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Abstract  

The purpose of this study is to develop a model that will optimize (minimize) the heat transfer coefficient of mild steel weldment 

using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). The process input parameters are welding 

current, welding voltage, and gas flow rate, while the response variable is heat transfer coefficient. Tungsten inert gas (TIG) 

welding process was used to produce the welded joints. Optimizing this parameter is one sure way of producing a good weld with 

the desired strength and quality. From the RSM analysis, the optimal solutions for the process input parameters are; welding 

current, 180.00Amps, welding voltage, 21.672Volts and gas flow rate, 15.504L/min. The optimal solution for the response 

variable is 238.819W/m0C. The Desirability of achieving the Optimum solution results is 83.62%. From the analysis of variance 

(ANOVA), it was observed that gas flow rate (GFR) has more significant effect on the response variable. The ANN analysis 

predicted an optimal solution for the response variable to be 256.663W/m2oC, with an overall strong correlation (R) between the 

input factors and the response variable to be 99.893%. Therefore, it is recommended that the models be used to navigate the 

design space. But, the optimal solutions of the artificial neural network (ANN) analysis (ANN) are better and more robust 

because of its higher Regression (R) value, and therefore recommended for application and use, and for systematic decision 

making. 

 

Keywords:  Mild Steel, TIG, Heat Transfer Coefficient, RSM, ANN.

1.0 Introduction 

Welding is one of the most practical techniques for assembling structures (Abid et al 2021), such as ships, 

automobiles, and electronic goods (Aniruddha et al 2015). Gas tungsten arc welding (GTAW) or TIG is a joining 

method used widely in industries. Many researchers has researched on the process to aid other researchers to explore 

the process, either through experiments or computer simulations (Deepak et al 2014; Farrahi et al 2020; Filho et al 

2018;Jian et al 2020; Luo et al 2020; Ma et al 2015). The shielding gas used in this experiment is 100% pure Argon. 

The shielding gas (inert gas) shields the electrode, the arc, and the weld puddle from atmospheric contamination. 

The consumable composition of the shielding gas also directly influences the strength and quality of a weld, and 

thereby, contributes immensely to weld metal properties (strength and quality). TIG welding is very reliable process 

for improving quality characteristics of weld pool. A mathematical model was developed for the prediction of TIG 

weld bead characteristics (Margono et al 2019).  

 

In any welding process welding current, welding voltage and gas flow rate have influence on the mechanical 

properties of weld. The mechanical and metallurgical features of weld depend on the bead geometry which is 

directly related to the process parameters. In other words, the strength and quality of a good weld depends on the 

process parameters. The quality and efficiency of the welding process of mild steel is highly dependent on the 

selection of suitable parameters. The selection of inappropriate parameters can lead to poor weldment strength and 

undesirable properties. In optimizing the parameters RSM and ANN are popularly used. However, there is a need to 

develop a more robust optimization model that can predict the optimal welding parameters and their effects on the 

mild steel weldment strength accurately. This will improve the quality and efficiency of welding leading to cost 

savings and reduced failure rates in industries. A number of investigations have been performed to investigate mild 
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steel weldment strength and quality. The development of an optimal numerical approach to study the effects of the 

optimal values of these parameters on mild steel weldment strength using RSM and ANN methods is the basis of 

this study. Heat Transfer Coefficient is a constant that relates heat transfer to change in temperature used to calculate 

heat transmission by conduction, convection, and radiation through materials or structures. Heat transfer coefficient 

describes the flow of heat (thermal energy) due to temperature changes and the resultant temperature distribution 

and the changes. For solids, mild steel for an example, heat transfer is by conduction. Heat transfer in welded plates 

during welding is assumed to be the conductive heat transfer of semi-infinite body, and relates to Fourier’s law of 

conduction, which states that; ‘’the rate of heat transfer through a single homogenous body is directly proportional 

to the area of the section at right angles to the direction of the heat flow and to the change in temperature with 

respect to the length of the path of the heat flow, expressed mathematically as: 

 

Heat flux, q = −k 
𝑑𝑇

𝑑𝑥
        (Fourier’s law)  

k, is called the thermal conductivity. −k
𝑑𝑇

𝑑𝑥
, means that temperature decreases with respect to the length of the path of 

the heat flow.  

 

The basic principle of welding is heating control, and heat affects any type of material that is welded or cut by any 

process. How much the heat will affect the material during and after welding varies depending on the melting 

temperature, thickness and shape of the material being fused as well as the welding process and the amount of heat 

input (amperage). The most important characteristic of heat input is that it governs the cooling rates in welds and 

thereby affects the microstructure of the weld metal and the heat affected zones (HAZ). A change in microstructure 

directly affects the mechanical properties of welds. Improper rates of heating and cooling of welded materials can 

result in weld cracking. Therefore, the control of heat input and the minimization of the heat transfer rate to forestall 

improper rates of heating and cooling of welded materials is very important in welding in terms of quality control. 

Heating and rapidly cooling welded materials will cause weld cracking or shrinkage. Weld cracking or shrinkage is 

what we attempted to minimize in this research study with proper heat control. 

 

Mild steel is a ferrous metal made from iron (Fe) and carbon (C). It is a low carbon steel with a low percentage of 

carbon usually between 0.25 – 0.30% carbon. It has a high melting point, and it is commonly used in fabrication 

because it is inexpensive and is easily welded compared with other steel alloys. It is ductile, machinable, and easily 

forged. This qualities leads to lack of hardened zones in the heat affected zones (HAZ) and welds. With TIG 

welding, mild steel produces a clean and precise weld. TIG welding has the advantages of: production of stable arc, 

use of inert gas, high reliability, welding of thin materials, low tolerance to contamination, easy to use, clean and 

high quality weld production, absence of fluxes, and it is a multi –objective and multi – factor metal fabrication 

technique. In this experimental study, the TIG welding process used is the direct current electrode positive (DCEP), 

where the electrode is connected to the positive terminal of the power source, and electrons flow from work to 

electrode tip. This method provides a good oxide cleaning action in the arc, hence, contributing to the production of 

the clean welds. The tungsten electrode used was the thoriated type. 

 

A critical study of numerous literatures including, Michael et al 2020, “A Study of the Heat Transfer Mechanism in 

Resistance Spot Welding of Aluminum Alloys AA5182 and AA6014”, in which they determined thermal contact 

conductance and heat transfer coefficient for natural convection and thermal radiation at ambient air and forced 

convection inside the water cooled electrode for aluminum resistance spot welding, Pamnani et al 2016, 

“Investigations on the impact toughness of HSLA steel arc welded joints”, a work in which they studied the impact 

toughness of HSLA steel weld joints fabricated by arc welding processes, and finally, Prachya 2017, “. Investigation 

of the effects of submerged arc welding process parameters on the mechanical properties of pressure vessel steel 

ASTM A283 Grade A”, in which they studied the effects of submerged arc welding (SAW) process parameters on 

the mechanical properties of this steel etc., has revealed that the optimization and prediction of Heat Transfer 

Coefficient of mild steel weld metal using welding current (WC), welding voltage (WV) and gas flow rate (GFR) as 

joint process input variables from tungsten inert gas (TIG) welding process, using process factor design model has 

not been established to the best of our knowledge, and this is the gap this research study covered. 

  

The welding industry will benefit from the findings of this research study which will provide them a framework for 

optimizing the welding process and predicting the resulting weldment strength. This research study will also 

contribute to the development of new technologies and techniques for welding of mild steel. Overall, this research 

study aims to improve the quality and efficiency of welding, which will have a positive impact on various industries 

https://www.sciencedirect.com/topics/engineering/impact-toughness
https://www.sciencedirect.com/topics/engineering/impact-toughness
https://www.sciencedirect.com/topics/engineering/high-strength-low-alloy-steel
https://www.sciencedirect.com/topics/engineering/joints-structural-components
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that rely on this process, will save cost and time, and also reduce failure rates in various industries for e.g. in ship 

industry, structures, steel manufacturing industries, welding industries, etc. that makes use of the material. 

 

2.0 Material and methods 

The TIG welding and test were conducted at the Welding Engineering and Offshore Technology Workshop, 

Petroleum Training Institute (PTI), Warri, Delta State, Nigeria. Twenty (20) pieces of mild steel coupons measuring 

600mm X 400mm X 10mm was prepared and used for this experiment. The Heat Transfer Coefficient was 

calculated by dividing the thermal conductivity of the convection fluid which is 64W/mºK with different length 

scales, measured in W/m2oC. A central composite design (CCD) matrix was developed for the response surface 

methodology (RSM) analysis using the design expert software, DX 10.0.1, producing twenty (20) experimental runs. 

Central composite design (CCD) was used for the design because of its multi –input multi – output process process 

factor design analysis. The process input parameters and output parameter make up the experimental matrix and the 

results recorded from the weld specimens were used as the data for the analysis. A Neural Network (NN) model was 

selected and trained and was used for the artificial neural network (ANN) or time series (TS) analysis. The software 

or prediction tool used for the ANN analysis is the Neural Power Algorithm, Version 2.5 - [Levenberg-Marquardt 

Back Propagation Network (BPN)].The key process input parameters considered in this research study are: Welding 

Current (WC), Welding Voltage (WV) and Gas Flow Rate (GFR). The range of the process input parameters 

obtained from the experiment is shown in Table I. 

 

Table 1: Input Factors Boundary Limit 

Factor Unit Symbol Axis 

Low (-) 

Axis 

High (+) 

Welding 

Current 

Amp. A 180 210 

Welding 

Voltage 

Volt. V 20 23 

Gas 

Flow 

Rate 

Lit/M

in. 

F 15 18 

 

The table 1 above shows the adopted boundary conditions of the process input parameters used in this study. The 

bases of selecting the boundary conditions are based on literature. The experimental matrix comprising of the three 

input variables namely; Current (Amps.), Voltage (Volts.), Gas Flow Rate (L/min.) and five (5) response variables 

namely: Liquidus Temperature, Weld Time, Heat Transfer Coefficient, Ultimate Tensile Strength and Percentage 

Elongation in real values is presented in Table 2 below. 

 

Table 2: Central Composite Design (CCD) matrix showing experimental results and data 

Run Input Parameters Output Parameter 

Welding Current 

(Ampere) 

Welding Voltage 

(Volt) 

Gas Flow Rate 

(L/min) 

Heat Transfer 

Coefficient 

(W/m20C) 

1 180 20 18 263.85 

2 195 20 15 275.95 

3 210 20 18 267.53 

4 180 21.5 18 253.54 

5 180 20 16.5 236.22 

6 195 21.5 18 252.22 

7 210 23 18 238.99 

8 210 23 15 273.39 

9 180 23 15 270.38 

10 210 21.5 18 241.70 

11 210 23 15 269.32 

12 210 23 15 271.79 

13 180 20 18 262.63 

14 195 21.5 16.5 253.16 

15 210 23 16.5 257.84 
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16 210 23 18 234.84 

17 180 20 18 259.32 

18 180 23 18 250.08 

19 210 21.5 16.5 252.39 

20 210 20 16.5 265.62 

 

3.0 Results and Discussions 

The highest order polynomial where the additional terms are significant for the process factors and the model is not 

aliased, the model was selected as best fitted model for the response variable. In addition, the selected model have 

insignificant lack-of-fit. The selected model is based on the best probability value with less error in the selected 

model system. The selected model for Heat Transfer Coefficient is a Quadratic non-linear polynomial model with a 

significance value of 0.0450. The Quadratic model was also suggested based on the fact that the model also does 

have the least PRESS value to determine the expected error in the system. 

 

Table 3: Model Fit Summary Statistics for Heat Transfer Coefficient response variable. 

Source  Sequential P-

value 

Lack-of-fit P-

value 

Adjusted R2 Predicted R2  

Linear 0.1550 0.0944 0.1361 -0.3163  

2FI <0.0001 0.6826 0.8489 0.6042  

Quadratic 0.0450 0.9329 0.9091 0.7724 Suggested 

Cubic 0.9329  0.8127 * Aliased 

 

Table 4: Model Summary Statistics for Heat Transfer Coefficient response variable 

Source St. Dev. R2 Adjusted R2 Predicted R2 PRESS  

Linear 12.80 0.2725 0.1361 -0.3163 4744.96  

2FI 5.35 0.8966 0.8489 0.6042 1426.84  

Quadratic 4.15 0.9522 0.9091 0.7724 820.59 Suggested 

Cubic 5.96 0.9704 0.8127   Aliased 

Focus on the model maximizing the Adjusted R² and the Predicted R². 

The model summary statistics of model’s fit shows the Standard Deviation, the R2, Adj.R2, Pred. R2 and the PRESS 

values for the Heat Transfer Coefficient Quadratic model.  

In assessing the strength of the Quadratic Model towards optimizing (minimizing) the Heat Transfer Coefficient 

response variable, one-way analysis of variance (ANOVA) was deployed as shown below: 

 

Table 5: ANOVA Model Statistical Summary for Heat Transfer Coefficient response variable 

Source  Sum of 

Squares 

df Mean Square F-value P-value  

Model 3432.22 9 381.36 22.11 <0.0001 Significant 

A-Welding 

Current 

97.35 1 97.35 5.64 0.0389  

B-Welding 

Voltage 

3.66  3.66 0.2125 0.6547  

C-Gas Flow 

Rate 

302.66 1 302.66 17.55 0.0019  

AB 465.07  465.07 26.96 0.0004  

AC 472.41 1 472.41 27.39 0.0004  

BC 403.32 1 403.32 23.38 0.0007  

A2 51.16 1 51.16 2.97 0.1158  

B2 110.02 1 110.02 6.38 0.0301  

C2 45.76 1 45.76 2.65 0.1344  

Residual 172.47 10 17.25    

Lack-of-fit 65.87 7 9.41 0.2648 0.9329 Not 

Significant 

Pure Error 106.60 3 35.53    

Cor Total 3604.70 19     
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Table 5 above shows that the analysis of variance model developed is significant with a significance value that is 

less than (<) 0.0001. The Model F-value of 22.11 implies that the model is significant. There is only a 0.01% chance 

that an F-value this large could occur due to noise. Values of probability that is less than F value, which is less than 

0.050, indicate that the model terms are significant. In this case the Welding Current (A), Gas Flow Rate (C), 

interaction of Welding Current and Welding Voltage (AB), interactions of Welding Current and Gas Flow Rate 

(AC), interaction of Welding Voltage and Gas Flow Rate (BC), and square of Welding Voltage (B2) are all 

significant model terms in Heat Transfer Coefficient response parameter estimation. Values greater than 0.1000 

indicate the model terms are not significant. If there are many insignificant model terms, model reduction may 

improve your model. The Lack-of-Fit F-value of 0.2648 implies that the Lack-of-Fit is not significant relative to the 

pure error. There is a 93.29% chance that the Lack-of-Fit F-value this large could occur due to noise. Non-

significant lack-of-fit is good – it makes the model to fit. 

 

Table 6: ANOVA Goodness of Fit (GOF) statistics for validating model significance towards minimizing Heat 

Transfer Coefficient 

Std. Dev. 4.15 R2 0.9522 

Mean 256.04 Adjusted R2 0.9091 

C.V % 1.62 Predicted R2 0.7724 

  Adeq Precision 18.3499 

 

Table 6 above shows the Coefficient of Determination of the input factors and the response variables for the model 

are significantly adequate to the model developed for the Heat Transfer Coefficient response variable. The 

Coefficient of Determination of the variables (R2) shows that 95.22% of the input factors will be explained in the 

response variable of Heat Transfer Coefficient. The Predicted R² of 0.7724 is in reasonable agreement with the 

Adjusted R² of 0.9091; i.e. the difference is less than 0.2. In practical terms or as a rule of thumb, a higher R2 and 

Adj. R2 value are desirable. When the difference between them is large enough, or when the Adj. R2 value is very 

small compared to the value of R2, it indicates that there is an error in the values of the results of the variables 

obtained, and this will cause bias in the system, therefore, requiring that the experimental trial be properly 

checkmated or replaced. Adequacy Precision measures the signal-to-noise ratio. A ratio greater than 4 is desirable. 

The ratio of 18.3499 indicates an adequate signal. This model can be used to navigate the design space for Heat 

Transfer Coefficient. 

 

3.1 Diagnostic Plots  

The diagnostic case statistics actually give insight into the model strength and the adequacy of the optimal second 

order polynomial equation. 

 
Figure 1: Normal Probability Plot of Studentized Residuals. 

 

Figure 1 shows the Normal Probability Plot of the residuals for the Heat Transfer Coefficient to check for normality 

of the residuals on the response variable. The Normal Probability Plot of the residuals shows that the residuals are 

normally distributed in the response variable. All the data points are clustered around the 450 diagonal lines, with the 
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cluster occurring between -1.00 and +2.00 accounting for about eighty - five (85%) percent of the total data 

population. 

 
Figure 2: Studentized Residuals vs. Predicted to check for constant error. 

 

Figure above shows the variations of the Predicted values and the Residual values of Heat Transfer Coefficient to 

check for the constant errors. The plot shows that the errors in the Predicted and the Residuals values are within 

limited values of errors that are insignificant in the system, as we can see that all the data points lies within the set or 

acceptable limit of default range indicated by the red lines, i.e. in-between -4.00  and +4.00. 

 
Figure 3: Predicting Heat Transfer Coefficient using Contour Plot. 

 

The Contour Plot shows the influence of the input factors on the Heat Transfer Coefficient response parameter. It 

shows that the decrease in welding current decreases the Heat Transfer Coefficient. Also, the decrease in welding 

voltage decreases the Heat Transfer Coefficient parameter in the system. 

Design-Expert® Software
Heat Transfer Coefficience

Color points by value of
Heat Transfer Coefficience:

275.95

234.84

X1: Predicted
X2: Externally Studentized Residuals

Residuals vs. Predicted

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

230 240 250 260 270 280

4.14579

-4.14579

0

Design-Expert® Software
Factor Coding: Actual
Heat Transfer Coefficience ((W/m2oC))

275.95

234.84

X1 = A: Welding Current
X2 = B: Welding Voltage

Actual Factor
C: Gas Flow Rate = 16.5

180 186 192 198 204 210

20

20.6

21.2

21.8

22.4

23
Heat Transfer Coefficience ((W/m2oC))

X1: A: Welding Current ((Ampere))
X2: B: Welding Voltage ((Volt))

240

240

250

250

260

260

270



Chukwunedum et al./ UNIZIK Journal of Engineering and Applied Sciences 3(3), 1005-1015       1011 

 

 
 

 
Figure 4: 3-D Surface Plot showing effects of welding voltage and gas flow rate on Heat Transfer Coefficient 

response variable. 

The 3-Dimensional Surface Plot shows the influence of the input factors to the Heat Transfer Coefficient response 

parameter. The figure shows that the increase in welding voltage towards its mean decreases the Heat Transfer 

Coefficient, but increase in welding voltage from its mean to its maximum increases the Heat Transfer Coefficient in 

the system. Also, the increase in gas flow rate from its mean to its maximum slightly increases the Heat Transfer 

Coefficient in the system and vice versa.  

 

3.2 Optimal Solutions 

The numerical optimization analysis produced twenty (20) optimal solutions. The optimal solutions from the RSM 

analysis for the process input factors indicate that the optimal solutions for welding current is 180.00Amps, welding 

voltage is 21.672Volts and gas flow rate is 15.504L/min, and the optimal solution for the Heat Transfer Coefficient 

response variable is 238.819W/m20C., indicating that the experimental trials are good and fit to predict the feasible 

response of Heat Transfer Coefficient response variable in the system. Therefore, this model can be used to navigate 

the design space.   

 

3.3 Artificial Neural Network (ANN) or Time Series Analysis (TSA) 

ANN works like the human brain with an input and output data layers. 

Artificial Neural Network analysis occurs in sequences and via neural network layers made up of artificial neurons. 

 

Sequence 1: Data Selection. 

Artificial Neural Network analysis starts with the selection and training of an ANN model using a historical data. 

Real data from the experiment is then fed into the trained predictive model for analysis in order to predict future 

outcomes. The data fed into the neural network for analysis are both the input and output parameters generated as a 

result of experimental trials conducted in the research (See Table 2). The artificial neural network will select and 

analyze the data and predict outcomes for each of the experimental trials.  

 

Sequence 2: Data Training, Validation and Testing. 

Artificial Neural Network (ANN) randomly divides the 100% target timesteps (Real data) into three sets: Training 

Data (70%), Validation Data (15%) and Testing Data (15%). Seventy percent (70%) of the data are presented to the 

network during training and the network is adjusted according to the data errors. Fifteen percent (15%) of the data 

are used by the network to measure generalizations from the analysis, and to halt the data training when 

generalizations stop improving. And this is referred to as data validation. Fifteen percent (15%) of the remaining 

data used for testing has no effect on the data training, but serves as an independent measure of network 

performance during and after training of the data. 
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The type of data training method used in this research study is Levenberg-Marquardt back propagation network 

(BPN). Training of the data automatically stops when the generalizations stops improving as indicated in this 

analysis by an increase in the mean square error (MSE) of the validation samples. The mean square error (MSE) is 

the average squared difference between outputs and targets. The smaller the mean square error value (MSE) the 

better the predicted result while a mean square error (MSE) of zero (0) means that there is no error. Regression (R) 

values measure the correlation between the output values and the target values. A regression (R) value of one (1) 

means a close relationship but an R value of zero (0) means a random relationship.  

 

Sequence 3: Trained Results of Neural Network Data Analysis. 

The neural network (NN) then reveals the least Mean Square Error (MSE) value that gives the best fit data (that is, 

the predicted optimal values or target results). The data performance in this study shows that the least value of the 

Mean Square Error (MSE) in the data is very insignificant with an average value of 4.35x 10 -26 units at the eight (8) 

iteration of the data training which is the best fitted data result.  The best validation of the performance result is 

2382.3681 units at the eight (8) iterations of the trained data. The validation performance data value, testing data and 

the best fit data are closely related. However, the best fit data is generated at the eight iterations with the Least Mean 

Square Error in the system.  

 

Sequence 4: Regression Results of the Artificial Neural Network Data Analysis. 

The result of the Trained Artificial Neural Network data analysis shows that the Trained Data output parameter has a 

Regression Correlation (R) value of unity (1). The Validation Data generated in the system has a Regression 

Correlation (R) value of 0.99646 units. The Testing Data generated also have a Regression Correlation (R) value of 

0.99791 units. However, the Overall Regression Correlation (R) value of the predicted optimal / target result data is 

0.99893 units. This shows that the process input factors and the output process parameters have strong correlations 

at an average of 0.99893 units (99.893%). This shows that the data used in the system are good and fit for statistical 

analysis.  

Table 7: ANN Predicted Results 

 Predicted Output Predicted Residual 

S/N Heat Transfer Coeff. (W/m02C) Heat Transfer Coeff. (W/m02C) 

1 249.2205 3.62955 

2 312.1502 -36.2002 

3 281.8198 -46.2898 

4 287.5202 -33.9802 

5 280.3103 -44.0903 

6 334.3302 -92.1102 

7 234.0189 4.971058 

8 333.2428 -83.8528 

9 271.4016 -31.0216 

10 269.9854 -9.28535 

11 292.2279 -26.9079 

12 309.8587 -38.0687 

13 270.8811 -9.25105 

14 300.2075 -42.1475 

15 236.8099 1.030078 

16 288.3894 -47.5494 

17 271.7969 -15.4769 

18 295.187 -48.107 

19 208.1133 44.27673 

20 256.663 2.156 

 

Table 7 above shows the Artificial Neural Network (ANN) or Time Series (TS) predicted results of the Heat 

Transfer Coefficient response variable. The result shows that the predicted response parameter for Heat Transfer 

Coefficient is 256.663W/m2oC. The ANN result shows that the input process factors and the output process 

parameters have strong Coefficient of Determination (R) of the variables with an average of 0.99893 units (i.e. 

99.893%). This shows that the data used in the system are good and fit for adequate statistical analysis. Therefore, 

the predictive model can be used to navigate the design space.  
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4. Discussion of results. 

In this study, the response surface methodology (RSM) and artificial neural network (ANN) was used respectively to 

optimize and predict the weld parameters. The goal of the optimization process is to determine the most appropriate 

percentage combination of the Heat Transfer Coefficient with the optimum values of each of the process input 

parameters, namely; Welding Current (Amps.), Welding Voltage (Volts.) and Gas Flow Rate (L/min) that will 

adequately optimize (minimize) the Heat Transfer Coefficient content in the mild steel weldment. The final solution 

of the optimization process was to determine the most appropriate percentage combination of the Liquidus 

Temperature in the weldment, most appropriate percentage combination of the Welding Time in the weldment, most 

appropriate percentage combination of the Heat Transfer Coefficient in the weldment, most appropriate percentage 

combination of the Ultimate Tensile Strength in the weldment and the most appropriate percentage combination of 

the Percentage Elongation in the weldment with the optimum values of the Welding Current, Welding Voltage and 

Gas Flow Rate that will adequately minimize Liquidus Temperature, Weld Time and Heat Transfer Coefficient, and 

adequately maximize  Ultimate Tensile Strength and Percentage Elongation.  

 

In the course of the experiment, ranges of values of the input parameters and output parameters were observed and 

recorded which makes up the experimental data (i.e. the results from the weld specimens). A statistical design of 

experiment (DOE) using the central composite design method (CCD) was developed. Then, an experimental design 

matrix having twenty (20) experimental runs was generated. The input parameters and the output parameters make 

up the experimental matrix. Both the experimental matrix designed and the optimization analyses were executed 

with the aid of a software / statistical tool called Design Expert Software 10.0.1 (DX.10.0.1). In this study Central 

Composite Design was employed owing to its simplicity and flexibility to variable adjustment and analysis of 

process interaction relating to process factor combination. Central composite design (CCD) was used for the design 

because of its multi –input multi – output process process factor design analysis. 

 

The result of the model analysis shows that a Quadratic Model for the process order which requires the polynomial 

analysis was selected for the response variables. The highest order polynomial where the additional terms are 

significant for the process factors and the model is not aliased, the model was selected as the best fitted model. In 

addition, the selected models have insignificant Lack-of-Fit. Model with significant Lack-of-fit cannot be employed 

for optimization or prediction. The reason for selection of the models was the reasonable agreement between the P-

value, R-Square value, the Predicted R-Square value, Adjusted R-Square value and the PRESS value. The model 

design summary shows that the minimum value observed for Heat Transfer Coefficient response variable is 

234.847W/m20C, with a maximum value of 246.04W/m20C, mean value of 256.04W/m20C, and standard deviation of 

4.15W/m20C. The optimal solution for the response variable, Heat Transfer Coefficient is 238.819W/m20C. The 

model has a high signal-to-noise ratio of 18.3499. In assessing the strength of the Quadratic Model towards 

optimizing the target response, one-way analysis of variance (ANOVA) table was generated for the response 

variable and results obtained is presented in Table 5. From the analysis of variance (ANOVA), Table 5, it was 

observed that Gas Flow Rate (GFR) process input parameter has more significant effect on the Heat Transfer 

Coefficienmt response variable. However, the Desirability of achieving the Optimum solution results is 83.62%.  

 

To validate the adequacy of the Quadratic Model based on its ability in minimizing Heat Transfer Coefficient, the 

goodness of fit statistics presented in Table 6 was employed. From the Coefficient Estimation Analyses of the 

models, it was observed that the models possess a low standard error ranging. Standard errors should be similar 

within type of coefficient; however the smaller the standard error the better the result of the design. The Variance 

Inflation Factor (VIF) in this research is between one (1) and three point forty five (3.45) which shows that the 

Coefficient of Estimation of the input factors to the response parameters are adequate and is good, and as well as fit 

enough for more appropriate modeling of the system. Variance Inflation Factors (VIF) greater than ten (10) can 

cause bias in the modeling system and there is need to checkmate such factor or even replace the experimental trial, 

but Variance Inflation Factors (VIF) that is close to unity is good and fit for an adequate modeling of the response 

parameters. Variance Inflation Factor (VIF) less than 10.00 calculated for all the terms in the design indicated a 

significant model in which the input variables are well correlated with the response.  

 

The software or prediction tool used for the ANN analysis is the Neural Power Algorithm, Version 2.5 - 

[Levenberg-Marquardt Back Propagation Network (BPN)]. The advantage/rationale of using Levenberg-Marquardt 

back propagation algorithm is that it can perform multiple data training and analysis for a complex data set. Using 

Artificial Neural Network algorithm (ANN) / Time Series (TS) analyses, the result of Table 7 observed that the 

predicted optimal solution for the welding will produce a weldment with a Heat Transfer coefficient of optimal 
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value of 256.663W/m20C. The input factors and the response variable have an overall strong correlation (R) of 

99.893%. This research study has successfully demonstrated and well established a Response Surface Methodology 

(RSM) and Artificial Neural Network (ANN) algorithms to optimize and predict the mild steel weld metal 

parameters. In this study, the application of the welding input parameters design was used to express the optimal 

solutions of the response variables of the mild steel weldment.  

 

The development of a second order polynomial solution has been successfully achieved, validated by graphical and 

statistical results such as calculated Standard Error values, Variance Inflation Factor, Normal Probability Plot and 

Cook’s Distance plot etc. A scientific approach to determine the cause and effect relationship between the process 

parameters using expert systems has been successfully established and well demonstrated in this research study. In 

testing the accuracy of the models in actual application, experiment revealed that the models can be used for optimal 

solutions mostly in optimization of manufacturable input parameters in establishments that utilize the mild steel 

material, steel manufacturing companies and in industrialization generally. Therefore, the optimal solutions and the 

models developed will influence the activities of mild steel production and usage. Hence, the application of the 

optimal solutions of the results will be of economic value to the utilizing companies and in the material usage. This 

research study will serve as a reference to the users of mild steel and its application in Tungsten Inert Gas (TIG) 

welding process and in industries. 

 

5.0. Conclusion  

This research study carried out an optimization and proposed a prediction model to investigate the Liquidus 

Tempearture, Welding Time, Heat Transfer Coefficient, Ultimate Tensile Strength and Percentage Elongation based 

on Welding Current, Welding Voltage, and Gas Flow Rate in TIG welding process using RSM and ANN 

respectively. The dissertation is on,” Experimental Investigation of the Effects of Optimal Process Parameters on 

Mild Steel Weldment Strength using Response Surface Methodology and Artificial Neural Network,” and the topic 

of this research  study is:” Numerical Prediction and Optimization of Heat Transfer Coefficient and their Effects on 

Low Carbon (Mild) Steel Weldments Using Expert Methods.” 

 

In this study, design of the experimental matrix for the process input factors using central composite design (CCD) 

for twenty (20) experimental runs was done using Design Expert Software 10.0.1 (DX10.0.1). The input parameters 

and the output parameters make up the experimental matrix. The weld metal specimens were produced for the 

experiment. The results recorded from the weld specimens were used as the experimental data for the experimental 

analysis. The mechanical properties of the mild steel weld metal were determined using Universal Testing Machine 

(UTM). ANN analysis was done with the aid of the software, Neural Power Algorithm, Version 2.5. The optimal 

solution of the process input factors from the RSM analysis are: Welding Current is 180.00Amps; Welding Voltage 

is 21.672Volts and Gas Flow Rate is 15.504L/min. While the optimal solutions of the response parameters are: 

Liquidus Temperature is 1484.7830C; Welding Time is 44.000secs; Heat Transfer Coefficient is 238.819W/m2oC; 

Ultimate Tensile Strength is 579.000MPa and Percentage Elongation is 22.111%. The Desirability of achieving the 

Optimum solution results is 83.62%. In addition, the models selected for each of the five responses have a high 

significance with the p-values less than 0.05 (i.e. p < 0.05) and also possessed Variance Inflation Factor (VIF) that is 

less than 10 (VIF < 10). This confirms that the models possessed high goodness of fits. The result of the ANN 

analysis predicted the optimal solutions to be: Liquidus Temperature is 1464.490˚С, Welding Time is 53.7132sec, 

Heat Transfer Coefficient is 256.663W/m2oC, Ultimate Tensile Strength is 530.077MPa and Percentage Elongation 

is 18.504%. And the input factors and the response variables have an overall strong Regression (R) of 99.893%. 

From the results obtained, it was concluded that both methods, RSM and ANN are good and suitable for optimizing 

and predicting weld parameters, but the optimal solutions of the artificial neural network analysis (ANN) obtained 

are better and more robust because of its higher Regression or Coefficient of Determination (R) value of 99.893% as 

compared to 83.62% of the RSM analysis. Therefore, the ANN model is recommended for application and use, and 

for systematic decision making. This is an improvement in the weld quality. 

 

The findings in this research study are basically the optimal solutions and the desirability of achieving the optimal 

solutions as given by each of the analytical tools employed in this research study and as stated above. Also, the key 

finding in this research study is that gas flow rate (GFR) has the most significant effect on the Heat Transfer 

Coefficient of mild steel weld parameter. This research study aims to improve the quality and efficiency of welding, 

which will have a positive impact on various industries that rely on this process, will save cost and time, and also 

reduce failure rates in various industries for e.g. in ship industry, structures, steel manufacturing industries ,welding 

industries, etc. that makes use of the material.  
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5.0 Recommendation 

It is recommended, the application of other data analytical tools like Taguchi method, Genetic Algorithm, Ansys, 

Particle Swarm Optimization (PSO) etc. for the same process factor analysis in order to achieve a more robust and 

unified knowledge and information on the welding process optimization, and for comparative analysis, and also to 

address all the limitations of this research study and the analytical tools employed. 
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