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Abstract  

This study evaluates the rheological behavior of water-based drilling mud using four widely recognized rheological 

models: Power Law Rheological Model (PLRM), Bingham Plastic Rheological Model (BPRM), Herschel-Bulkley 

Rheological Model (HBRM), and Casson Rheological Model (CRM). Experimental data were collected, and shear 

stress predictions from each model were compared with measured values across varying shear rates. The CRM 

consistently demonstrated superior accuracy, achieving the lowest absolute average percentage error (AAPE) across 

samples: 5.54% for NC, 3.23% for NC1, 5.28% for NC2, and 5.23% for NC3, with corresponding standard 

deviations of 3.85, 2.34, 3.10, and 2.82, respectively. HBRM followed closely with AAPE values of 6.37% for NC, 

3.26% for NC1, 5.66% for NC2, and 5.31% for NC3. Conversely, BPRM exhibited the poorest performance, with 

AAPE values as high as 43.21% for NC, 42.11% for NC1, 19.68% for NC2, and 42.45% for NC3, reflecting its 

limited predictive capability. These findings highlight the significance of accurate rheological modeling in managing 

viscosity and shear stress, critical factors in optimizing drilling fluid performance. The CRM’s robust performance 

across a range of shear rates establishes it as the most reliable model for predicting the rheological properties of 

water-based drilling mud, offering valuable insights for improving drilling fluid design and operational efficiency. 
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1. Introduction 

Drilling mud, or drilling fluid, is an indispensable element in oil and gas drilling operations. Performing a wide 

range of critical functions assures safety and efficiency (Sarsenbaevna and Ospanovich, 2024). Among the major 

responsibilities are cooling and lubrication of the drill bit, transportation of cuttings from the wellbore, and wellbore 

stability (Pedrosa et al., 2021). The drilling mud also exerts hydrostatic pressure to prevent the intrusion of 

formation fluids and reduces the risk of blowouts (Chukwuemeka et al., 2017). These become especially crucial 

attributes in deep and difficult drilling environments where precision with control is critical to successful operations. 

The choice of drilling mud formulation will depend on the well's operational requirements and geological conditions 

(Aftab et al.2017). Among all types of drilling fluids, water-based drilling mud, or WBM, has a wide application due 

to the fact that it is cheaper, simpler to formulate, and less of an environmental hazard than oil- or synthetic-based 

mud (Fakhari, 2022). Generally, WBMs are mixtures of fresh water as a base fluid with additives like clays, 

polymers, and chemicals to achieve desired performance properties, including viscosity and fluid loss/shale 

stabilization characteristics. These factors play an important role in maintaining drilling operations effectively and 

dependably.  
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Designing and formulating drilling mud, it is necessary to be familiar with the mud rheological properties-that are 

the relations which define fluid flow and its deformation under load (Chen, 2022). Rheology stands at the root of 

ensuring appropriate circulation of the drilling fluid and efficient cuttings removal from the wellbore (Klungtvedt, 

2023). Properties such as viscosity, yield stress, and shear-thinning behavior directly have an impact on critical 

parameters like hole cleaning, pressure losses, and equivalent circulating density (Deng et al., 2020). Since most of 

the drilling fluids are non-Newtonian fluids, it is impossible to fully describe their flow characteristics with a simple 

Newtonian model (Irgens, 2014), which calls for a specialized rheological model. Rheological modeling has evolved 

over years with several different models being propounded to characterize flow properties of the drilling fluids. One 

of the most used models for describing shear-thinning behavior is the Power Law Rheological Model (Picchi, et al., 

2017). The simplicity of the PLRM makes it attractive for practical applications, defining the relationship of shear 

stress to shear rate by a straightforward power-law equation. However, this is a serious drawback to the 

effectiveness of the PLRM in complicated drilling conditions since the model cannot predict fluid behavior at 

extreme shear rates (Sharma & Kudapa, 2021). Improved on this is the BPRM, which introduces the inclusion of 

yield stress as a parameter of the minimum stress a fluid must undergo to begin flowing (Mitsoulis and 

Tsamopoulos, 2017).  

Despite this superior quality, the BPRM tends to overestimate shear stress at lower shear rates and thus becomes less 

representative while describing non-Newtonian fluids. In the light of overcoming these weaknesses, the Herschel-

Bulkley Rheological Model (HBRM) was proposed. It couples the yield stress concept of BPRM with flexibility in a 

power-law relationship to better capture the behavior of shear-thinning fluids over a wider range of shear rates 

(Nollet & Toldrá, 2015). The HBRM will be more accurate, although it may deviate at extreme conditions. Another 

promising approach is the Casson Rheological Model (CRM), recognized to include both yield stress and plastic 

viscosity (Adewale et al., 2017). The CRM represents consistent and precise predictions at different shear rates and 

thus can be used for complex fluid systems. Precise rheological modeling of the drilling mud is critically important 

regarding operational efficiency. For example, poorly chosen models may have huge disadvantages for the process 

in terms of poor cuttings transport, excessive pressure losses, and formation damage. For example, underestimating 

viscosity at low shear rates results in poor removal of cuttings, while its overestimation at higher rates leads to 

energy wastage (Rostami, 2017). This is why it is so vital to choose the appropriate rheological model necessary for 

the purpose of guaranteeing the best operation with minimal hazards during drilling. This paper presents the 

rheological behavior of water-based drilling mud interpreted by four well-known models: PLRM, BPRM, HBRM, 

and CRM. Experimental data were collected for four formulations, namely NC, NC1, NC2, and NC3, which 

included specific additives to attain targeted properties.  

The models have been evaluated based on the predicted shear stress values compared with experimental data for a 

wide range of shear rates. Accuracy and reproducibility of the models were established using metrics such as AAPE 

and standard deviation. Several studies have identified the weaknesses and strengths of various rheological models. 

For example, it has been pointed out by Adewale et al. (2017) that conventional models such as PLRM and BPRM 

fail to represent the complex behavior of non-Newtonian fluids. Based on these result, the research has made an 

extended comparison of the models to provide a better understanding of which model is best applied under specific 

operation conditions. The research importance deals with relevance to more sophistication and demand from modern 

drilling practices. That is, exploring deeper and more challenging reservoirs necessitates rheological modeling to 

achieve operational success. This therefore, contributes to developing optimized drilling fluids that will enhance 

wellbore operations with reduced drilling risk. This research covers the critical gaps in drilling fluid engineering by 

providing a framework for the selection of the most appropriate rheological model for water-based drilling mud. 

Experimental validation and robust analysis are presented in this work to translate into actionable insights on how to 

improve fluid design and application. The findings will have important implications for the petroleum industry, 

paving the way for more efficient, sustainable, and reliable drilling. 

2.0 Materials and methods 

Randomly collected local clay (NC) samples from Nteje in Oyi local government of Anambra, Nigeria was oven-

dried and milled to remove excess moisture then reduce to fine particle size and labelled as NC. A portion of NC 

was beneficiated via wet and dry method of beneficiation as described by James et al., (2008). The result of the 

beneficiation gave rise to NC1, NC2 and NC3. Drilling fluid was prepared in accordance to API standard of 22.5g of 

clay sample in 350ml of distil water and was further beneficiated with 0.6g of poly anionic cellulose (PACR). Both 

the measured distil water and the weighed bentonite was transferred into the steel cup of the fann multi – mixer 

equipment and was vigorously agitated for about 20 minutes, until homogenous mixture is obtained. The mixture 
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was then allowed to stand for 24 hours for proper hydration and aging (Chu, and Lin, 2019). There after various 

viscosity dial reading ranging from 3rpm to 600rpm were determined using model 35 fann rotary viscometer.  The 

process of washing, drying, heating, grinding and sieving of the local clay sample were carried out at Chemical 

Engineering laboratory Nnamdi Azikiwe University Awka,, Anambra state, Nigeria. 

2.1 Rheological Model of Drilling Fluids 

In drilling fluid, there is some internal resistance to overcome in order to move fluid from a static condition. The 

ratio of the shear stress (τ) to the shear rate (γ) is known as the fluid's viscosity (µ).  

Mathematically,      𝜇 =  
τ

ɤ
                                                                                                        1 

Viscosity is measured in units such as Newton-seconds per square meter (Ns/m²), Pascal-seconds (Pa·s), or poise 

(dyne-seconds per square centimeter, dyne·s/cm²). In a similar context, shear stress (τ) refers to the force necessary 

to maintain the flow of a specific fluid across a given area. 

Sℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (𝜏) = 
𝐹

𝐴
                                                                                                                2 

Where; 

F is the force applied measured in Newton, and A is the surface area measured in m2 

The unit of shear stress is N/m2 

Shear rate describes how quickly the velocity changes as one layer of fluid moves past a neighboring layer, divided 

by the distance separating the two layers (Krishna et al., 2019). 

Mathematically,    = 
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
                                                                                                      2b                                                           

 It is expressed in sec-1 (reciprocal seconds).  

RPM can be converted to sec-1 by using the equation:  

(rpm) = 1.703𝛾 (sec-1) (Adewale, et al., 2017) 

2.1.1 Power Law Model 

The power law model is commonly used to characterize non-Newtonian fluids, where the relationship between shear 

stress and shear rate forms a curve known as the "consistency curve." This behavior is mathematically represented 

by an exponential equation, as shown in Equation 3. 

𝜏 = 𝑘𝛾n                                                                                                                                                                                      3 

 

The linear form of equation 3 is stated below 

log𝜏 = log 𝑘 +𝑛𝑙𝑜𝑔𝛾                                                                                                                                     3b 

Where;  

 K is the consistency coefficient (viscosity index) with unit of lb/100ft2.Sn. By multiplying k by a factor of 0.51 the 

unit can be converted to Pa.Sn. Also n which is the fluid flow behaviour index shows the tendency of a fluid to shear 

thin and it is dimensionless. if n > 1, then the fluid is shear thickening and if n < 1, the fluid is shear thinning 

(Adewale et al., 2017). 

K and n being the parameter can be evaluated graphically by a plot of log𝜏 against log γ with log k as the resulting 

straight line’s intercept and n as the slope. Alternatively k and n can also be evaluated from the following equations. 

n = 3.32 log (reading at 600 ÷ reading at 300)                                                                            4 

K = 5.11 (reading at 300 ÷ 511n)                                                                                                 5 

A linear regression or curve fitting of log𝜏 versus 𝑙𝑜𝑔𝛾 can be used to determine the statistically optimal values of k 

and n. However, a significant limitation of the Power Law fluid model is that it assumes shear stress to be zero at a 
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zero shear rate, which is not an accurate representation of drilling mud. Drilling mud exhibits a residual shear 

strength even at a zero shear rate (Becker et al., 2003). 

2.1.2 Bingham Plastic Model 

The Bingham plastic model is one of the most widely used fluid models for analyzing the rheology of non-

Newtonian fluids. This model assumes a linear relationship between shear stress and shear rate. The point at which 

the shear rate becomes zero is referred to as the "yield point" or threshold stress. Additionally, the slope of the curve 

representing shear stress versus shear rate is known as "plastic viscosity." While the Bingham plastic model provides 

satisfactory results for diagnosing drilling mud, it lacks the precision required for hydraulic calculations. 

Plastic Viscosity (PV) can be determined by the following formula; 

 

Plastic Viscosity (PV) = 𝑃𝑉 = 𝜃600 −𝜃300                                                                                        6 

 

The unit is centipoise (cp) 

Yield Point (YP) can be determined by the following formula, (equation 7); 

Yield Point (YP) = 𝜃300 - PV                                                                                                           7 

The unit is lb. /100ft2 or Pa.s 

The Bingham plastic model, a two-parameter model, is extensively utilized in the drilling fluid industry to 

characterize the flow behavior of various types of muds. Its mathematical representation is given as: 

𝜏 = 𝜏𝑂 + 𝜇𝑝𝛾                                                                                                                                             8 

Where µp is the plastic viscosity and the unit is mPa.s (cp) and τo is the yield point with a unit of lb. /100ft2 or Pa.sn. 

The two parameters 𝜇𝑝 and 𝜏𝑂 can be determined from equations 6 and 7 respectively. 

Fluids demonstrating Bingham Plastic behavior are defined by a yield point (τo) and plastic viscosity (µp) both of 

which remain unaffected by changes in shear rate. However, this model does not accurately capture the behavior of 

drilling fluids under extremely high shear rates near the drill bit or very low shear rates within the annulus. The 

parameters 𝜏𝑂 and 𝜇𝑝  can be obtained from a plot of 𝜏 against γ where the intercept of the straight line corresponds 

to 𝜏𝑂  and the slope represents 𝜇𝑝. Alternatively, these parameters can also be calculated using equations 6 and 7, 

respectively. 

2.1.3 Herschel Buckley 

The Herschel-Bulkley model is an enhancement of the Power Law fluid model, designed to better capture the actual 

behavior of drilling fluids at low shear rates by incorporating an initial shear stress value. This model can be 

expressed mathematically as follows: 

 

𝜏 = 𝜏𝑂𝐻 + 𝑘𝐻𝛾nH                                                                   9 

 

The linear form of equation 9 is given below; 

Log (𝜏 − 𝜏𝑜𝐻) = log 𝑘 + 𝑛𝑙𝑜𝑔 𝛾                                                                                                 10 

Where kH is the HRBM consistency index in (Pa.sn) and γ is the shear rate (s-1), τ is the shear stress (Pa), τoH is the 

HBRM yield stress (Pa) and nH is the flow behaviour index (dimensionless)  

The yield stress is normally taken from value of 3rpm viscometer reading and the nH and kH values are calculated 

from the 600 or 300 rpm values or a plot of log (τ – τoH) versus log (γ) will result in a straight line with intercept 

logkH and slope nH respectively. The Bingham Plastic model cannot effectively represent fluids exhibiting a yield 

point and strain-or stress-dependent viscosity. This limitation can be addressed in the Herschel-Bulkley model by 

replacing the plastic viscosity term in the Bingham Plastic model with a power-law expression. However, the 

concept of yield stress has been debated, as fluids may exhibit slight deformation even at stress levels below the 

yield stress. 

2.1.4 The Casson Rheological Model 

Visco-elastic fluid flow is described using the structure-based Casson rheological model (Anawe, & Folayan, 2018). 

This model has a more gradual transition from Newtonian to the yield region. Mathematically, the Casson model is 

expressed as; 
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𝜏1/2 = 𝑘𝑜𝑐1/2 + 𝑘𝑐1/2𝛾1/2                                                                                                                                                                   11 

From equation 11, l, kc represents the Casson plastic viscosity in mPa.s, and koc  denotes the Casson yield stress in 

Pa.s. The parameters koc and kc  can be determined from the straight line obtained by plotting the square root of 

shear stress (τ0.5) against the square root of shear rate (γ0.5). The slope of the line is kc
1/2, and the intercept is koc

1/2. 

The Casson yield stress is calculated as the square of the intercept, τoc = (koc) 2 and the Casson plastic viscosity is the 

square of the slope ηca = (kc) 2 

 

2.1.5 The measurement of model divergence from the model stresses 

The degree to which each model deviated from the measured stresses was predicted using the following statistical 

techniques; 

 

1. Absolute Average Percentage Error 𝜖𝐴𝐴P, given by the following equation; 

𝜖𝐴𝐴𝑃 = [1/N ∑ ∣ (𝜏𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝜏𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) /𝜏𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∣] ∗ 100                        12 

2. The standard deviation of average percentage error which is  obtained using the following Equation; 

𝑆𝐷𝜖𝐴𝐴𝑃 = √ ∑ (𝜖%𝑒𝑟𝑟𝑜𝑟−𝜖𝐴𝐴𝑃) 2/∑ 𝑓                                                                        13 

.  3.0 Result and Discussion 

3.1 Analysis of NC + 0.6g PACR Mud Sample. 

Table 1: Viscometer Readings for NC + 0.6g PACR. Power law 

 

3.1.1 Determining Model Parameters for NC1 + 0.6g PACR 

The parameters of the power law rheological model (n and k), were determined through regression analysis using 

Equation (8). By plotting log τ against log γ, as illustrated in Fig.1, a straight line is obtained, represented by 

Equation (14): 

Log𝜏 = 0.2931log𝛾 + 0.2318                                                                                             14 

Therefore, the power law equation for NC + 0.6g PACR can be expressed as: 

Speed 

(RPM) 

Dial 

readings 

(lb/100ft2)  

Shear stress 

(𝜏) 

(pa) 

Shear 

rate (𝛾) 

(s-1) 

 

log𝜏 𝑙𝑜𝑔𝛾 log (τ –τoH) τ0.5 γ0.5 

600  29 14.79 1022  1.17 3.01 1.07 3.85 31.97 

300  21 10.71 511  1.03 2.71 0.88 3.27 22.61 

200  19 9.69 340.60  0.99 2.53 0.82 3.11 18.46 

100  15 7.65 170.30  0.88 2.23 0.66 2.77 13.05 

60  11 5.61 102.18  0.75 2.01 0.41 2.37 10.11 

30  9 4.59 51.09  0.66 1.71 0.18 2.14 7.15 

6  7 3.57 10.22  0.55 1.01 -0.29 1.89 3.20 

3  6 3.06 5.11  0.49 0.708 0 1.75 2.26 
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𝜏 = 1.71𝛾0.2931                                                                                                                   15 

Equation (15) was used to calculate the power law stress values, which are recorded in Table 2. For the Bingham 

plastic model, the yield stress (τo) was determined using Equation (7), which gave a value of 13 lb/100ft². This value 

was converted to Pascals by multiplying by 0.51. The plastic viscosity was determined using Equation (6), resulting 

in a value of 0.0041 mPa·s. As a result, the Bingham plastic stress model for NC + 0.6g PACR is expressed as: 

𝜏= 6.63 + 0.0041𝛾                                                                                                              16 

Equation (16) was used to calculate the Bingham plastic stresses, which are presented in Table 2. The Herschel-

Bulkley yield stress (τoH) was taken as the 3rpm viscosity reading from a viscometer, which is 3.06 Pa. The flow 

behavior index and consistency index were determined through regression analysis using Equation (10). A plot of 

log (τ – τoH) versus log γ as shown in Fig. 2, yielded a straight line described by Equation (17): 

Log (τ-τ𝑜𝐻) = 0.6952log𝛾 − 0.9777.                                                                                  17 

Thus, the Herschel-Bulkley equation for NC + 0.6g PACR is written as: 

τ = 3.06 + 0.11 (𝛾0.6952)                                                                                                      18 

Equation (18) was used to calculate the Herschel-Bulkley stresses, as shown in Table 2. 

The Casson yield stress (koc) and the Casson plastic viscosity (kc) were determined from the plot of τ0.5 versus γ0.5, as 

shown in Fig. 3. From this plot, the Casson’s model equation for NC + 0.6g PACR is expressed as: 

𝜏0.5
  = 2.810.5 + 0.00510.5 (𝛾0.5)                                                                                              19 

Equation (19) was used to compute the Casson stresses, which are shown in Table 2. 

 

Figure 1: Power law Rheogram for NC + 0.6g PACR. 
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Figure 2: Hershel-Buckley Rheogram for NC + 0.6g PACR. 

 

 

Figure 3: Casson Rheogram for NC + 0.6g PACR. 

Table 2: Stress Values of Different Models for NC + 0.6g PACR Mud. 
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τ0
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γ0.5

Speed 

(RPM) 

Dial 

readings 

(lb/100ft2)  

Shear rate 

(s-1)  

Measured  

(Pa)  

PLRM  

(Pa)  

BPRM  

(Pa)  

HBRM  

(Pa)  

CRM  

(Pa)  

600  29 1022  14.79 13.03365 10.8202 16.66075 15.67629 

300  21 511  10.71 10.63737 8.7251 11.46015 10.82836 

200  19 340.60  9.69 9.444892 8.02646 9.395912 8.96572 

100  15 170.30  7.65 7.708416 7.32823 6.97321 6.802994 

60  11 102.18  5.61 6.636533 7.048938 5.803493 5.751318 

30  9 51.09  4.59 5.416383 6.839469 4.754446 4.781899 

6  7 10.22  3.57 3.379607 6.671902 3.613558 3.627531 

3  6 5.11  3.06 2.758254 6.650951 3.40189 3.377287 
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Figure 4: Shear Stress-Shear Rate Graph of Different Models for NC + 0.6g PACR 

3.2 Analysis of NC1 + 0.6g PACR Mud Sample. 

Table 3: Viscometer Readings for NC1 + 0.6g PACR.  

 

 

 

 

 

 

 

 

 

3.2.1 Determining Model Parameters for NC1 + 0.6g PACR 

The parameters n and k for the power law model were derived by plotting log τ against log γ, as shown in Figure 5. 

This resulted in a straight line with the following equation (Equation 20): 

Logτ = 0.2134 log𝛾 + 0.7717                                                                                                     20 

Thus, the Power Law Rheological Model (PLRM) for NC1 + 0.6g PACR can be expressed as: 

𝜏 = 5.911𝛾0.2134                                                                                                            21 

Equation (21) was used to calculate the power law stresses presented in Table 4. 

The plastic viscosity was determined using Equation (6), yielding a value of 0.0051 mPa·s, while the yield stress, 

calculated from Equation (7), is 18.87 Pa. Consequently, the Bingham Plastic equation for NC1 + 0.6g PACR is: 

𝜏 = 18.87 + 0.0051𝛾                                                                                                                   22 
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Speed 

(RPM) 

Dial 

readings 

(lb/100ft2)  

Shear 

stress (𝜏) 

(pa) 

Shear rate (𝛾) 

(s-1) 

 

log𝜏 𝑙𝑜𝑔𝛾 log (τ –τoH) τ0.5 γ0.5 

600  57 29.07 1022  1.46 3.01 1.30 5.39 31.97 

300  47 23.97 511  1.38 2.71 1.17 4.90 22.61 

200  39 19.89 340.60  1.30 2.53 1.03 4.46 18.46 

100  33 16.83 170.30  1.23 2.23 0.88 4.10 13.05 

60  27 13.77 102.18  1.14 2.01 0.66 3.71 10.11 

30  24 12.24 51.09  1.09 1.71 0.49 3.50 7.15 

6  20 10.2 10.22  1.01 1.01 0.01 3.19 3.20 

3  18 9.18 5.11  0.96 0.708  3.03 2.26 
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Equation (22) was used to derive the Bingham Plastic stresses listed in Table 4. 

For the Herschel-Bulkley model, the straight-line equation obtained from plotting log (τ – τoH) against log γ, as 

shown in Figure 6, is: 

Log (τ−τ𝑜𝐻) = 0.6594log𝛾 − 0.6413                                                                                             23 

Thus, the Herschel-Bulkley equation for NC1 + 0.6g PACR is: 

τ = 9.18 + 0.23 (𝛾0.6594)                                                                                                                24  

Equation (24) was used to compute the stress values for the Herschel-Bulkley model in Table 4. Additionally, the 

equation for the straight-line plot of τ0.5 versus γ0.5 for the Casson model, as shown in Figure 7, is: 

𝜏0.5 = 8.60.5 + 0.00660.5 (𝛾0.5)                                                                                                        25 

Equation (25) was used to generate the Casson model stresses presented in Table 4 

 

 

 

 

 

 

 

Figure 5: Power Law Rheogram for NC1 + 0.6g PACR 

 

Figure 6: Hershel-Buckley Rheogram for NC1 + 0.6g PACR 
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Figure 7: Casson Rheogram for NC1 + 0.6g PACR 

Table 4: Stress Values of Different Models for NC1 + 0.6g PACR Mud. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Shear Stress-Shear Rate Graph of Different Models for NC1 + 0.6g PACR 
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Measured  

(Pa)  

PLRM  

(Pa)  

BPRM  

(Pa)  

HBRM  

(Pa)  

CRM  

(Pa)  

600  57 1022  29.07 25.93449 24.0822 31.37013 30.57789 

300  47 511  23.97 22.36856 21.4761 23.22949 22.74374 

200  39 340.60  19.89 20.5136 20.60706 19.93202 19.6417 

100  33 170.30  16.83 17.69303 19.73853 15.98755 15.94209 

60  27 102.18  13.77 15.86571 19.39112 14.04075 14.09092 

30  24 51.09  12.24 13.68421 19.13056 12.25755 12.34299 

6  20 10.22  10.2 9.706838 18.92212 10.24502 10.19072 

3  18 5.11  9.18 8.372169 18.89606 9.854312 9.71084 
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3.3 Analysis of NC2 + 0.6g PACR Mud Sample. 

Table 5: Viscometer Readings for NC2 + 0.6g PACR 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1 Model Parameters Determination for NC2 + 0.6g PACR 

The parameters n and k for the power law rheological model were derived through regression analysis using 

Equation (8). The resulting plot of log τ versus log γ, as shown in Figure 9, produced a straight line, which is 

represented by Equation (26): 

Log𝜏 = 0.2176log𝛾 + 0.4871                                                                                             26 

Therefore, the power law equation for NC2 + 0.6g PACR can be written as: 

𝜏 = 3.07𝛾0.2176                                                                                                                       27 

Equation (27) was then used to calculate the power law stress values presented in Table 6. 

The yield stress (τo) for the Bingham plastic model was calculated using Equation (7), which yielded a value of 13 

lb/100ft². By multiplying this value by 0.51, the result was converted to Pascals. The plastic viscosity was then 

determined using Equation (6) and found to be 0.0051 mPa·s. Consequently, the Bingham plastic stress equation for 

NC2 + 0.6g PACR is: 

𝜏= 6.63 + 0.0051𝛾                                                                                                                28 

Equation (28) was used to generate the Bingham plastic stresses shown in Table 6. 

For the Herschel-Bulkley model, the yield stress τoH was taken as the ϴ3 yield stress, which is 4.59 Pa. The flow 

behavior index and consistency index were determined through regression analysis using Equation (10). The 

resulting plot of log (τ – τoH) against log γ, as shown in Figure 10, gave the straight line represented by Equation 

(29): 

Log (τ−τ𝑜𝐻) = 0.5254log𝛾 − 0.553.                                                                                      29  

Speed 

(RPM) 

Dial 

readings 

(lb/100ft2)  

Shear 

stress (𝜏) 

(pa) 

Shear rate (𝛾) 

(s-1) 

 

log𝜏 𝑙𝑜𝑔𝛾 log (τ –τoH) τ0.5 γ0.5 

600  33 16.83 1022  1.23 3.01 1.09 4.10 31.97 

300  23 11.73 511  1.07 2.71 0.85 3.42 22.61 

200  19 9.69 340.60  0.99 2.53 0.71 3.11 18.46 

100  18 9.18 170.30  0.96 2.23 0.66 3.03 13.05 

60  15 7.65 102.18  0.88 2.01 0.49 2.77 10.11 

30  13 6.63 51.09  0.82 1.71 0.31 2.57 7.15 

6  11 5.61 10.22  0.75 1.01 0.01 2.37 3.20 

3  9 4.59 5.11  0.66 0.708 - 2.14 2.26 
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Hence the Hershel Bulkley equation for NC + 0.6g PACR is given as  

τ = 4.59 + 0.2799 (𝛾0.5254)                                                                                                   30 

Eq. (30) was used to generate the Hershel-Buckley stresses shown in table 6. 

Lastly, the Casson yield stress (koc) and the Casson plastic viscosity (kc) were derived from the plot of τ0.5 versus 

γ0.5, as shown in Figure 11. Based on this plot, the Casson equation for NC2 + 0.6g PACR is: 

𝜏0.5
 = 4.470.5 + 0.003670.5 (𝛾0.5)                                                                                             31 

Equation (31) was used to compute the Casson stresses presented in Table 6. 

 

Figure 9: Power law Rheogram for NC2 + 0.6g PACR 

                                                                                 

Figure 10: Hershel-Buckley Rheogram for NC2 + 0.6g PACR. 

 

Figure 11: Casson Rheogram for NC2 + 0.6g PACR. 
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Table 6: Stress Values of Different Models for NC2 + 0.6g PACR Mud. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Shear Stress-Shear Rate Graph of Different Models for NC2 + 0.6g PACR 

3.4.1 Analysis of NC3 + 0.6g PACR Mud Sample. 

Table 7: Viscometer Readings for NC3 + 0.6g PACR.  
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(Pa)  

600  33 1022  16.83 13.8674 11.8422 15.2601 16.40995 

300  23 511  11.73 11.92589 9.2361 12.00323 12.13602 

200  19 340.60  9.69 10.91829 8.36706 10.58024 10.44758 

100  18 170.30  9.18 9.389678 7.49853 8.751818 8.437907 

60  15 102.18  7.65 8.401878 7.151118 7.772173 7.434404 

30  13 51.09  6.63 7.225573 6.890559 6.800867 6.488485 

6  11 10.22  5.61 5.090904 6.682122 5.539223 5.326429 

3  9 5.11  4.59 4.378151 6.656061 5.249489 5.067819 

Speed 
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readings 

(lb/100ft2)  

Shear 

stress (𝜏) 

(pa) 

Shear rate (𝛾) 

(s-1) 

 

log𝜏 𝑙𝑜𝑔𝛾 log (τ –τoH) τ0.5 γ0.5 

600  70 35.7 1022  1.55 3.01 1.36 5.97 31.97 
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3.4.1 Model Parameter Determination for NC3 + 0.6g PACR 

The parameters n and k for the power law rheological model were derived by plotting log τ versus log γ, as shown in 

Figure 13. This produced a straight line, which is represented by the following equation (Equation 32): 

Logτ = 0.1969 log𝛾 + 0.9207                                                                                             32 

Thus, the power law model for NC3 + 0.6g PACR can be written as: 

𝜏 = 8.33𝛾0.1969                                                                                                                      33 

Equation (33) was used to calculate the power law stress values presented in Table 8. 

The plastic viscosity was calculated using Equation (6), yielding a value of 0.0051 mPa·s, while the yield stress, 

obtained from Equation (7), was found to be 25.5 Pa. Therefore, the Bingham Plastic model for NC3 + 0.6g PACR 

is expressed as: 

𝜏 = 25.5 + 0.0051𝛾                                                                                                          34 

Equation (34) was applied to generate the Bingham Plastic stresses shown in Table 8. 

For the Herschel-Bulkley model, the equation derived from the plot of log (τ – τoH) against log γ, as depicted in 

Figure 14, is: 

Log (τ−τ𝑜𝐻) = 0.7216log𝛾 – 0.7265                                                                                35 

Thus, the Herschel-Bulkley equation for NC3 + 0.6g PACR is: 

τ = 12.75 + 0.19 (𝛾0.7216)                                                                                                36  

Equation (36) was used to compute the Herschel-Bulkley stresses shown in Table 8. 

Lastly, for the Casson model, the equation derived from the plot of τ0.5 versus γ0.5, as shown in Figure 15, is: 

300  60 30.6 511  1.49 2.71 1.25 5.53 22.61 

200  52 26.52 340.60  1.42 2.53 1.14 5.15 18.46 

100  45 22.95 170.30  1.36 2.23 1.01 4.79 13.05 

60  35 17.85 102.18  1.25 2.01 0.71 4.22 10.11 

30  30 15.3 51.09  1.18 1.71 0.41 3.91 7.15 

6  27 13.77 10.22  1.14 1.01 0.01 3.71 3.20 

3  25 12.75 5.11  1.11 0.708 - 3.57 2.26 
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𝜏0.5 = 11.840.5 + 0.00730.5 (𝛾0.5)                                                                                  37 

Equation (37) was used to calculate the Casson stresses, which are presented in Table 8. 

 

Figure 13: Power law Rheogram for NC3 + 0.6g PACR 

 
Figure 14: Hershel-Buckley Rheogram for NC2 + 0.6g PACR. 

 

Figure 15: Casson Rheogram for NC3 + 0.6g PACR. 
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Figure 16: Shear Stress-Shear Rate Graph of Different Models for NC3 + 0.6g PACR 

3.5 Result Discussion 

Table 2, 4, 6 and 8 presents data for shear rate and corresponding measured shear stresses along with values 

predicted by four different rheological models: the Power Law Rheological Model (PLRM), Bingham Plastic 

Rheological Model (BPRM), Herschel-Bulkley Rheological Model (HBRM), and Casson Rheological Model 

(CRM). These models are widely used in drilling fluid analysis to describe the behavior of non-Newtonian fluids, 

which are typical in drilling operations. The measured shear stress at different shear rates serves as the benchmark 

for evaluating the performance of these models. From the table, it can be observed that the shear stress decreases as 

the shear rate decreases, which is consistent with the behavior of drilling fluids that exhibit shear-thinning 

characteristics. Based on Figures 4, 8, 12, and 16, which present stress values predicted by various rheological 

models for NC, NC1, NC2, and NC3, it can be observed that the Bingham Plastic rheological model predicts lower 

stress values at higher shear rates compared to the measured stress values. However, at lower shear rates, the model 

predicts higher stress values. This behavior at lower shear rates arises from the inclusion of a yield stress in the 

Bingham Plastic model.  

 

This yield stress, also known as the Bingham Yield Point (τo), represents the minimum stress required for the fluid 

to begin shearing and this unrealistically high values of computed τo attributed to a major inherent drawback of this 

model in predicting the shear stress-shear rate behavior of drilling fluids (Adewale et al., 2017). Also, The stress 

values predicted by the Power Law rheological model are lower than the measured values at both high and low shear 

rate conditions and this is also in agreement with Adewale et al., (2017) in their research article titled “Selecting the 

Most Appropriate Model for Rheological Characterization of Synthetic Based Drilling Mud” and this can be 

attributed by the partial reconstruction of the fluid's microstructure, which had been disrupted by prior shear (Wei et 

al., 2022). Hence, the results of the Power law rheological model agrees, with Ba et al., (2018), This is due to its 

inability to accurately capture the behavior of the drilling fluid at extremely low shear rates in the annulus or 
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300  47 511  30.6 28.44023 28.1061 29.85607 28.86191 

200  39 340.60  26.52 26.25693 27.23706 25.51502 25.17788 

100  33 170.30  22.95 22.90716 26.36853 20.49102 20.75636 

60  27 102.18  17.85 20.7152 26.02112 18.10442 18.52952 

30  24 51.09  15.3 18.07242 25.76056 15.99705 16.41572 
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3  18 5.11  12.75 11.48505 25.52606 13.36652 13.20646 
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extremely high shear rates at the bit. From Figures 4, 8, 12, and 16, it is clear that the stress values predicted by the 

HBRM align well with the measured stress values.  

 

Hemphil et al. (1993) and Adewale et al. (2017) highlighted that the Yield Power Law Model (HBRM) offers 

several advantages over the Bingham Plastic Rheological Model (BPRM) and the Power Law Rheological Model 

(PLRM), particularly due to its higher accuracy in describing mud behavior across a wide range of shear rates. The 

improved precision of the HBRM can also be attributed to its ability to account for both the yield point (Bingham 

Plastic) and the non-linear relationship between shear stress and shear rate, as noted by Adewale et al. (2017). For 

the Casson Rheological Model (CRM), the overall trend indicates that it is the most reliable model across all stress 

ranges, as it consistently aligns well with the measured values, showing no significant over- or under-predictions, as 

illustrated in Figures 4, 8, 12, and 16 for all four mud samples. The graphs demonstrate that this model provides the 

most accurate data at both high and low shear rate conditions. This accuracy is attributed to the correction factor 

applied to the yield stress and plastic viscosity, as noted by Adewale et al. (2017). In all, the consistent 

underestimation at high shear rates and over estimation at low shear rates by BPRM indicates that it might not 

capture the non-linear fluid behavior effectively, particularly at higher shear rates where deviations are more 

pronounced. HBRM, on the other hand, tends to overestimate shear stress, especially at high shear rates, which 

could lead to an over prediction of the fluid's viscosity. PLRM provides reasonable approximations across the shear 

rate range, but its slight deviations at higher rates show limitations in capturing the full stress behavior. CRM stands 

out as the most accurate model overall, closely matching the measured shear stress values across the entire range. 

In the context of drilling fluids, accurate shear stress predictions are essential to ensure effective fluid flow, 

lubrication, and cuttings transport during drilling operations. Models that under predict stress, like BPRM, may 

result in incorrect viscosity estimations, leading to operational inefficiencies. Conversely, overestimations, as seen 

with HBRM, could lead to excessive pressure losses and increased energy requirements. CRM’s consistent 

performance suggests it is the most suitable model for predicting shear stress under varying shear rates, making it a 

reliable tool for optimizing drilling fluid performance and this report and findings was in agreement with Adewale et 

al. (2017). 

Table 9 Absolute Average Percentage Error (𝜖𝐴𝐴𝑃) of the Rheological Models 

Mud Samples PRLM PBRM HBRM CRM 

NC 8.41786 43.20561 6.369951 5.540541 

NC1 8.297946 42.11455 3.26438 3.234073 

NC2 8.364122 19.68012 5.664074 5.28458 

NC3 8.176579 42.4544 5.31308 5.233931 

 

 

Figure 17: Absolute Average Percentage Error in Rheological Models 
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Table 9 and figure 17shows the evaluation of the Absolute Average Percentage Error (AAPE) of various rheological 

models (PRLM, PBRM, HBRM, CRM) for different mud samples, where lower AAPE values indicate higher 

accuracy and better model performance. PRLM consistently shows relatively high AAPE values across the samples, 

such as 8.41786 for NC and 8.297946 for NC1, indicating less accuracy in predicting the rheological behavior 

compared to HBRM and CRM models. PBRM performs the poorest, exhibiting the highest AAPE values, such as 

43.20561 for NC and 42.11455 for NC1, suggesting its unreliability in modeling the rheological properties. HBRM, 

on the other hand, shows significantly lower AAPE values, such as 6.369951 for NC and 3.26438 for NC1, 

indicating improved accuracy over PRLM and PBRM. CRM demonstrates the lowest AAPE values across most 

samples, for example, 5.540541 for NC and 3.234073 for NC1, making it the most accurate and reliable model 

among those compared. Overall, the comparison highlights that CRM outperforms the other models with the least 

deviation, followed closely by HBRM, while PRLM and particularly PBRM exhibit larger errors, making them less 

suitable for predicting the rheological behavior of these mud samples and this results of error analysis was in 

agreement with the findings of Adewale et al., (2017), in their research article titled “Selecting the most appropriate 

model for rheological characterization of synthetic based drilling mud” 

Table 10 Standard Deviation of the Average Percentage Error for Rheological Models. 

Mud 

Samples PRLM PBRM HBRM CRM 

NC 7.233173 39.32119 4.191358 3.853428 

NC1 4.104296 37.55928 3.163145 2.341603 

NC2 5.386464 13.10984 4.768432 3.109538 

NC3 6.493866 38.17961 4.961843 2.821159 

 

 
Figure 18: Standard Deviation of Average Percentage Error for Rheological Models. 

Table 10 and figure 18 presents the standard deviation of the absolute average percentage error for various 

rheological models, including PRLM, PBRM, HBRM, and CRM, across different mud samples. Each model 

exhibits varying degrees of accuracy depending on the mud sample tested. For instance, in sample NC, the PBRM 

model demonstrates the largest error with a value of 39.32, followed by PRLM with a value of 7.23. HBRM with a 

value of 4.19 on the other hand, shows significantly lower value of SDAAPE while CRM achieves the lowest error at 

3.85, indicating CRM's superior predictive performance for this case.  

A similar trend can be observed for NC1, where PBRM again shows a significantly higher error at 37.56 compared 

to CRM, which achieves the lowest error of 2.34 closely followed by HBRM with a value of 3.16 and PLRM with a 

value of 4.10. In NC2, the deviation for PBRM drops to 13.11, but it remains higher than CRM's 3.10. Meanwhile, 

HBRM records values consistently lower than PRLM and PBRM, with errors ranging between 3.16 and 4.96 across 

samples. Finally, for NC3, the PBRM model records another high error value of 38.18, while CRM achieves a 

relatively low value of 2.82. Overall, the CRM model demonstrates the most consistent and lowest standard 

deviation of errors among the tested rheological models, reflecting its robust performance. Conversely, PBRM 

consistently shows the highest errors, indicating a lack of accuracy in predicting the rheological behavior of the mud 

samples. The PRLM model, while better than PBRM, still exhibits higher errors compared to HBRM and CRM. 

These findings suggest that CRM is the most reliable model for predicting the rheological properties of these mud 
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samples, while PBRM requires further improvement to minimize its error margin and enhance prediction accuracy. 

This comparison highlights the varying reliability of the models and underscores the importance of selecting the 

appropriate model based on the specific conditions and error tolerance of the application. This results of error 

analysis was in agreement with the findings of Adewale etal., (2017), in their research article titled “Selecting the 

Most Appropriate Model for Rheological Characterization of Synthetic Based Drilling Mud 

 

4.0. Conclusion  

This paper outlines the rheological behavior of water-based drilling mud using four rheological models: Power Law 

Model, Bingham Plastic Model, Herschel-Bulkley Model, and Casson Model. Among these, CRM exhibited the 

minimum AAPE and standard deviation for all the samples: NC, NC1, NC2, and NC3. HBRM also showed a good 

approximation since the calculated points were reasonably close to the measured ones. On the other hand, a 

moderately good approximation was given by PLRM, and the poorest performance was given by BPRM, especially 

for low and high values of shear rate. Hence, it is the least reliable. The strength of this paper is that CRM accounted 

very well for the rheological characteristics of water-based drilling mud. Thus, it can be taken as a model for 

optimization studies aimed at enhancing the performance of drilling fluids. Results obtained give some important 

hints when developing rheological models with the aim of improving operational efficiency in drilling. 
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