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Abstract  

This study deals with the production of avocado pear seed activated carbons using acidic (sulphuric acid) reagent 

according to Response Surface Methodology (RSM) and Machine learning (ML) approaches. During the 

investigation, Artificial neural network (ANN) and Box Behnken Design (BBD) were used to assess the influence of 

the activation temperature (600 -9000C), activation time (60-120 mins), and impregnation ratio (0.5-1.5) on the 

achievable BET surface area. The optimization of sulphuric acid-activated avocado pear seed production was also 

comparatively examined using both BBD with the RSM approach and ANN neural network model to determine the 

optimum process conditions. The Analysis of Variance (ANOVA) unveiled that the significant factors were 

activation temperature, and impregnation ratio for the avocado pear seed acid activation process, as all their p-values 

were less than 0.1. The best process conditions discovered for producing optimal BET surface area of H2SO4 

activated carbon were activation temperature (1045.73K), activation time (120mins), and impregnation ratio (1.21) 

respectively. The optimal BET surface area achieved for H2SO4-activated avocado pear seed (APS) was 517.8m2.g-1. 

The correlation coefficient (R) for the RSM and ANN BET models were found to be 0.88, and 0.9955 respectively. 

Based on these results, the ANN BET model was ascertained to be the most capable model for predicting and 

forecasting the achievable surface area of H2SO4-activated avocado pear seed (APS). The RSM and ANN neural 

network can be applied as effective analytical tools for optimizing the HAPS production process. 

 

          Keywords: Box Behnken Design; Acid activation; Low-cost agro wastes derived adsorbents; Artificial Neural  

                           Networks (ANN); Error Analysis. 

 

1. Introduction 

Globally, the rapid rise in human population is leading to increased stresses on available clean water resources. 

Increasing urbanization and industrialization activities are resulting in the release of huge quantities of contaminated 

effluents into surface water bodies, that infiltrate into the groundwater (aquifer), which is the major source of fresh-

water supply (Bodzek et al. 2020). Clean drinking water is becoming more and more limited in supply, partly due to 

the rapid increase in global population, and pollution of surface/groundwater systems as a result of man-made 

(anthropogenic) activities (Jafarinejad, 2017). It is estimated that 4-5 billion of the world’s population will inhabit 

regions without access to fresh and clean water supply (Ali et al. 2016). Noteworthy, about 80% of diseases 

affecting mankind can be traced to poor drinking water quality. This mostly endangers the lives of people residing in 

the developing world (Muller et al. 2020). Thus, it is necessary that water emanating from major industrial and 

municipal sources of pollution is properly treated to ensure that their effluent discharges meet environmental 

legislation and standards to protect human health and the environment.  
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Several treatment technologies exist for wastewater decontamination including membrane separation, electro-

deionization, evaporation, coagulation and flocculation, reverse osmosis, filtration, flotation, chemical precipitation, 

and adsorption (Howard et al. 1986). The adsorption method is highly preferred due to its inherent advantages of 

low cost, high efficiency, simplicity of design, ease of operation, number of available sorption sites and chemical 

reactivity of the adsorbent material(s) (Malik et al. 2016). The main classes of adsorbents include natural, synthetic 

and semi-synthetic. The natural adsorbents are lignocellulosic materials such as leaves, plants and agricultural waste 

used for treatment of real or simulated wastewater, they are inexpensive but have low to medium adsorption 

capacities. While, synthetic adsorbents are produced using established laboratory methods, these porous material 

have enhanced adsorptive properties (adsorption capacities). However, their manufacturing costs are high. Semi-

synthetic adsorbents are prepared using activation processes with or without reagents to develop a finely ordered 

crystalline structure (high porosity). These adsorbents are derived from natural materials such as agricultural wastes 

and have advantages of high efficiency, low production costs and possibility of sorbent regeneration (Ali et al. 

2016). In practice, the adsorption method is implemented using synthetic adsorbents.  In recent times, efforts are 

being made to prepare and utilize semi-synthetic adsorbents derived from agricultural waste such as avocado pear 

seeds for wastewater treatment, due to the high manufacturing costs of synthetic (commercial) adsorbents (Ighalo et 

al. 2022). 

 

The Avocado (Persea americana) tree is indigenous to Mexico and Central America, but they also thrives in 

subtropical and tropical climates throughout the world. In Nigeria, avocado trees are cultivated in various regions, 

including the southern and southwestern parts of the country. Some of the avocado pear varieties grown in Nigeria 

include Nabal, Fuerte, Hass, and Pinkerton. Avocado pears are used in various dishes, including salads, sandwiches, 

smoothies, and as a spread on bread or toast. The edible portion of the avocado pear seed is the fleshy part, which is 

consumed in huge amounts due to its delicious taste and versatility in various culinary applications. Whilst, the large 

quantities of disposable avocado pear seeds produced are of limited domestic and culinary value, contributing 

immensely to organic (biodegradable) waste accumulation with the associated waste management problem. 

Noteworthy, conventional methods for disposal of waste avocado seeds such as recycling and composting are still in 

their nascent stages in Nigeria. Attempts to produce low-cost activated carbons from waste avocado seeds for 

utilization in the remediation of contaminated effluents can thus prove to be effective in waste minimization. To 

date, the preparation of active carbons from raw avocado pear seeds utilizing common activating agents (i.e. 

sulphuric acid) has been seldom explored (Ighalo et al. 2022).   

 

Industrially, activated carbons are characterized in terms of their BET surface area(s) (Dyk., 2000). Notably, the 

production of good-quality activated carbons with high BET surface area(s) is influenced by several process 

variables including activation temperature, activation time, and impregnation ratio (Iheanancho et al. 2019). 

Conduction of experimental studies for screening of the optimally activated carbons can be time-consuming, 

expensive, and labour intensive. Thus, assessment of the effect of operating parameters on geometric attributes 

(BET Surface area) necessitates the use of data-driven tools such as Response Surface Methodology (RSM) and 

Artificial Neural Networks (ANN).   

 

RSM is a collection of statistical and mathematical methods that are expedient for the modeling and analysis of 

problems in which a response of interest is influenced independently and conjunctively by several variables and the 

aim is to optimize the response (Montgomery, 2017). The major objective of Response Surface Methodology is the 

sequential use of experimental designs to locate the region in the factor space (response surface) that satisfies the 

operating requirements (optimal response) (Nooshin & Hamid, 2017).  Box Behnken is one of the most prominent 

experimental designs for RSM compared to Central composite design (CCD), Taguchi, and three-level full factorial 

designs. The Box Behnken design is a three-level factorial design utilized in RSM for fitting response (quadratic) 

surfaces. These designs are created by combining incomplete block design with 2 level factorial designs (Okewale et 

al. 2015). The Box Behnken (BBD) design is ideal for a few (3 or 4) experimental factor(s) investigations, as 

minimal experimental runs are needed with the attendant reduction in physical labour and, consequently lower costs 

(Montgomery, 2017). According to Melvin et al. (2015), the Box Behnken design is well suited for fitting a 

response surface. Statistical methods such as RSM are effective for rapid analysis and interpretation of robust and 

well defined dataset(s). However, RSM tends to be unreliable in handling noisy and poor quality data, require 

multiple parameter(s) for model development and can be difficult to implement for complex real-life processes 

(Chebii et al. 2022). ANN mimics the process of biological neural systems like human intellect in describing the 

behavior of complex non-linear systems. ANN originated in 1943 by Psychiatrist Warren McCulloch and Logician 

Walter Pits of the University of Chicago, USA (McColluch & Pits, 1943). Artificial neural network (ANN) is a 
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powerful computational technique with the ability to detect complex patterns in dataset(s) that may not be properly 

delineated by statistical methods or conceptual models and also has low computational demands (Chebii et al. 

2022). ANN examines the cause-effect correlation(s) between independent (input) and dependent (output) variables 

of a given dataset, iteratively updating the network parameters (weights) until the error criterion (minimum MSE) is 

satisfied. ANN has benefit of exceptional ability to model complex non-linear systems, where changes in system 

output(s) and associated input(s) are non-proportionate without prior knowledge of the underlying physical 

phenomena (Li et al. 2017). Notwithstanding, ANN modeling still has a number of downsides including slow trial & 

error process of efficient neural network design (i.e. specification of hidden layers) and model over-fitting (poor 

generalization) issues. 

 

Previously, RSM has been successfully applied for the modeling and analysis of activated carbon production 

processes (Mohammed et al. 2014; Iheanacho et al. 2019). ANN has also been applied in the preparation of 

nanoadsorbent(s) for wastewater treatment (Bhowmik et al. 2016). To the best of our knowledge, ANN and RSM 

respectively have never been utilized for assessment of the acid (H2SO4) activation of raw avocado pear seeds. This 

marks the first time that RSM and ANN analytical tools have been applied to comparatively analyze the production 

of activated carbon from avocado pear seeds with chemical activation (H2SO4). Computer-aided synthesis of porous 

adsorbent materials such as H2SO4 activated avocado pear seed (HAPS) utilizing data-driven models (i.e. ANN and 

RSM) have not been carried out before. Thus, the optimization of acid activated avocado pear seeds to maximize the 

achievable BET surface area of the produced carbons using both ANN and RSM technique(s) constitutes a novel 

research direction. Pertinently, RSM and ANN algorithms have never been employed applied to identify the 

optimality location in the design space (region of interest) of the acid (H2SO4)/APS system to facilitate process 

optimization. Consequently, this work aims to (i) investigate the effective production of activated carbons from 

avocado pear seeds with acid activation (H2SO4) (ii) select optimal avocado pear seed activated carbons with 

maximum BET surface areas based on RSM (BBD) design (iii) utilize ANN technique for optimizing the 

preparation of H2SO4 activated avocado pear seed carbons under different production conditions of activation 

temperature, time and impregnation ratio (iv) comparatively analyze the performances of the created RSM and ANN 

BET models to ascertain their efficiencies in predicting the quality of the produced carbons in terms of BET surface 

area.   

 

2.0 Material and methods 

 

2.1 Activated carbon preparation 

 

The pristine Avocado pear seeds were procured from Eke-Awka market at Awka South Local Government Area, 

Anambra State in the Eastern part of Nigeria (N: 60 13’ 8”; E: 70 5’ 13”). Chemical activation of the avocado kernel 

seed sample with sulphuric acid as a reagent was performed according to the acid activation procedure reported by 

Zarzour et al. (2014) and Zhu et al. (2016) with minor modifications. The experimental procedure for producing the 

avocado pear seed activated carbon is presented in Figure 1. 300 grams of raw avocado pear seed sample was pre-

treated by washing with 5000 grams of distilled water and 3945 grams of ethanol to remove dirt and other soluble 

impurities. Consequently, the washed avocado pear seed samples were dried in a Mermmert oven at a temperature of 

383 K for 24 hours. Then, the dried avocado pear seed samples were cut and ground into fine particles utilizing a 

Jencod grinding machine and sieved using a standard Taylor Sieve with a mesh size of 300 µm.  Thereafter, 300 

grams of dried avocado pear seed was mixed with 119.7 grams of 85% sulphuric acid according to the impregnation 

ratios (0.5:1, 1:1, and 1.5:1) for a total duration of 2 hours and heated in a Mermmert oven at 368 K for 24 hours. 

The dried acid-impregnated avocado pear samples were then thermally activated in a Muffle furnace at different 

activation temperatures (873 K, 1023 K,  and 1173 K) and times (60, 90, and 120 minutes). The activated carbon 

sample was cooled, and repeatedly washed to remove disorganized carbon, products of decomposition, and traces of 

sulphuric acid. The washed activated carbon sample was filtered with Whatman No.1 filter paper and dried in a 

Mermmert oven at 348 K for 24 hours before usage. Textural characterization of the activated carbon product was 

performed using a Quantachrome NOVA4200e BET Analyzer (Anton-Paar GmbH, Austria) to determine the BET 

surface area. 
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                          Figure 1: Flowchart showing the method of producing sulphuric acid activated  

                                           carbon from avocado pear seeds. 

2.2. Factorial experimental design by Box Behnken (BBD) Modeling 

Response Surface Methodology was utilized as the statistical modeling technique to (i) evaluate the effects of 

individual factors on the response of interest, (ii) resolve the two-factor interaction effects of the independent 

variables, and (iii) optimize the achievable BET surface area of sulphuric acid activated avocado pear seed carbon 

(Anderson & Whitcomb, 2016). The RSM optimization strategy for the APS activated carbon production process 

was evaluated with the aid of Box Behnken Design (BBD). In this study, the independent variables selected for 

analysis were activation temperature, impregnation ratio, and activation time. The independent or response variable 

chosen was BET surface area. The upper and lower limits of the independent variables selected for the BBD are 

shown in Table 1. The experimental ranges were selected based on prior literature studies (Buasri et al. 2023). 

For the BBD experimental design, the total number of experimental runs was determined using Eqn.1. 

 

N = K2 + K + +CP       (1) 

 

Where N is the number of experimental runs, K is the factor number and CP is the replicate number of the central 

point (Melvin et al. 2015).  

 A 3-level, 3-factor Box Behnken Design (BBD) of 48 experimental runs for a combined 22 core designs with 

incomplete block designs (IBD) and 6 centre (median) points leading to a total of 54 experimental runs was adopted, 

as presented in Table 2. The core points gave an equal variation of the high and low values, whilst the median points 

ensured reproducibility of the data and gave an estimate of experimental error (Onu et al. 2021).  

The statistical analysis was carried out using Design Expert Software version 13 (Stat-Ease Inc, USA) to predict the 

response of the studied system. The 54 experimental trials were carried out in a randomized way to minimize 

systematic error by adjusting the values of the independent (process) variables in abidance with the design of 

experiments (DOE). 
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Table 1: Independent variables and their levels for Box Behnken experimental design. 

Independent Variable(s) Range and Level 

-1 0 +1 

Activation temperature (A, 0C) 600 750 900 

Activation time (B, mins) 60 90 120 

Impregnation ratio (C, Activating 

agent: raw material) 

0.5 1.0 1.5 

 

Box Behnken scheme being a spherical design consists of experimental factors (points) lying at the centre and 

midpoint of the edges of a sphere of defined radius (Ajemba, 2012; Montgomery, 2017). The independent variables 

were coded for low, medium, and high settings, as -1, 0, and +1 and evenly spaced (Anderson & Whitcomb, 2016) 

as shown in Table 1. 

                   Table 2: Box behnken experimental design matrix for chemical activation of avocado pear  

                                  seed using sulphuric acid. 

Run 

order 

Activation 

Temp 

(0C) 

Activation      

Time 

(Mins) 

Impregnation        

ratio Activating 

agent: raw 

material 

BET Surface 

Area 

(m2/g) 

1 600 60 1.0 418.3 

2 900 60 1.0 434.9 

3 600 120 1.0 463.4 

4 900 120 1.0 485.1 

5 600 90 0.5 215.9 

6 900 90 0.5 450.0 

7 600 90 1.5 456.1 

8 900 90 1.5 464.9 

9 750 60 0.5 464.9 

10 750 120 0.5 468.5 

11 750 60 1.5 471.3 

12 750 120 1.5 475.1 

13 750 90 1.0 407.1 

14 750 90 1.0 407.1 

15 750 90 1.0 407.1 

16 600 60 1.0 418.3 

17 900 60 1.0 434.9 

18 600 120 1.0 463.4 

19 900 120 1.0 485.1 

20 600 90 0.5 215.9 

21 900 90 0.5 450.0 

22 600 90 1.5 456.1 

23 900 90 1.5 464.9 

24 750 60 0.5 464.9 

25 750 120 0.5 468.5 

26 750 60 1.5 471.3 

27 750 120 1.5 475.1 

28 600 60 1.0 418.3 

29 900 60 1.0 434.9 

30 600 120 1.0 463.4 

31 900 120 1.0 485.1 

32 600 90 0.5 215.9 

33 900 90 0.5 450.0 

34 600 90 1.5 456.1 

35 900 90 1.5 464.9 

36 750 60 0.5 464.9 

37 750 120 0.5 468.5 

38 750 60 1.5 471.3 
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39 750 120 1.5 475.1 

40 600 60 1.0 418.3 

41 900 60 1.0 434.9 

42 600 120 1.0 463.4 

43 900 120 1.0 485.1 

44 600 90 0.5 215.9 

45 900 90 0.5 450.0 

46 600 90 1.5 456.1 

47 900 90 1.5 464.9 

48 750 60 0.5 464.9 

49 750 120 0.5 468.5 

50 750 60 1.5 471.3 

51 750 120 1.5 475.1 

52 750 90 1.0 407.1 

53 750 90 1.0 407.1 

54 750 90 1.0 407.1 

 

Furthermore, the reduction empirical model describing the H2SO4-APS production process can be represented by 

the following second-order approximating polynomial model equation, in terms of coded factors: 

Y =  b0 + ∑ bi

n

i=1

Xi  +  ∑ bii Xi
2

n

i=1

 + ∑ ∑ bi,jXiXj  +  E

n

i=2

n−1

i=1

 

   

       (2) 

Where Y is the predicted dependent variable, b0 is the constant coefficient (intercept), bi, bij and bii are the regression 

coefficients of the linear, and interaction terms respectively, n is the number of patterns, X i, and Xj are the 

independent factors studied, i and j are index numbers, and E is the error term. 

 

2.3. Artificial Neural Network 

The artificial neural network (ANN) is a non-linear mathematical mapping of the region between the numeric inputs 

and output dataset(s) to identify an appropriate generalization of the actual system (Basu, 2013). The ANN training 

process involves the following steps: (i) initialization of network parameters (weights) (ii) utilization of current 

weights and biases with nodal activation function(s) to generate an output signal(s) (iii) comparison of the resulting 

output signal(s) with target output to determine network prediction error(s) (iv) iterative adjustment of network 

weights from the output unit back to the colligated hidden layer(s) using the back-propagation training algorithm 

until minimum value of the error function  (MSE) is reached.  

 

In this study, the MLP feed-forward network model for predicting the achievable BET surface area of H2SO4-

activated APS was created using MATLAB R2018a version 9.4 (MathWorks Inc, USA). The Multi-Layer 

Perceptron (MLP) feed-forward network with back-propagation (BP) training algorithm was utilized in estimating 

connections amongst a group of observations, between specific parameters (target variables), and the remainder of 

the dataset (Chebii et al. 2022). Process parameters such as activation temperature, activation time, and acid 

impregnation ratio, were selected as input (independent) variables to the neural model. In addition, the BET surface 

area was selected to be the response (dependent) variable. The multi-layer perceptron network is known to perform 

well when used for modeling non-linear and noisy data (Chebii et al. 2022). 

 

The described ANN consists of one input layer, two hidden, and one output layer (Figure 2). The ANN model with 

two hidden layer architecture was preferred in this case, due to superior results in comparison to ANN with a single 

hidden layer (Jerry, 2002). The constructed ANN network employed linear transfer function (Purelin) to model the 

neurons in the network input and output layers respectively, and tangent sigmoid transfer function (Tansig) for the 

neurons in the hidden layer(s).  
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                Figure 2: Artificial Neural Network architecture for modeling the APS acid activation process. 

To prevent over-fitting, the number of neurons in the hidden layers was estimated based on the following empirical 

equation [Eqn.3]: 

Number of hidden neurons = 1 2⁄ × (inputs + outputs) + √(training patterns)              (3) 

Where, training patterns are the total number of data points (Basu., 2013). 

Based on the result, 9 neurons were chosen as the appropriate number of nodes to be embedded in the hidden 

layer(s) of the ANN models. 

According to Onu et al. 2021, ANN modeling fares better with a larger number of dataset(s).  Consequently, the 

experimental dataset for avocado pear seed activation was quadrupled, providing a total of 54 data points utilized for 

the ANN modeling, of which 70% (38 records) were used in the refinement of network weights and biases 

(training), 15% (8 records) were used for randomly checking network predictions to assess extrapolation 

(generalization) performance (validation), and the remaining 15% (8 records) were used for calibration and 

assessment of network quality (testing). The ANN network (3:5:4:1) incorporating three input variables (activation 

temperature, activation time, and impregnation ratio), ten (9) hidden neurons, and one (1) performance variable 

(BET surface area) was ascertained to be suitable for estimating the achievable BET surface area(s) of H2SO4 

activated avocado pear seed (See Figure 3).  
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Figure 3: Topology of ANN BET network with 9 hidden neurons. 

The ANN model training was carried out using a neural network code, which automates the network training 

process. 

3.0 Results and Discussions 

 

3.1. Modeling of the HAPS activation process using RSM 
 

The Box Behnken design was utilized in a total of 54 experimental runs to develop a correlation between the APS 

seed-derived activated carbon production variables and BET surface area. According to the Sequential Model Sum 

of Squares (SMSS), the most suitable model for the activation process was selected based on the highest order 

polynomial, where the significance probability value (P-value) is less than 0.5 and the Fischer variation ratio (F-

value) obtained from Model summary statistics (See Table 3) is greater than the critical F-value [From F-distribution 

table] (Montgomery., 2017). Thus, the quadratic model was suggested by Design Expert Software for optimizing the 

achievable BET surface areas of produced H2SO4-activated carbons. However, the cubic model was aliased because 

the BBD does not hold enough runs to support a cubic model (Onu et al. 2021).  

 

Table 3: Sequential model sum of squares analysis [Type 1] for H2SO4-activated avocado seed. 

Source 
Sum of 

Squares 
df Mean Square F-value P-value  

Mean 1.024E+07 1 1.024E+07    

Linear 86009.33 3 28669.78 9.31 <0.0001  

2FI  50784.14 3 16928.71 7.78 0.0003  

Quadratic  46020.78 3 15340.26 12.19 <0.0001 Suggested 

Cubic  54099.99 3 18033.33   Aliased 

Residual 0.0000 40 0.0000    

Total 1.048E+07 54 1.940E+05    

 

For assessment of the significance and adequacy of the second-order approximating polynomial model, the Analysis 

of Variance (ANOVA) for Box Behnken experimental design was applied. The goodness of fit of the second-order 

approximating polynomial model was assessed using the coefficient of determination R2, Adjusted R2, Coefficient 

of Variation (C.V), Adequate precision, and Standard deviation (SD). Employing the 95% significance level, if the 

P-value is less than 0.05 and the F-values obtained from the ANOVA Table are greater than the critical F-values 

then it is safe to conclude that the effect under consideration is significant. The final model for the response was 

obtained by retaining only the significant factors (P < 0.05) based on the F-test. The results of the ANOVA analysis 

for the H2SO4-activated carbons are shown in Table 4. 

 

  



1024  Okiy and Nwabanne/ UNIZIK Journal of Engineering and Applied Sciences 3(3), 1016-1036 

 

Table 4: ANOVA analysis for sulphuric acid activated carbon. 

 

The predicted response for BET surface area of H2SO4 activated avocado pear seeds (APS) is represented by the 

following response surface equation [Eqn. 4], accounting for curvilinear effects: 

 

BETArea  = -1290.74 + 3.89×A - 5.66×B + 824.88×C + 0.000283×A×B -0.751×A×C + 
0.00333×B×C - 0.001951×A² + 0.0326×B² - 97.45×C2 

 

           (4) 

 

From the ANOVA for H2SO4-APS shown in Table 4, it was observed that the P-value for the response surface 

model was less than 0.05 (p-value = <0.0001). This indicates that the Second-order polynomial model is significant 

at the 95% confidence level. Likewise, the evaluated Fisher’s F-ratio of 16.15 implied that the response model was 

significant, with the likelihood of 0.009% that the F-value occurs due to noise, thus confirming the p-value test 

(Anderson & Whitcomb., 2016; Montgomery, 2017). Also, from the summary of analysis results shown in Table 4, 

it can be concluded that the linear effects, Activation temperature (A), Impregnation ratio (C), the 2-way interaction 

A*C (Activation temperature and Impregnation ratio) and square effect, A*A (Activation temperature product) for 

H2SO4-activated APS had a statistically significant effect on the response, as all their p-values were not greater than 

0.1 (Montgomery., 2017). On the other hand, the linear effect B (Activation time), the 2-way interactions A*B 

(Activation temperature and Activation time), B*C (Activation time and Impregnation ratio) and the square effect, 

B*B (Activation time product) and C*C (Impregnation ratio product) for H2SO4 activated APS were found to be 

insignificant as their P-values were greater than 0.1 (Montgomery, 2017).  

 

Likewise, the F-tests for the significance of all the linear, square, and interaction terms in the second-order 

polynomial model equation confirmed the results of the P-value test (Onu et al. 2021). Therefore, the conclusion can 

be reached that activation temperature and impregnation ratio were the linear terms with the most significant 

effect(s) on achievable BET surface area of H2SO4-APS, whilst the 2-way interaction of activation temperature and 

impregnation ratio exhibited the more significant effect on achievable BET surface area for the interactive terms. 

Normally, as the activation temperature increases, new pores are created in the process, the BET surface area is also 

increased and the existing pores are subsequently enlarged at significantly higher activation temperatures (Marsh & 

Rodríguez-Reinoso, 2006). As a result, a positive effect on the textural features (BET surface area, pore volume) of 

H2SO4 activated avocado pear seed carbon followed with increment in activation temperature of the process. 

Likewise, the impregnation (mixing) ratio is directly correlated with BET surface area. Impregnation of 

carbonaceous materials with chemicals creates unsaturated compounds composed of non-carbon elements 

(heteroatoms) such as oxygen, and hydrogen (surface functional groups) in the end caps and pore walls of the carbon 

matrix, which enhances the adsorptive capacity of the H2SO4-activated avocado pear seed carbon. Thus, a positive 

effect on the geometric properties (BET surface area, pore volume) of solid carbon followed with the increase in the 

impregnation ratio between the activating agent (e.g. sulphuric acid) and raw avocado pear seed (Marsh & 

Rodríguez-Reinoso, 2006). Consequently, eliminating all the insignificant terms, the final second-order polynomial 

equation is obtained as:  

 

BETArea = -1290.74 + 3.89×A + 824.88×C - 0.751×A×C – 0.001951×A2 

 

          (5) 

Source Sum of Squares Df Mean Square F-Value P-Value 

Model 1.828E+05 9 20312.92 16.15 < 0.0001 

A-Act. Temp 85514.08 1 85514.08 67.97 < 0.0001 

B-Act. Time 3502.08 1 3502.08 2.78 0.1025 

C-Impreg. Ratio 6904.52 1 6904.52 5.49 0.0238 

AB 26.01 1 26.01 0.0207 0.8863 

AC 50760.09 1 50760.09 40.35 < 0.0001 

BC 0.0400 1 0.0400 0.0000 0.9955 

A² 7230.99 1 7230.99 5.75 0.0209 

B² 3231.19 1 3231.19 2.57 0.1164 

C² 1516.55 1 1516.55 1.21 0.2784 

Residual 54099.99 43 1258.14   

Std. Dev= 35.47 R-Sqr = 77.16% R-Sqr(Adj)= 

72.39% 

Adeq Precision 

= 15.28 

C.V.%= 8.14 
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The antagonistic and synergistic effects on achievable BET surfaces of the H2SO4-activated APS are shown by the 

negative and positive signs in front of the model equation terms.   

 

Table 4 also lists the values of the statistical measures, coefficient of determination R2 (77.16%), Adjusted R2 

(72.39%), Standard deviation (35.47), Coefficient of Variation C.V. (%) (8.14), and Adequate precision (15.28) used 

to evaluate the goodness of fit of the second-order polynomial model. The good R2 statistic (R2 > 67%) showed that 

approximately 77.16% of the fluctuations in the response could be attributed to the independent variables studied, 

with a 0.5% chance that the variations in achievable BET surface area(s) are due to noise, suggesting that the model 

is adequate at 95% confidence limit (Singh et al. 2014). Furthermore, the standard deviation of the second-order 

polynomial was high, the smaller the standard deviation, and the closer the R2 value to 1, the better the predictive 

ability of the polynomial model. The high value of the standard deviation implied a significant amount of variation 

in the independent variables studied. Likewise, the adequate precision ratio of 15.28, which is greater than 4.0 

(desirable value), indicates adequate signal (high signal-to-noise ratio). This implies that the response model can be 

used to navigate the design space (Anderson and Whitcomb, 2016). According to Okpe et al. 2018, an adequate 

precision ratio greater than 4 indicates that the model is adequate. The coefficient of variation (C.V.) is defined as 

the ratio of the standard deviation of the estimate to the mean value of the response and is a measure of the 

repeatability and reproducibility of the model. The evaluated C.V value of 8.14, which was less than 10% (Upper 

threshold limit) indicates that the response surface model can be considered fairly reproducible (Onu et al. 2021). 

Further, the reasonably close agreement of the R2 value of 77.16% and adjusted R2 value of 72.39% (difference < 

20%) confirms the adequacy of the regression model. The results of the predicted response and experimental 

response are shown in Table 5. 

 

Table 5: Model predicted and experimental BET surface area for H2SO4 activated APS. 

Point BET Surface 

Area 

(Predicted) 

BET 

Surface 

Area 

(Actual) 

STD 

Error Fit 

Square 

Residual 

1 403.712 418.3 0.46153 212.81 

2 471.462 434.9 -1.15678 1336.78 

3 426.837 463.4 1.15678 1336.85 

4 499.688 485.1 -0.46153 212.81 

5 271.738 215.9 -1.76662 3117.88 

6 454.687 450.0 -0.14831 21.968 

7 451.412 456.1 0.14831 21.977 

8 409.062 464.9 1.76662 3117.88 

9 423.650 464.9 1.30509 1701.56 

10 449.225 468.5 0.60983 371.53 

11 490.575 471.3 -0.60983 371.53 

12 516.350 475.1 -1.30509 1701.56 

13 407.100 407.1 0.00000 0 

14 407.100 407.1 0.00000 0 

15 407.100 407.1 0.00000 0 

16 403.712 418.3 0.46153 212.81 

17 471.462 434.9 -1.15678 1336.78 

18 426.837 463.4 1.15678 1336.85 

19 499.688 485.1 -0.46153 212.81 

20 271.738 215.9 -1.76662 3117.88 

21 454.687 450.0 -0.14831 21.968 

22 451.412 456.1 0.14831 21.977 

23 409.062 464.9 1.76662 3117.88 

24 423.650 464.9 1.30509 1701.56 

25 449.225 468.5 0.60983 371.526 

26 490.575 471.3 -0.60983 371.5256 

27 516.350 475.1 -1.30509 1701.56 

28 407.100 407.1 0.00000 0 

29 407.100 407.1 0.00000 0 
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30 407.100 407.1 0.00000 0 

31 403.712 418.3 0.46153 212.81 

32 471.462 434.9 -1.15678 1336.78 

33 426.837 463.4 1.15678 1336.85 

34 499.688 485.1 -0.46153 212.81 

35 271.738 215.9 -1.76662 3117.88 

36 454.687 450.0 -0.14831 21.968 

37 451.412 456.1 0.14831 21.977 

38 409.062 464.9 1.76662 3117.88 

39 423.650 464.9 1.30509 1701.56 

40 449.225 468.5 0.60983 371.526 

41 490.575 471.3 -0.60983 371.526 

42 516.350 475.1 -1.30509 1701.56 

43 403.712 418.3 0.46153 212.81 

44 471.462 434.9 -1.15678 1336.78 

45 426.837 463.4 1.15678 1336.85 

46 499.688 485.1 -0.46153 212.81 

47 271.738 215.9 -1.76662 3117.88 

48 454.687 450.0 -0.14831 21.968 

49 451.412 456.1 0.14831 21.977 

50 409.062 464.9 1.76662 3117.88 

51 423.650 464.9 1.30509 1701.56 

52 449.225 468.5 0.60983 371.526 

53 490.575 471.3 -0.60983 371.526 

54 516.350 475.1 -1.30509 1701.56 

 RMSE=31.62 

 

The graphical plot of the predicted BET surface area against the experimental BET surface area is shown in Figure 

4. 
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Figure 4: Comparative plot of RSM predicted BET surface area with experimental data. 

Figure 4 showed that the data points are randomly distributed about the bisector (450) line (non-linear pattern), this 

indicates that the error residuals for the prediction of the response variable are minimal (normality in data values). 

Thus, signifying that the response surface model is adequate for response prediction. As well, the relatively high 

correlation coefficient (R) value of 0.88, confirmed that the response surface model can predict the achievable BET 

surface area for H2SO4 with reasonable accuracy (Ranade & Ranade., 2023). 
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The normal plot of residuals shown in Figure 5 was also utilized to check if the process data are normally 

distributed. The distribution of data points was similar at both the left and right portions of the plot, indicating a 

normal distribution of the error residuals. This implies that there are no signs of problems with the process data or 

model (Iheanancho et al. 2019). 

 

 
 

Figure 5: Normal Probability Plot of Residuals for the H2SO4 activated APS. 
 

The statistical significance of the evaluated linear factors, products, and their interactions on the achievable BET 

surface area (studied response), in order of importance is represented by the Pareto diagram depicted in Figure 6. 

The vertical continuous line indicates the magnitude of the minimum statistically significant effect for a 95% 

confidence level and the corresponding t-test value is equal to 2.015. Any factor or its interaction that transcends the 

vertical line is considered significant (Montgomery, 2017). 

 
 

Figure 6: The Pareto plot for H2SO4 activated APS. 

 

Figure 6 shows that the linear effects A (activation temperature), C (impregnation ratio) and the 2-way interaction 

A*C (activation temperature and impregnation ratio) are the most influential factor determining the achievable 

surface area of H2SO4-activated APS. 

 

The 3-D response surface plots were created to visualize the relationship between the response (BET surface area) 

and the independent variables (activation temperature, time, impregnation ratio)  in terms of their linear, and 

interaction effects, and also facilitate optimization of the activated carbon production process are presented in Figure 

7(a-c). The quadratic models developed for describing the multivariate system have three independent variables 
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(factors). Hence, each of the response diagrams was plotted as a function of two variables in their respective ranges 

(-1 to 1), with the other independent variable maintained at zero (0) level. 

 

 

  
  Figure 7: Response surface plots of BET surface area for (a) Impregnation ratio = 1.0 (b) Activation time = 90  

                  mins, and (c) Activation temperature = 750 0C. 

 

It is apparent from Fig 7a, that the BET surface area of H2SO4 activated carbon showed an increasing trend with 

increasing activation temperature. Whereas, the achievable BET surface area exhibited an initially decreasing trend 

with increasing activation time and subsequently, increased to a maximum level. Thus, activation temperature 

exhibited a synergistic effect on the achievable BET surface area. Here, activation temperature plays a more 

prominent role in contrast to the extent of activation (activation time) in the activated carbon production process. In 

Figure 7b, the BET surface area of H2SO4-activated carbon exhibited an increasing trend with increasing activation 

temperature to a maximum level. On the other hand, BET surface area showed a decreasing trend with increasing 

impregnation ratio towards a minimum level. It is also evident from Figure 7c, that the BET surface area of H2SO4 

activated carbon initially showed a decreasing trend with increasing activation time towards a minimum, 

subsequently exhibiting an increasing trend for the remainder of the activation process. Conversely, the BET surface 

area showed an increasing trend with an increasing impregnation ratio towards a maximum value for the duration of 

the acid activation process. This indicates that the impregnation ratio had a prominent effect on the achievable BET 

surface area of H2SO4-activated carbon. 

From the statistical optimization, the optimum BET surface area achieved for H2SO4-activated avocado pear seeds 

was 517.8 m2.g-1 for activation temperature of 1045.73K, activation time of 120 mins, and impregnation ratio of 

1.21 respectively. Concluding, additional experimental trial run(s) using the optimal conditions were carried out, and 

the empirical BET surface area for H2SO4-activated APS was found to be 521.26 m2.g-1 (See Table 6). These results 

validated the second-order polynomial model developed with Response Surface Methodology (RSM).  

 

a 

b c 
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      Table 6: Experimental and predicted value of BET surface area for H2SO4-activated avocado pear seeds  

utilizing optimum activation conditions. 
 

Optimal Conditions BET Surface Area (m2/g) 

No of 

Replicates  

Activation Time, 

mins 

Activation 

Temperature, K 

Impregnation 

ratio 

Experimental Predicted 

 

1 

 

120 

 

1045.73 

 

1.21 

 

521.26 

 

517.8 

 

3.2. Modeling of the APS acid activation process using ANN 

The ANN BET model was implemented in MATLAB R2018a version 9.4. The accuracy and validity limit of the 

created ANN BET model for H2SO4-activated APS production process was established by performing diagnostic 

checks. Standard statistical indices such as correlation coefficient (R), and Root-Mean-square error (RMSE) were 

utilized to evaluate the ANN BET model performance (Chebii et al. 2022; Ranade & Ranade., 2023).  

The performance plot of MSE for the number of training cycles for ANN modeling of the HAPS activation process 

is presented in Figure 8. The overall best validation performance of 64.11 was achieved at 9 iteration cycles through 

the entire training dataset (Epochs). The relatively low value of the MSE ascertained, indicates that the performance 

plot did not demonstrate any signs of over-fitting. Moreover, the test (red) and validation (green) curves are 

comparable, and close to the best fitting curve for this studied case. Consequently, over-fitting problems are not 

likely to occur with the trained ANN model. However, if the validation curve had exhibited a significantly lower 

increment in the latter stages of the epochs compared to the test curve in the earlier iteration cycle(s). In this 

instance, there is the likelihood of occurrence of over-fitting problem(s) (Onu et al. 2021). 

 

 
Figure 8: ANN Model Performance chart for HAPS activation process. 

 

The regression plots of preparation, validation, and evaluation are shown in Figure 9 for the ANN BET neural 

model. The best-fit regression model for HAPS activation corresponded to a correlation coefficient (R) of 0.99764 

for training, 0.92419 for testing, and 0.99512 for validation, yielding an average R-value of 0.99552, indicating a 

strong relationship between the input values and neural network predictions for achievable BET surface area (Ravg > 

0.995) (Ranade & Ranade., 2023). 
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    Figure 9: Regression plots for training, validation, testing and overall data for ANN modeling. 

 

To assess the accuracy of the neural models to reproduce the experimental data utilized in network training. The 

experimentally determined BET surface areas at various activation conditions were compared with ANN-predicted 

values as shown in Table 7. As expected from the low value of RMSE presented in Table 7, the ANN BET model 

predicted and experimental results matched very well (6.25). The low value of RMSE obtained shows that the 

hidden layers (levels) of the ANN neural network were able to decipher the pattern of training, resulting in better 

model prediction performance (Chebii et al. 2022). This indicates that the ANN BET model can accurately replicate 

the experimental results for the APS acid activation process. 

 

     Table 7: Comparison of ANN outputs with experimental observations for production of H2SO4- activated APS.  
 

 

Point 

 

BET Surface 

Area 

m2/g 

(ANN) 

 

BET Surface Area 

m2/g 

(Experiment) 

 

Residual 

Square 

 

 

1 415.42 418.3 8.3214 

2 453.90 434.9 360.875 

3 461.65 463.4 3.0645 

4 484.87 485.1 0.0530 

5 216.01 215.9 0.0112 

6 452.67 450 6.0864 

7 456.275 456.1 0.03055 

8 464.70 464.9 0.0391 

9 452.96 464.9 142.611 

10 467.06 468.5 2.0715 

11 470.93 471.3 0.1368 

12 475.46 475.1 0.1290 

13 404.85 407.1 5.05762 

14 404.85 407.1 5.0576 

15 404.85 407.1 5.0576 
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16 415.42 418.3 8.3214 

17 453.90 434.9 360.875 

18 461.65 463.4 3.0645 

19 484.87 485.1 0.0530 

20 216.01 215.9 0.0112 

21 452.47 450 6.0864 

22 456.27 456.1 0.03055 

23 464.70 464.9 0.03906 

24 452.96 464.9 142.611 

25 467.061 468.5 2.07148 

26 470.93 471.3 0.13679 

27 475.46 475.1 0.12905 

28 404.85 407.1 5.05762 

29 404.85 407.1 5.05762 

30 404.85 407.1 5.05762 

31 415.42 418.3 8.3214 

32 453.90 434.9 360.8751 

33 461.65 463.4 3.06446 

34 484.87 485.1 0.052954 

35 216.01 215.9 0.0112 

36 452.47 450 6.08644 

37 456.27 456.1 0.03055 

38 464.70 464.9 0.039056 

39 452.96 464.9 142.611 

40 467.06 468.5 2.07148 

41 470.93 471.3 0.136790 

42 475.46 475.1 0.129045 

43 415.42 418.3 8.3214 

44 453.90 434.9 360.875 

45 461.65 463.4 3.06446 

46 484.87 485.1 0.05295 

47 216.01 215.9 0.0112 

48 452.47 450 6.08644 

49 456.27 456.1 0.03055 

50 464.70 464.9 0.03906 

51 452.96 464.9 142.610 

52 467.06 468.5 2.0715 

53 470.93 471.3 0.1368 

54 475.46 475.1 0.1290 

 RMSE = 6.25 

 

Furthermore, the ANN BET model was examined by comparing the ANN predictions and experimental outcomes 

for achievable surface area(s), as presented in Figure 10. 
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Figure 10: Parity plot of ANN model predicted and experimental results for the HAPS activation process. 

As apparent from Figure 10, the ANN predicted values and experimental results are in good agreement, as indicated 

by the high R2 value of 0.991. R2 > 0.67 is an indicator of the high predictive accuracy of the non-linear regression 

model (Singh et al. 2014). Thus, the neural network model was able to discern the pattern of activation parameters 

to provide an accurate prediction of periodic variations in the achievable BET surface area(s) of HAPS. 

 

3.3. Comparative Analysis of RSM and ANN BET models 
 

The prediction accuracy of the response surface (RS) and artificial neural network (ANN) BET models was 

compared, employing performance indices-Root mean square error (RMSE), Correlation coefficient (R) and 

Squared loss function as reported in Table 8. The statistical index-squared loss function better reveals model 

performances because it is non-negative, and very sensitive to outliers at the individual data points (Gokcesu & 

Gokcesu., 2023).  

 

 

Table 8: Comparison of RSM and ANN BET models for activation of HAPS. 
 

Run No RSM                      ANN 

Square residual Square residual 

1 212.81 8.3214 

2 1336.78 360.875 

3 1336.85 3.0645 

4 212.81 0.0530 

5 3117.88 0.0112 

6 21.968 6.0864 

7 21.977 0.03055 

8 3117.88 0.0391 

9 1701.56 
142.611 

10 371.53 2.0715 

11 371.53 0.1368 

12 1701.56 0.1290 

13 0 5.05762 

14 0 5.0576 

15 0 5.0576 
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16 212.81 8.3214 

17 1336.78 360.875 

18 1336.85 3.0645 

19 212.81 0.0530 

20 3117.88 0.0112 

21 21.968 6.0864 

22 21.977 0.03055 

23 3117.88 0.03906 

24 1701.56 142.611 

25 371.526 2.07148 

26 371.5256 0.13679 

27 1701.56 0.12905 

28 0 5.05762 

29 0 5.05762 

30 0 5.05762 

31 212.81 8.3214 

32 1336.78 360.8751 

33 1336.85 3.06446 

34 212.81 0.052954 

35 3117.88 0.0112 

36 21.968 6.08644 

37 21.977 0.03055 

38 3117.88 0.039056 

39 1701.56 142.611 

40 371.526 2.07148 

41 371.526 0.136790 

42 1701.56 0.129045 

43 212.81 8.3214 

44 1336.78 360.875 

45 1336.85 3.06446 

46 212.81 0.05295 

47 3117.88 0.0112 

48 21.968 6.08644 

49 21.977 0.03055 

50 3117.88 0.03906 

51 1701.56 142.610 

52 371.526 2.0715 

53 371.526 0.1368 

54 1701.56 0.1290 

 RMSE= 31.62 RMSE = 6.25 

 

RSM and ANN BET models have squared-error residual values ranging from 21.98 to 3117.88, and 1.12 × 10-2 to 

360.88 respectively for achievable BET surface area(s). The lower squared-error residual values obtained for the 

ANN model indicate that the model has better predictive performance than RSM. Further, The RSM and ANN BET 

models generated correlation coefficient (R) values of 0.88 and 0.9955 respectively for achievable BET surface 

area(s). The higher value of the regression coefficient determined for ANN BET model indicated that the ANN 

performed better than RSM. In addition, Figure 11 showed relatively low Root Mean Squared Error (RMSE) values 

of 6.25 and 31.62 for the ANN and RSM models respectively in this studied case. RMSE is also a standard statistical 

index for evaluating the performance of non-linear regression models (Chebii et al. 2022). 
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Figure 11: Model BET prediction performances for HAPS activation process. 

 

These results confirm that the ANN model is the most capable model for predicting the achievable surface area of 

H2SO4-activated APS. These results are in agreement with findings made by Nazerian et al. (2018) and Nur et al. 

(2019), which reported that ANN analysis performed better than RSM in prognostic ability. In a nutshell, ANN and 

RSM techniques have been proven to be effective methods for predicting and forecasting the achievable BET 

surface area of H2SO4-activated Avocado Pear Seeds (APS) produced under varied activation conditions in a muffle 

furnace. 

 

4.0. Conclusion  
 

In this study, Response Surface Methodology (RSM) utilizing Box Behnken Design (BBD) and ANN of Machine 

learning (ML) technology were employed to explore the effects of independent variables on the response variable 

and optimize the process conditions for the production of avocado pear seed activated carbons using H2SO4. The 

effectiveness of RSM and ANN techniques for optimization of the process conditions for preparation of H2SO4 

activated avocado pear seed carbons having maximal BET surface area(s) was successfully demonstrated. The RSM 

and ANN BET models obtained via non-linear regression analysis predicted the response variable ((BET surface 

area) from the experimental dataset to a reasonable degree of accuracy. The RSM optimization concluded that the 

most influential parameter in achievable BET surface area for H2SO4-activated avocado pear seed (APS) was 

activation temperature. The maximum BET surface area for H2SO4-activated APS obtained from RSM 

optimization, and subsequently verified via additional experimental trials was estimated to be 517.8 m2.g-1 

achievable at optimum conditions of activation temperature (1045.73 K), activation time (120 mins), and 

Impregnation ratio (1.21). Error analysis conducted between simulated and experimental values using various 

statistical indices (correlation coefficient, root mean square error and squared loss function) for both the RSM 

(BBD) and ANN models, confirmed that ANN has better prognostic performance. In conclusion, the H2SO4-acid-

activation of pristine avocado pear seeds has good potential to produce quality active carbons possessing high BET 

surface area.  
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