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Abstract  

The problem of evaluating the various performance characteristics of power transformer such as temperature distribution, flux 

distribution, and losses, is an age long issue in electrical engineering, and an attempt to manually or analytically evaluate them is 

very difficult and subject to errors. Hence the development and application of Finite Element Method to complex engineering 

analysis of this nature. This research presented enhanced finite element model application to Power Transformer loss 

computation. The method applied is modelling and simulation. The Finite Element Analysis of a 1.25MVA Power Transformer 

Model was created using the TrafoSolve unit of the Simcenter MAGNET Multi-physics Analysis Software. The input, output 

voltage, and frequency of operation of the power transformer was defined and inputted into the design parameter section from 

where the phase current was computed. Other parameters of the Power Transformer were selected as appropriate in the design 

stage before the mesh generation was carried out by process of double discretization as well as normal adaptive discretization 

process. The Solution of the Model, covered Finite Element Force Calculation, Thermal Analysis, Short Circuit Analysis, and 

Harmonic Analysis. In summary, the double discretization result for winding loss 48431.63W, and that of normal adaptive FEM 

which was 48969.4W, produced a percentage absolute error of 1.11%. For individual coil lose computation, the result showed 

1.54% absolute error for the low voltage winding section during the short circuit test, translating to 14320.29W for the double 

discretization algorithm and 14541.18W for the normal adaptive FEM. This validates the double discretization algorithm 

developed in this research. 
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1. Introduction 

Finite Element Method (FEM) is a common numerical approach to solutions of differential equations arising in 

Engineering and mathematical modeling such as the traditional fields of structural analysis, mass transport, heat 

transfer, fluid flow, and electromagnetic potential. The method of approach in all areas which include model definition 

(preprocessing), solution and post-processing are the same. Various software solutions had been developed to handle or 

solve the resulting systems of differential equations that result from the preprocessing stage, likewise the post-processing 

stage. However, it is vital to note that the accuracy of the resulting solution depends on the accuracy of the model 

definition which invariably lies on the expertise of the engineer performing the analysis. This includes choice of elements, 

solution algorithm and parameters of interest required to describe the behavior of the engineering structure to be analyzed. 

In the solution process, it is required to refine the mesh if the result is not satisfactory. This process from research usually 

involves change of element type or combination of different element types in the case of complex engineering structure or 

geometry. 

 

Ana and Bojan (2017), presented the use of a self-developed solver based on Boundary Element Methods (BEM) for 

electric field calculation of a transformer, based on the approximation of charge density on the transformer winding. They 

utilized linear functions as the base functions with point-matching method, and integrated the resulting system of equations 

both analytically and numerically. Additionally, to validate the results obtained, commercial Finite Element Methods 

(FEM) software was used to model the same problem and the solution obtained for real transformer geometry using both 
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BEM and FEM. Finally, comparative analyses of the results obtained were presented. The extension of FEM to transformer 

design and analysis in retrospective was given by (Chitaliya, and Joshi, 2013). They showed the importance of using FEM 

to determine transformer parameters such as winding impedance, leakage inductance, hot spot temperature etc., during 

design in a prototype unit. 

 

Leela, Madhumitha, Sindhu, and Maheswari, (2020), emphasized the importance of transformers in the power system 

domain and therefore suggested the use of FEM in power transformer design. This is because it is easy to analyze the 

Electromagnetic Field distribution and calculate the losses during design than when implemented in real-time. They went 

ahead to simulate a three-phase 11/0.4 kV power transformer using the Finite Element Method to demonstrate this idea.  

Vasantha, and Akthar, (2019), analyzed the impact of conducting particles in the coil of a power transformer using FEM 

and deduced that part of the stress undergone by power transformers during operation is due to conducting particles in the 

winding of the transformer. The result suggested design improvement to reduce the effect of electromagnetic stress power 

transformers could undergo as a result of spurious particles in its winding.  

 

Sweta, and Akshay, (2017) presented 3-D modeling of power transformers for the purpose of predicting the core and 

winding loses. Test result presented showed a significant improvement in the result obtained using 3-D FEM when 

compared to experimental results obtained for the same transformer. Vibhuti, and, Deepika (2020), chronicled the 

application of FEM solution to transformer parameter estimation from 2017 to 2019 revealing a total of 73 publications. 

These publications, spanned through high voltage and low voltage power transformers as well as three phase transformers. 

Parameters analyzed by various authors include Copper Loss, Eddy Current Loss, Stray Loss, and short circuit Loss. 

 

To solve the problem associated with dual-weighted residual based adaptivity for time-dependent problems, which is 

computationally very costly if the spatial and temporal meshes are changed in each time step, Estep et al, (2010), presents a 

novel method to resolve this issue by using a sequence of fixed but nonuniform spatial meshes in time. The elements of this 

sequence are called blocks, which is why the method was named block-wise adaptivity. They used goal-oriented posteriori 

analysis to formulate several strategies on how to select these blocks and still satisfy an overall accuracy in the output 

function. The strategies were illustrated on different types of evolution Partial Differential Equations (PDEs) in one and 

three dimensions. 

 

One approach to retain the advantage of such data structures and still have proper and general geometry approximation is 

to use discontinuous Galerkin method based on Nitsche’s method (Johansson, 2010). This idea is not new, but Johansson 

and Larson, (2010) presented a rigorous procedure to avoid numerical instabilities by associating certain elements on the 

boundary with elements lying in the interior (Burman and Hansbo, 2009). The method was proved to have optimal 

convergence and was illustrated on a three-dimensional problem. Erich, Traian and David, (2013), proposed a two-level 

finite element discretization of the nonlinear stationary quasi-geostrophic equations, which model the wind driven large 

scale ocean circulation. Optimal error estimates for the two-level finite element discretization were derived and numerical 

experiments for the two-level algorithm with the Argyris finite element were carried out. The numerical results verified the 

theoretical error estimates and showed that, for the appropriate scaling between the coarse and fine mesh sizes, the two-

level algorithm significantly decreased the computational time of the standard one-level algorithm. The application of these 

refinement, is seen at work in modern day FEM solution poised to produce more and more accurate results which 

minimizes design and fabrication loses in electromagnetic devices.  

 

Behnam, Ali, and Fatemeh (2024), in a more recent research work, modelled 1000kVA and 1600kVA power transformer 

using FEM to ascertain their no-load losses. They further carried out a tripartite comparison of the result with theoretically 

calculated values and that of experimental result. Their conclusion is that the percentage error for the result obtained using 

FEM and experimental result were less than 1%, far better than the result obtained using theoretical approach which ranged 

from 5 – 10% difference.  A scan through the base papers presented above showed that the concept of mesh resizing or 

adaptive mesh reduction during finite element analysis solution is not new, however this concept lacks material base in 

transformer finite element analysis. Hence, as an addendum to the body of knowledge in this field of engineering analysis,  

and following these specific objectives which include to study the finite element method and its application to Electrical 

Engineering problem analysis, ascertain the loss distribution of power transformer using Finite Element Method, model 

enhanced Finite Element Method using double discretization approach, and implement and simulate the enhanced finite 

element model in Finite Element environment (TrafoSolve), this article suggests the concept of double discretization or 

double meshing model to further improve on the accuracy of the model representation at the pre-processing stage. This 

requires addition of an abstraction layer whose function is to internally split the already generated mesh from the 

discretization stage, into two creating a kind of neuroadaptive process which would improve the overall results during 

transformer finite element analysis process.  
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2. Material and Method 

The material used includes TrafoSolve, Simcenter MAGNET, Simcenter MAGNET Thermal simulation software solution, 

all of version 2212, and personal computer (PC) system used to run the application. The three software are developed by 

Infologic Design (Infolytica Europe). The PC requirement is at least 20 gigabytes internal storage, 8 gigabyte RAM and 2.4 

GHz core i-3 or higher processor. The method employed in this research paper is design, and simulation.  

 

2.1 Double Discretization Algorithm 

The concept of double discretization algorithm Integrated to the solver or result unit was created by dividing into half, the 

various element dimensions of the transformer core, coil, and insulation strips, during mesh formation by means of 

neuroadaptive process represented in TrafoSolve by dynamic mesh formation. This is a crucial process in pre-processing 

stage of the Finite Element Analysis.  

 

 
Figure 1: Finite Element Discretization Algorithm.  

 

Figure 1 shows a general h-adaptive algorithm for handling spatial errors where h is global mesh size. Kh local mesh size, 

TOL tolerance term, LTOL local tolerance term, and |𝑚(𝑒)| mean error term. The process of FE discretization starts by 

initializing the element mesh size, and the tolerance value which the element must not split below. Then while the mean 

error value of the element remains less than the tolerance, the algorithm computes the solutions of the meshes generated till 

the mean error value of the element becomes greater than the tolerance value. At this instance, the algorithms search for 

convergence which is obtained by mesh refinement given by mean error value greater than or equal to local tolerance. 

 

 
Figure 2: Double Discretization Algorithm 

 

For the double discretization approach figure 2, the only difference is that the local tolerance value used to refine all 

elements at convergence period is half the value used in normal FE discretization algorithm. Hence, a finer mesh and a 

more approximate mean error value is obtained. 

The solution process flow depicted in figure 3, involved designing a 1.25MVA transformer using the TrafoSolve unit of the 

simulation software package by utilizing the transformer model parameters defined in the subsequent sections. 

The three-software work together to compute the transformer loses, carryout thermal analysis, and finite element force, and 

stress analysis of the transformer model designed in this article. In the preceding sections we highlight the various 

components of the transformer, used for the design. 

 



Anionovo et al./ UNIZIK Journal of Engineering and Applied Sciences 3(5), 1291 - 1306 1294 

 
Figure 3: Solution flow chat 

 

 

2.2 Transformer Loss Model 

Iron, copper, dielectric, and miscellaneous losses are the several categories into which transformer losses can be separated. 

This research work discusses transformer losses in windings and core under harmonic effect. As seen in Equation (1), the 

overall losses of a transformer can be stated as the sum of the transformer no-load core losses and the load winding losses, 

in accordance with the IEEE Standard C57.110, and the Steinmetz empirical formula.  

 

 𝑃𝑇𝐿 =  (𝑘1𝑓𝐵𝑚
𝑛 + 𝑘2𝑓2𝐵𝑚

2 𝑡2) .  𝐺 + 𝑝𝐹 +  𝑃𝐼2𝑅 + 𝑃𝐸𝐶 + 𝑃𝑂𝑆𝐿        (1) 
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where 𝑃𝑇𝐿 is the transformer's total theoretical loss, which includes 𝑃𝑁𝐿  and load loss as well as no-load core loss. The 

current fundamental frequency is 𝑃𝐿𝐿 . 𝑓 The silicon core working flux density amplitude is denoted by 𝐵𝑚. 𝑡 is the 

thickness of the silicon wafer, and n is the hysteresis coefficient, which is equivalent to 2~2.5. The properties of silicon 

steel, which can be discovered by experimentation, determine 𝑘1𝑎𝑛𝑑 𝑘2 (Le, 2020). The core mass is denoted by 𝐺. The 

unit core magnetic loss is 𝑘1𝑓𝐵𝑚
𝑛 . The loss of the unit core vortex is 𝑘2𝑓2𝐵𝑚

2 𝑡2. The core additional loss, or 𝑝𝐹 , has a 

comparatively low proportion. 𝑃𝐸𝐶  is the additional loss brought on by the neighboring effect and winding skin effect, 

while 𝑃𝑂𝑆𝐿  is the transformer winding resistance loss. 

 

2.2.1 Harmonic loss in the transformer core 

Equation (2) displays a reduced representation of the transformer unit core loss derived from equation 3.1. 

 

 𝑃𝑁𝐿 = (𝑘1𝑓𝐵𝑚
𝑛 + 𝑘2𝑓2𝐵𝑚

2 𝑡2) + 𝑝′
𝐹

        (2)

  

where, the core vortex loss coefficient 𝐾𝑐 and the core hysteresis loss coefficient 𝐾ℎ, which are solely reliant on the kind of 

core material, can be used to quantify 𝑘1 and 𝑘2. While 𝑝′
𝐹

 is the transformer unit additional core loss, 𝑛 is the hysteresis 

coefficient, which is typically taken to be 2. 

 

Since 𝐵𝑚 =
𝐸𝑚

4.44𝑓𝑁𝐴
           (3) 

where 𝐸𝑚 is the transformer's induced electromotive potential amplitude, which has a positive correlation with the 

transformer's primary side voltage. The winding bend is 𝑁. The transformer core's effective cross-sectional area is denoted 

by 𝐴. This suggests that the following formula can be used to determine the transformer core loss under single harmonics 

(Ehsanifar et al, 2021). 

 𝑃𝑁𝐿 =
𝐸2

𝑚ℎ

4.442𝑁2𝐴2 (
𝐾ℎ

𝑓
+ 𝐾𝑐𝑡2) + 𝑝′

𝐹
          (4) 

 

Then to obtain transformer core losses for multiple harmonic cases, equation (4) can be modified as equation (5) 

 

  𝑃𝑁𝐿ℎ =
1

4.442𝑁2𝐴2
∑ 𝐸2

𝑚ℎ
ℎ𝑚𝑎𝑥
ℎ=2 (

𝐾ℎ

𝑓
+ 𝐾𝑐𝑡2) + 𝑝′

𝐹
        (5) 

 

Equation (5) states that the transformer core hysteresis loss decreases as the harmonic frequency increases and increases as 

the primary harmonic voltage content increases. Furthermore, the vortex loss increases in tandem with the primary 

harmonic voltage concentration. Since the additional losses are so small and have no effect on the trend of no-load losses 

with frequency, they are treated as constant values in the theoretical calculations reported in this study work. 

 

2.2.2 Harmonic Loss in Transformer Winding 

The T-type equivalent model is commonly used to mimic the transformer's working principle while studying the 

transformer winding harmonic loss. In general, the harmonic winding resistance of the transformer. 

  

 𝑃𝐼2𝑅 = √ℎ𝑅𝑑𝑐           (6) 

 

where 𝑅𝑑𝑐 is the winding DC resistance and ℎ is the harmonic order. 

 The external power supply can be viewed as the superposition of separate sources of different harmonic components when 

calculating the transformer loss using the T-type equivalent model, as shown in Figure 4. 
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Figure 4: T-type equivalent circuit model of the transformer 

 

In Figure 4, h denotes the harmonic order, while 𝐼1(ℎ) represents the major side harmonic current. 𝐼2(ℎ) represents the 

harmonic current on the secondary side of the transformer. 𝑅1(ℎ) and 𝑋1(ℎ) represent the transformer primary side winding 

resistance and leakage resistance under the ℎ − 𝑡ℎ harmonic action. The values 𝑅2(ℎ) and 𝑋2(ℎ) represent the secondary 

side winding of the transformer's resistance and reactance under the h-th harmonics. The values 𝑅𝑚(ℎ) and 𝑋𝑚(ℎ) represent 

the excitation resistance and impedance of the transformer under the ℎ − 𝑡ℎ harmonics. When employing the T-transformer 

equivalent loss model equivalent circuit of a transformer, 𝑅(ℎ) is calculated using √ℎ𝑅𝑑𝑐 for equivalence. Since the amount 

of harmonic reactance is proportional to frequency, it is simple to obtain 𝑗𝑋(ℎ) =  𝑗ℎ𝑋(1). Equation (7) can be used to 

calculate the active power loss of the transformer's primary side harmonic winding. 

 

 𝑃𝐿𝐿ℎ1 =  ∑ |
𝑈1(ℎ)−𝐼𝑚(ℎ)(𝑅𝑚(ℎ)+𝑗𝑋𝑚(ℎ))

𝑅1(ℎ)+𝑗𝑋1(ℎ)
|

2
ℎ𝑚𝑎𝑥
ℎ=2 𝑅1(ℎ) = ∑ 𝐼2

1(ℎ)
∞
ℎ=2 𝑅1(ℎ)     (7) 

 

The active power loss of the secondary side harmonic winding can also be found using equation (8). 

 𝑃𝐿𝐿ℎ2 =  ∑ |
1

𝑘
𝐼𝑚(ℎ)(𝑅𝑚(ℎ)+𝑗𝑋𝑚(ℎ))−𝑈2(ℎ)

𝑅2(ℎ)+𝑗𝑋2(ℎ)
|

2
ℎ𝑚𝑎𝑥
ℎ=2 𝑅2(ℎ) = ∑ 𝐼2

2(ℎ)
∞
ℎ=2 𝑅2(ℎ)    (8) 

Note: 𝑘 =
𝑁1

𝑁2
  

 

where 𝑁1 and 𝑁2 represent the transformer's primary and secondary turns, respectively. The ratio of turns is k. Thus, the 

three-phase transformer's harmonic winding loss calculation relation is as shown in equation (9). 

 

 𝑃𝑇ℎ = 3(𝑃𝐿𝐿ℎ1 + 𝑃𝐿𝐿ℎ2)          (9) 

 

The transformer's excitation reactance increases in response to the harmonic voltage, as shown by equations (7) and (8), 

producing a comparatively small current value 𝐼𝑚(ℎ). 𝐼𝑚(ℎ)(𝑅𝑚(ℎ) + 𝑗𝑋𝑚(ℎ)) can therefore be ignored. Harmonic losses in 

the winding resistance are directly caused by the harmonic current, which also increases winding losses. This leads to a 

primary connection between the transformer harmonic winding losses and the harmonic current.  

However, the √ℎ𝑅𝑑𝑐 model does not account for the loss 𝑃𝑂𝑆𝐿  caused by the proximity effect and winding skin effect on 

the winding resistance. The AC resistance coefficient 1 +
Ψ

3
∆4 model was proposed in IEEE Std C57.110™-2018, a 

revision of IEEE Std C57.110-2008, to accurately characterize the transformer harmonic winding loss (IEEE, 2018). 
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The harmonic current directly results in harmonic losses in the winding resistance, which in turn increases winding losses. 

Consequently, the transformer harmonic winding losses and the harmonic current are largely related.  

Additionally, the √ℎ𝑅𝑑𝑐 model does not account for the loss 𝑃𝑂𝑆𝐿caused by the proximity effect and winding skin effect on 

the winding resistance. IEEE Std C57.110™-2018, a revision of IEEE Std C57.110-2008, proposed the AC resistance 

coefficient 1 +
Ψ

3
∆4 model as a precise way to characterize the transformer harmonic winding loss (IEEE, 2018). 

 

 𝑅(ℎ) = (1 +
Ψ

3
∆4)𝑅𝑑𝑐          (10) 

 

 Ψ =
5𝑝2−1

15
           (11) 

 

where  𝑅(ℎ) is the h-th harmonic winding AC resistance and 𝑅𝑑𝑐 is the winding DC resistance. The depth of the h-th 

harmonic winding's skin effect is determined by 

 

  ∆= 𝑑 𝛿ℎ⁄             (12) 

And  

 𝛿ℎ =  √2/𝜔ℎ𝜇𝜎           (13) 

 

The copper wire's electrical conductivity is represented by 𝜎 and its magnetic conductivity by 𝜇. The number of winding 

layers is represented by 𝑝. The thickness of each silicon steel sheet is 𝐷, and 𝜔ℎ is the angular frequency of the ℎ−𝑡ℎ 

harmonic. 

Thus, the three-phase total transformer loss is modified as shown in equation (14). 

 

 𝑃𝑇ℎ = 3 ∑ |
𝑈1(ℎ)

(1+
Ψ

3
∆4)𝑅𝑑𝑐+𝑗ℎ𝑋

|

2

(1 +
Ψ

3
∆4)𝑅𝑑𝑐

ℎ𝑚𝑎𝑥
ℎ=2 = ∑ 𝐼2

1(ℎ)
∞
ℎ=2 (1 +

Ψ

3
∆4)𝑅𝑑𝑐    (14) 

 

As an illustration, a real-world 630 kVA transformer is presented by (Qionglin et al, 2013). The transformer has 36 

winding layers, a DC resistance of 0.91 Ω, and a thickness of 1.2 mm for the silicon steel sheet. The resistive frequency 

characteristics of the transformer's harmonic winding model are shown in Figure 5. 

 

 
Figure 5: Winding harmonic resistance characteristics of the transformer 

 

When the harmonic frequencies are exceedingly low, the angular frequency values 𝜔ℎ of the harmonics are also very low. 

Equations (12) and (13) demonstrate that ∆ is incredibly small. Therefore, the value of ∆4 is negligible. The h-th harmonic 

winding's AC resistance, 𝑅ℎ, is extremely close to ℎ𝑅𝑑𝑐.  
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It is evident from harmonic order 2 that the two resistance models currently suit the data well since the skin impact and the 

proximity effect on the AC resistance are minimal at low frequencies. On the other hand, the value of ∆4 grows quite 

dramatically with increasing frequency. √ℎ𝑅𝑑𝑐 grows with frequency more slowly. The proximity effect brought in place 

by the leakage field and the skin effect have an increasing impact on the winding's harmonic resistance, and the two 

models' descriptions of the winding's harmonic resistance seem to differ significantly in size. Equation (14) makes it clear 

that there will be a significant discrepancy between the two models when calculating the harmonic current winding losses 

of the transformer. 

 

2.3 Transformer Field-Circuit Coupling Model 

The accuracy of the previously provided transformer model is evaluated by developing a finite element model based on the 

field-load coupling theory and numerically solving the transformer loss. The Maxwell set of equations below is modified 

by adding vector magnetic location 𝐴 and scalar potential ∅ to produce independent electric field and magnetic field partial 

differential equations. 

 

 {
𝐵 = ∇  × 𝐴
𝐸 = −∇∅

           (15) 

 

The independent partial differential equations for the magnetic and electric fields can be obtained by plugging the equation 

into the Maxwell equations and is illustrated in equations (16) 

 {
∇2𝐴 − 𝜇𝜀

𝜕2𝐴

𝜕𝑡2 = −𝜇𝐽𝑠

∇2∅ − 𝜇𝜀
𝜕2∅

𝜕𝑡2 = −
𝜌

𝜀

          (16) 

 

The field control equations for the 3D transient field-circuit coupling calculation are shown in matrix form in equation 

(17). Bojan and Ana (2017). 

 

 𝑣∇ × ∇ × 𝐴 + 𝑣∇. ∇. 𝐴 + 𝜎∇∅ +
𝜕𝐴

𝜕𝑡
𝜎 − 𝐽𝑠 = 0       (17) 

 

where vector magnetic position is denoted by 𝐴. Source current density is denoted by 𝐽𝑠. Reluctivity is denoted by v. 

Equation (18) can be used to calculate 𝐽𝑠. 

 

 𝐽𝑠 =  
𝑁

𝑆
𝑖(𝑡). ℎ           (18) 

 

where 𝑁 is the winding's number of turns. 𝑆 is the winding's cross section. Along the coil tangent direction, ℎ is the unit 

vector.  

Figure 6 displays the circuit and electromagnetic field equivalent model coupling computation. The hysteresis loop 

describes the hysteresis loss produced by the shift of the core magnetic field, while 𝑅𝑒 describes the core vortex loss. 

 
Figure 6Diagram of the field-coupling model's equivalent circuit 

 

The control equation of the circuit is as shown in equations (19) and (20) 
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 𝑢 = 𝑖𝑅 + 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑒          (19) 

 

 𝑒 =
𝑁

𝑆

𝜕𝑦

𝜕𝑡
∫ 𝐴ℎ𝑑Ω

Ω
          (20) 

 

where the three-phase transformer's core area is represented by Ω. By solving the differential equations (17) through (20), 

the field-circuit coupling calculation of the three-dimensional model may be realized. 

These models all employ direct stiffness method to arrive at the elemental solutions which sums up to give total loses. 

 

 

2.4 Transformer Model Parameters  

The following parameters were chosen for the transformer design created using TrafoSolve and operating parameters 

calculated. 

 

Table 1: Transformer design parameters 

S/No Parameter Value 

1 Number of phases: 3 

2 Rated power, (kVA): 1250 

3 Rated Voltage - HV winding, (kV): 6 

4 Rated Voltage - LV winding, (kV): 1.2 

5 Frequency, (Hz): 50 

6 Core type: 3 legs 

7 Core material M4: -silicon -less than 0.5W/kg loss @1.5T: Unisil/alphasil28 M4 

8 Limb diameter, (mm): 300 

9 Window height, (mm): 635 

10 Limb Pitch, (mm): 575 

11 Ambient temperature, (0C): 40 

12 Operating temp. of windings (for losses calculation), (0C): 115 

13 Lamination factor: 0.955 

14 Number of windings: 2 
 

Rated current which is the unknown variable, is obtained from the formula below and the transformer is configured in star-

star with the neutral grounded i.e., (Yyn0) vector group. 

 

 𝐼𝑝ℎ𝐻𝑉 =  
𝑆𝑟𝑎𝑡𝑒𝑑

√3.𝑉𝑟𝑎𝑡𝑒𝑑
=

1,250,000

√3∗6000
= 120.28𝐴                   (21) 

 

 𝐼𝑝ℎ𝐿𝑉 =  
𝑆𝑟𝑎𝑡𝑒𝑑

√3.𝑉𝑟𝑎𝑡𝑒𝑑
=

1,250,000

√3∗1200
= 601.41𝐴                   (22) 

 

The limb and yoke settings were chosen in the general Limb and Yoke settings, Lamination factor of 0.955, Book setting 

(Steps/Lamination (s) per step of 5/2 were specified. In the Limb Profile tab, Mode is set to Auto, the Limb diameter is set 

to 300 mm, and tolerance value is set to 0.5 and number of steps set to 8 and the model saved.  

Winding material wire schematic is shown in figure 7 below. 
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Figure 7: Wire Schematics 

 

Table 2 shows adjustable parameters of wires which when applied calculates other parameters. For the winding circuit 

section, all winding connections are in series for both high voltage and low voltage section. The source type is set to 

Current Driven for the High voltage end and Short Circuit for the Low voltage end of the coils. 

 

 

Table 2: Adjustable wire parameters 

Name Inner 

Diameter, 

(mm) 

Outer 

Diameter, 

(mm) 

Height, 

(mm) 

Position, 

(mm) 

# of 

turns 

# of 

active 

turns 

Coil 

Type 

Strands 

in hard 

HV_1 478 488.74 520.65 577.825 45 45 Stranded 1 

HV_2 489.94 500.68 520.65 577.825 45 45 Stranded 1 

HV_3 521.88 532.62 520.65 577.825 45 45 Stranded 1 

HV_4 533.82 544.56 404.95 519.975 35 35 Stranded 1 

LV_1 343.00 419.00 563.8 599.40 34 34 Stranded 29 
 

In the Coil Cast section of the transformer model, the cast setting is applied to every coil for the High voltage end and to 

Windings for the low voltage end, whereas material type is set to Epoxy. The Radial and Axial thickness is set to 0.1 mm 

both for the High and Low voltage end. 

The current distribution on the power transformer coils is obtained using equation (21) and (22). The component 𝑈1(ℎ) 

represents the applied voltage vector, which in this case is 6kV for high voltage winding section and 1.2kV for low voltage 

winding section. The parameter 𝑅1(ℎ), 𝑅2(ℎ), 𝑎𝑛𝑑 𝑅𝑚(ℎ) are representing resistances of varies element of the transformer 

coil. 

The effective forces exerted on each element of the transformer caused by the applied potential difference is obtained using 

equation (23), in which the parameter 𝑼 is the effective displacement of all the elements put together, the parameter 𝑹 

represents the reaction force exacted on the transformer element during its operation.  

 

𝑲𝑼 = 𝑹                 (23)

  

Finally, the parameter 𝑲 is a constant of proportionality representing the element’s stiffness matrices. Equation (24) is the 

summation of the structure stiffness matrices of the transformer, obtained by direct summation which is referred to as the 

direct stiffness method. 

 

                        (24) 

 

 

 

Losses inherent in the power transformer, such as 𝐼2𝑅 losses or Ohmic losses as well as stray losses, short circuit losses, 

and eddy current loses were computed elementarily and summed up to obtain the transformer total losses.  

 

  

𝑲 = ∑ 𝑲(𝒊)

𝟓

𝒊=𝟏
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3. Result 

In the result node of TrafoSolve, several calculations were performed using the previously set parameters in chapter three. 

But before starting the simulation, the following parameters was activated and adjusted accordingly. MagNet Visible - 

Checked, Close after Solve – unchecked, Accuracy set to Fast (1), Coupling settings, is short circuit test only and the 

model mesh settings is 11.050 mm. 

Since TrafoSolve is coupled to Simcenter MAGNET, the MAGNET interface is evoked when the solution process begins. 

The 3D model of the power transformer is shown here with the active solution techniques which include the adaptation 

method or neuro-adaptive process, Newton’s method and the Code Generation method.  

 

3.1 Simulation Results 

The transformer short circuit analysis, force calculation, thermal analysis and harmonic analysis was performed and the 

results presented as follows.  

 

Table 3: Short Circuit Analysis; Total Losses 

Reactance, XLcc(%) Resistance Rcc (%) Capacitance XCcc (%) 

6.4 3.875 5.094 

      

Winding loses total (W) Winding loses Ohmic (W) Winding loses Eddy (W) 

48431.63 48121.06 310.571 

 

 

 
 

 

Figure 8: Short circuit Winding loses 

 

As indicated in figure 8, the bulk of the winding loses in contributed by the ohmic or 𝐼2𝑅 lose with eddy lose caused by 

circulating eddy current being very small as expected.  

 

Table 3 shows the percentage Reactance, Resistance and Capacitance of the transformer core and coil. The total winding 

losses, Ohmic and Eddy are also depicted on this table.  
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Table 4: Short Circuit Analysis; Winding Losses 

S/no Winding 

Current, 

(A) 

Phase, 

(dego) 

Ohmic 

Losses, 

(W) 

Circulating 

Losses, 

(W) 

Eddy 

Axial, 

(W) 

Eddy 

Radial, 

(W) 

Eddy 

Total, 

(W) 

Total 

Losses, 

(W) 

Eddy / 

Ohmic 

DC 

Resistance, 

(mOhm) 

Total 

Mass, 

(kg) 

1 HV 120.281 -90 5165.573 0 245.01 60.163 305.173 5470.745 0.059 119.015 402.531 

2 LV1 601.394 90.001 42955.49 ----- 4.249 1.148 5.398 42960.88 0 39.589 27.053 

 

Table 4, illustrate the individual winding losses, that is the high voltage winding and the low voltage winding, indicating 

different types of winding losses as well as the total copper mass of the windings.  

 

Table 5: Short Circuit Analysis; Coil Losses 
 

S/no Coil 

Curr 

ent, (A) 

Phase, 

(dego) 

Ohmic 

Losses, 

(W) 

Circul 

ating 

Losses, 

(W) 

Eddy 

Axial, 

(W) 

Eddy 

Radial, 

(W) 

Eddy 

Total, 

(W) 

Total 

Losses, 

(W) 

Eddy 

/Ohmic 

Cross 

Section, 

(mm2) 

Current 

Density, 

(A/mm2) 

DC 

Resistance, 

(mOhm) 

Mass, 

(kg) 

1 HV_1 120.281 -90 432.293 0 49.638 4.997 54.635 486.928 0.126 55.142 2.181 29.88 33.687 

2 HV_2 120.281 -90 442.972 0 23.587 5.741 29.329 472.3 0.066 55.142 2.181 30.618 34.519 

3 HV_3 120.281 -90 471.537 0 7.815 6.712 14.527 486.064 0.031 55.142 2.181 32.593 36.745 

4 HV_4 120.281 -90 375.056 0 0.63 2.603 3.233 378.289 0.009 55.142 2.181 25.924 29.226 

5 LV1_1 601.394 90.001 14318.5 0 1.416 0.383 1.799 14320.29 0 24.785 24.264 39.589 9.018 

 

Table 5 shows the loss distribution of the individual coils, connected in series to form the winding of the transformer. 

 

 

 
Figure 9: Short circuit Coil loses 

Figure 9 plotted from table 5, using the values in the total loss column indicates that bulk of the loses occur in the low 

voltage coil section. This is expected because the load was connected at this section of the transformer, and during short 

circuit test, it was the low voltage section that was short circuited.  

 

Table 6: Short circuit Winding lose comparison 
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Winding loses (W) Double Discretized FEMA Normal FEMA % Absolute error 

Ohmic  48121.06 48651.12 1.10 

Eddy  310.571 315.28 1.52 

Total 48431.63 48969.4 1.11 

 

As modelled in section 2.1, the simulation of the transformer model was in two phases; the Normal Finite Element 

Algorithm (N-FEMA), and the Double Discretization Finite Element Algorithm (DD-FEMA). Table 6 compares the total 

winding loses obtained during the simulation with the percentage absolute error computed. The error percentages indicate a 

strong correlation between the developed model and the already existing FEM adaptive model. However, it is obvious that 

the double discretization model produced smaller loses which can be attributed to the finer mesh introduced by this 

approach, thus validating the goal of this model. This process reduced the approximation error to the barest minimum.  

 
Figure 10: Short circuit Winding lose comparison 
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Figure 11: Short circuit Winding lose absolute error comparison 

 

Figure 10, depicts a column chart representation of the model winding loss comparison, which briefly showed that the 

difference in the result obtained from each model is very small. Figure 11, showed the percentage error comparison, and 

here the total error of 1.1% clearly indicate that the error difference is very small as well, thus further validating the 

precision of the developed model or algorithm.  

 

 

 

 

 

 

Table 8: Short circuit Total coil lose comparison  

 

 
Table 8 shows the individual coil lose comparison during short circuit test, as well as the absolute percentage error 

associated with the computation. In each case the difference is between 1.0% and 2.0% which is an acceptable value as it 

indicates that the difference in the model output is very small.   

 

 
Figure 12: Short circuit coil lose comparison 
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LV1_1 14320.29 14541.18 1.54 
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Figure 13: % Absolute coil lose error comparison 

 

Figure 12, shows a column chart representation of the model individual coil loss comparison, which fleetingly showed that 

the difference in the result obtained from each model is very small. Figure 13, presented the percentage error comparison, 

and here the difference which is between 1.0% and 2.0% is an acceptable value as it indicates that the difference in the 

model output is very small.  This further validated the accuracy of the developed algorithm.  

 

4. Conclusion 

Finite element analysis method as applied to power transformer loss computation had been examined in this research. 

During the research, it was noted that reasonable number of research data are available in this domain, though most of them 

are based on adaptive FEM and standard coarse mesh FEM. In this research the application of adaptive finite element 

analysis method, which is a Multiphysics scenario was examined.  And double discretization algorithm or model developed 

in this research was applied to simulate the winding and the coil loss of the same transformer, finer mesh was obtained and 

hence better results. In summary, the double discretization result for winding loss 48431.63W, and that of normal adaptive 

FEM is 48969.4W, produced a percentage absolute error of 1.11%. For individual coil loss computation, the result showed 

1.54% absolute error for the low voltage winding section during the short circuit test, translating to 14320.29W for the 

double discretization algorithm and 14541.18W for the normal adaptive FEM. This validates the double discretization 

algorithm developed in this research.  

 

5. Recommendation 

The use of finite element analysis method in transformer loss calculation is highly recommended owing to its accuracy and 

the tendency of the method to help manufacturers mitigate design errors. 
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