00101 
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7 Fault Distance in km 44.74 

 

 

v. At Three Phase Fault Condition  

On simulation of a three-phase fault condition. Figure 34 depicts the voltage waveform. When the fault was triggered, 

the three-phase voltage dropped from 0.6 to zero at 17msecs and persisted until the fault was cleared at 85msecs before 

it was restored. This lasted 68 milliseconds. When the three-phase fault was initiated at 17msecs, the current value 

rose to roughly 130pu for phase A, 150pu for phase B, and 130pu for phase C. This pattern continued until the fault 

was cleared at 90ms and the current waveform reverted to its initial point of zero. This is clearly seen in Figure 35. 

 

Figure 34: Three Phase Fault Voltage Waveform for the System Modelled. 

 

Figure 35: Three Phase Fault Current Waveform for the System Modelled.  

Furthermore, the magnitude of the voltage energy signal from the S-Transform model in Figure 36 gets distorted and 

lowers to 1.7𝑥1027𝐽 during the fault scenario, which is now smaller than the magnitude of the current energy signal 

in Figure 37, which is 3.1𝑥1031𝐽. When the fault occurs at 17msecs, the current energy signal magnitude spikes to 

3.1𝑥1031𝐽 and is recovered once the fault is cleared at 90msecs.  
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Figure 36: The Voltage Signal Energy Waveform during Three Phase Fault Condition. 

 

Figure 37: The Current Signal Energy Waveform during Three Phase Fault Condition. 

Figure 38 depicts the fault classification back propagation ANN training approach chosen for the three-phase ABC 

fault. It displays the number of iterations (384), the network's performance (0.00444, which is good), and the gradient 

(0.00125). 
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Figure 38: The Fault Classification BP ANN Training Procedure Selected for Three Phase Fault. 

The distance at which the three-phase fault occurred is locate at 44.76km gotten from the output of the traveling wave 

model. 

Table 8: The Result Obtained at Three Phase Fault Condition 

S/N PARAMETER MAGNITUDE (PU) 

1 Voltage (V) 0.65 

2 Current (Ia) 130 

3 Current (Ib) 150 

4 Current (Ic) 130 

5 Energy of the voltage signal Ej (J) 1.7𝑥1027 

6 Energy of the current signal Ej (J) 3.1𝑥1031 

7 Mean Square Error (MSE) 0.00553  

8 Gradient & Validation  0.00101 

9 Fault Distance in km 44.76 

 

4.0. Conclusion  

 

This study presents fault diagnosis on a 330kv power system transmission line using integrated s-transform, artificial 

neural network and travelling wave technique. This paper addressed the issue of service continuity in an electrical 

power network. The goal of this study was to offer an automated system for fault detection based on S-Transform, 

pattern recognition of ANN for fault classification, and traveling wave for fault localization on the transmission line. 

The strategies were evaluated in MATLAB/SIMULINK using data collected by running various fault conditions in 

the 47.39km Ajaokuta to Lokoja 330kV 58-Bus transmission system model.  

The S-Transform was able to display the fault's waveform with a clear changing Gaussian window of the energy 

signal. At pre-fault condition, the energy of the voltage signal was 1.6947𝑥1027𝐽 greater than the energy of the current 

signal at 1.2725𝑥1026𝐽. While after fault condition say single phase to ground fault, the magnitude of the current 

signal at 2.0𝑥1030𝐽 becomes greater than that of the voltage signal at 1.7𝑥1027𝐽 which are in accordance with 

conventional circuit theorem. The ANN does not require the line impedance to be calculated, but employs the phase 

voltages and currents per unit values. In a short period of time, it produces an accurate result by processing large 

amount data and training it. After 687 iterations, the gradient was at 8.59𝑥107and the best validation performance 

was 0.609 at 687 epochs. Been self-explanatory, simple and accurate, the neural network was chosen as the best 

technique fault classification and analysis which successfully classified all fault say single phase to ground at a 

gradient and validation of 0.00184 and mean square error of 0.0385. The traveling wave approach uses the distance 

of the line, capacitance of the line, inductance of the line, and propagation velocity to determine the location of the 

fault say single phase to ground at 44.03km. 

This research has been able to present an integral approach to fault diagnosis for grid operators which will improve 

monitoring of voltages and current signals in-order to detect, classify and locate a fault along the transmission line. 

This will improve the overall reliability and dependability of the transmission line system and significantly reduces 

power grid collapse.  
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