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Abstract  

The exploration of the Zinc chloride activated avocado pear seed (ZAPS) production process employing Response surface 

methodology aided Box Benhken design and Artificial neural network algorithms was the main focus of this research. During the 

study, ANN and RSM models were deployed to assess the effect of process settings such as impregnation ratio, activation time 

and temperature on the measured BET surface of ZAPS. The RSM and ANN BET neural models were comparatively analyzed to 

ascertain the optimal process settings to produce the best response (BET surface area). The Analysis of Variance (ANOVA) 

outcome unveiled that the key independent variable(s) were activation temperature and impregnation ratio for ZnCl2 modified 

avocado pear seed (APS) fabrication. The optimum preparation conditions for developing maximal BET surface area of 457.16 

m2.g-1 were impregnation ratio (0.84), activation time (67.64) and activation temperature (813.94oC). The ANN neural model was 

ascertained to be the better model with respective root-mean-square-error (RMSE) and overall regression coefficient (R) of 31.93 

and 0.9838. Sensitivity analysis outcome revealed that temperature of activation had the predominant effect on ANN model 

performance with sensitivity (S) value of 88.9%.  This study demonstrated that ANN neural network and RSM can be applied as 

effective tools for optimization of the avocado pear seed (APS) alkali activation process. 

 

Keywords: Statistical Modeling; Alkali Activation; Avocado Pear Seed Biomass Derived Adsorbents; Machine Learning  

                    Algorithms; Sensitivity Analysis. 

1. Introduction 

Wastewater is used water originating from municipal and industrial sources in addition to groundwater infiltration 

and storm water (Howard et al. 1986). Wastewater is subdivided into two major classes dependent on the nature of 

the activity generating the wastewater: municipal and industrial wastewater. Municipal wastewater mainly emanates 

from residential and commercial activities (i.e. cooking, cleaning, sewage disposal) in urban areas. Whilst, industrial 

wastewater emanates from different industrial processes utilizing organic and inorganic chemicals. Characteristics of 

inorganic and organic industrial wastewaters include dissolved organic compounds, biodegradable organics, oils, 

heavy metals, mineral oils, fats, acids, cyanide, dyes, detergents e.t.c (Palani et al., 2021; Kato and Kansha., 2024). 

These toxic impurities present in the untreated industrial effluents normally discharged into surface water bodies (i.e 

streams, lakes, rivers), ultimately find their way into the fresh water supply (underground aquifer) and have 

malignant effects on human health and environs (Bodzek et al. 2020; Ibrahim et al. 2021). Different wastewater 

treatment technologies exist for remediation of contaminated industrial effluents including membrane separation, 

electro-winning, electroflotation, chemical flotation, reverse osmosis, membrane filtration and adsorption 

(Srivastava et al., 2015).  

 

Adsorption separation is the preferable technology due to technical simplicity, ease of operation, cost-effectiveness 

and possibility of adsorbent regeneration (economic potential) (Ali et al. 2016). Commercially produced activated 

carbons are expensive and non-renewable, thus unsustainable for adsorption treatment applications. Consequently, 
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agricultural wastes (i.e. avocado pear seed) derived activated carbons are emerging as porous materials of interest 

(Ighalo et al. 2022). Notably, avocado pear seed are utilized in huge quantities by the general populace, mainly for 

culinary applications. The avocado pear seed by-products are normally discarded as wastes contributing 

significantly to waste disposal problems. Thus, improper disposal of waste avocado pear seeds constitutes a serious 

solid waste management problem. The valorisation of avocado pear seed wastes into valued-added products such as 

activated carbons can promote sustainable waste management and reduce environmental pollution. This is because 

avocado pear seed bio-resources are low-cost, abundant, inexhaustible and environmentally benign (Ighalo et al. 

2022).  

 

The adsorptive characteristics of activated carbons encompassing, rate of adsorption (mass transfer), overall 

effectiveness and adsorptive capacity are indicated by the BET surface area. It follows that, the performances of 

activated carbons are characterized industrially using BET surface area (Dyk., 2000). The physical properties of 

active carbons are contingent on the precursor material and preparation conditions (i.e. impregnation ratio, activation 

temperature, and holding time). Impregnation ratio defined as the weight of activating agent mixed with source 

material, has a major effect on the physical properties of the active carbons. A number of research workers have 

successfully produced avocado pear seed (APS) activated carbons utilizing common activating reagents such as 

NaOH and K2CO3 (Zhu et al., 2016; Haki et al. 2021). A conspicuous omission is that the preparation of APS 

derived activated carbons using ZnCl2 activating agent has seldom been performed, which necessitates intensive 

research emphasis. Furthermore, optimization of preparation conditions to minimize production times and enhance 

BET surface area is important, but seldom performed for ZnCl2 modified APS. Modern process modeling and 

optimization often employ techniques such as Response Surface Methodology (RSM), Artificial Neural Networks 

(ANN), and Adaptive Neuro-Fuzzy Inference System (ANFIS). These methods have been proven to be effective in 

modeling and simulation complex physical systems (Chebii et al., 2022; Du et al., 2024).  

 

Hence, the novelty of this study is centred on the synergistic use of data-driven techniques (i.e. RSM and ANN) to 

optimize the preparation conditions of ZnCl2-modified APS, thereby providing a holistic understanding of the 

factors governing its adsorption characteristics. This study integrates statistical (RSM) and machine learning (ANN) 

methods to improve the prediction accuracy of BET surface area, which directly influences adsorption efficiency. 

While RSM offers insights into factor interactions and optimal conditions, ANN complements it by capturing non-

linear relationships within the dataset, thus overcoming the limitations of conventional statistical methods (Chebii et 

al. 2022). The successful application of ANN and RSM in this study marks a significant advancement in the field of 

activated carbon optimization, setting a new precedent for future investigations into biomass-derived adsorbents. 

 

Accordingly, this research proposes to (i) investigate the production of active carbons from avocado pear seeds with 

basic activation (ZnCl2) (ii) utilize RSM-BBD model for selection of optimum ZnCl2 modified APS with maximal 

BET surface area (iii) develop an ANN model for optimizing the production of APS derived carbon under different 

process conditions of activation time, temperature and base/precursor mixing ratio (iv) analyse the carbon 

fabrication process using both ANN and RSM-BBD models to ascertain their prognostic performances for the 

ZnCl2/APS system (v) assess the impact of independent variable(s) on neural network predictions using sensitivity 

analysis.  

The innovative aspect of this study lies in its fusion of experimental optimization with advanced computational 

intelligence to enhance process efficiency and adsorption performance(s). By harnessing learning machine 

techniques alongside conventional optimization strategies, this study provides a transformative approach to 

sustainable wastewater treatment solutions, advancing both environmental engineering and material science 

frontiers. 

 

2.0 Materials and methods 

 

2.1 Active Carbon production 

 

The raw avocado pear seeds were sourced from Eke-Awka Market in Awka South Local Government Area, 

Anambra State, Nigeria (N: 6° 13’ 8”; E: 7° 5’ 13”). The chemical activation of these seeds with zinc chloride was 

carried out following the methodology outlined by Zhu et al. (2016) (refer to Figure 1). Initially, 300 grams of fresh 

avocado pear seeds were cleaned by washing with 5000 grams of deionized water and 3945 grams of ethanol to 

eliminate surface impurities. The cleaned seeds were subsequently dried in a Mermmert air-circulating oven at 383 

K for 24 hours. Once dried, the seeds were cut into smaller pieces, ground using a Jencod grinding machine, and 
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sieved through a 300 µm Taylor sieve. For the activation process, 100 grams of dried avocado pear seed powder was 

soaked in a 36.5 gram solution of 30% zinc chloride at different impregnation ratios (0.5:1, 1:1, and 1.5:1) for 2 

hours. This was followed by drying in a Mermmert oven at 368 K for 24 hours. The dried ZnCl₂- treated samples 

were then subjected to thermal activation in a muffle furnace at varying temperatures (873 K, 1023 K, and 1173 K) 

and durations (60, 90, and 120 minutes). During activation, a consistent heating rate was maintained until the target 

temperatures (873 K, 1023 K, and 1173 K) were reached, after which the samples were held at these temperatures 

for the designated durations.  

 

After activation, the samples were cooled to room temperature and thoroughly washed with distilled water until the 

solution pH stabilized at 7.0, ensuring complete removal of residual ZnCl₂. The samples were further treated by 

immersing them in a 250 ml solution of 0.1 M HCl for 1 hour, followed by repeated washing with distilled water 

until a pH range of 6–7 was achieved. The resulting activated carbon samples were then filtered using Whatman 

No.1 filter paper and dried in a Mermmert oven at 348 K for 24 hours. The BET surface area of the activated 

carbons was determined based on nitrogen adsorption at varying pressures using the Brunauer-Emmett-Teller (BET) 

method, conducted via a Quantachrome NOVA4200e BET Analyzer (Anton Paar GmbH, Austria). 

 
                                 Figure 1: Diagrammatic illustration of the zinc chloride modified 

                                                  avocado pear seeds production process. 

.   

 

2.2 Experimental design by Box Behnken (BBD)  

 

Response Surface Methodology was utilized as the statistical modelling technique to (i) assess the effects of single 

factors on the response of interest (ii) determine the two-factor interaction effects of the independent variables and 

(iii) optimise the achievable BET surface area of zinc chloride activated avocado pear seed carbon (Anderson and 

Whitcomb, 2016). The RSM optimisation scheme for the APS activated carbon synthesis was evaluated with the aid 

of BBD. In this study, the variables chosen for analysis were activation temperature, activation time, and 

impregnation ratio. The response variable selected was the BET Surface area (m2/g). The upper and lower bounds of 

the independent variables for the BBD are presented in Table 1. The experimental ranges were determined based on 

previous literature, specifically Buasri et al. (2023). The total number of experimental runs for the BBD design was 

calculated using Equation 1. 

 

N = K2 + K + +CP       [1] 
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Where, N represents the total number of treatment combinations, CP denotes the number of replicates at the centre 

point and K corresponds to the number of factors (Melvin et al. 2015).  

 

A three-level, three-factor Box-Behnken Design (BBD) was utilized, consisting of 48 treatment combinations, 

including 22 factorial points arranged in an incomplete block design (IBD) along with six center points leading to a 

total of 54 experimental runs, as shown in Table 2. The factorial points ensured a well-distributed range of high and 

low values, while the central points contributed to maintaining data reliability and provided an estimate of 

experimental error (Onu et al. 2021).  The statistical analysis was carried out using Minitab 19.1 (Minitab LLC, 

USA) to model and predict the response of the ZnCl2/APS system. To minimize systematic errors, all 54 

experimental runs were conducted in a disorderly manner ensuring variability in the independent variables, whilst 

following the design of experiments (DOE) matrix. 

 

Table 1: Variables and their corresponding levels for the BBD design. 

Independent Variable(s) Range and Level 

-1 0 +1 

Activation temperature (A, 0C) 600 750 900 

Activation time (B, mins) 60 90 120 

Impregnation ratio (C) 0.5 1.0 1.5 

 

The Box Behnken design (BBD) was arranged using a spherical pattern, where each factor was assigned coded 

values of 1, 0 and -1 to signify high, medium and low levels, respectively, while maintaining equal spacing between 

them (Anderson and Whitcomb, 2016) as shown in Table 1. 

 

                   Table 2: Box-Behnken Experimental Design Matrix for Zinc Chloride Activation  

                                   of Avocado Pear Seeds. 

  Run 

order 

Activation 

Temp 

(0C) 

Activation      

Time 

(Mins) 

Impregnation        

ratio Activating 

agent: raw 

material 

BET Surface 

Area 

(m2/g) 

1 600 60 1.0 555.4 

2 900 60 1.0 530.3 

3 600 120 1.0 636.5 

4 900 120 1.0 574.5 

5 600 90 0.5 294.5 

6 900 90 0.5 791.5 

7 600 90 1.5 879.4 

8 900 90 1.5 889.9 

9 750 60 0.5 903.1 

10 750 120 0.5 774.7 

11 750 60 1.5 836.0 

12 750 120 1.5 921.0 

13 750 90 0.5 695.6 

14 750 90 0.5 695.6 

15 750 90 0.5 695.6 

16 600 60 1.0 555.4 

17 900 60 1.0 530.3 

18 600 120 1.0 636.5 

19 900 120 1.0 574.5 

20 600 90 0.5 294.5 

21 900 90 0.5 791.5 

22 600 90 1.5 879.4 

23 900 90 1.5 889.9 

24 750 60 0.5 903.1 

25 750 120 0.5 774.7 
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26 750 60 1.5 836.0 

27 750 120 1.5 921.0 

28 600 60 1.0 555.4 

29 900 60 1.0 530.3 

30 600 120 1.0 636.5 

31 900 120 1.0 574.5 

32 600 90 0.5 294.5 

33 900 90 0.5 791.5 

34 600 90 1.5 879.4 

35 900 90 1.5 889.9 

36 750 60 0.5 903.1 

37 750 120 0.5 774.7 

38 750 60 1.5 836.0 

39 750 120 1.5 921.0 

40 600 60 1.0 555.4 

41 900 60 1.0 530.3 

42 600 120 1.0 636.5 

43 900 120 1.0 574.5 

44 600 90 0.5 294.5 

45 900 90 0.5 791.5 

46 600 90 1.5 879.4 

47 900 90 1.5 889.9 

48 750 60 0.5 903.1 

49 750 120 0.5 774.7 

50 750 60 1.5 836.0 

51 750 120 1.5 921.0 

52 750 90 0.5 695.6 

53 750 90 0.5 695.6 

54 750 90 0.5 695.6 

 

Moreover, the reduction empirical model for the ZnCl2-APS fabrication process can be expressed using the 

following second-order approximating polynomial equation based on coded factors (Okiy and Nwabanne., 2024): 

 

Y =  b0 + ∑ bi

n

i=1

Xi  +  ∑ bii Xi
2

n

i=1

 + ∑ ∑ bi,jXiXj  +  E

n

i=2

n−1

i=1

 

   

       [2] 

 

Where, b0, bi, bij and bii are the constant coefficients of the intercept, linear, and interaction terms respectively, n is 

the number of patterns, Y is the calculated dependent variable, i and j are index numbers, the term E accounts for 

errors, whereas Xi, and Xj signify the independent factors under investigation. 

 

2.3 Artificial Neural Network modeling 

 

The artificial neural network (ANN) is a non-linear numerical mapping between the numeric inputs and output 

dataset(s) for detection of a suitable generalization of the actual system (Basu., 2013). The ANN training process 

involves the following steps: (i) reset of network weights (ii) summation of input data and bias, before transfer  of 

result through the activation function to obtain the output signal(s) (iii) comparison of network model prediction 

with the labelled data to determine performance function (MSE) value (iv) reiterative adaptation of network 

parameters (weights) using the back-propagation training algorithm to minimize performance function (MSE) error 

and satisfy the convergence criteria.  

 

The MLP feed-forward neural network model was constructed using MATLAB R2019b version 9.9 (MathWorks 

Inc, USA) to predict the achievable BET surface area of ZnCl₂-activated APS. The Multi-Layer Perceptron feed-

forward neural network with back-propagation training algorithm was utilized in deciphering the complicated 
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associations between the independent variables, input parameters (i.e number of hidden layers, number of neurons) 

and measured (labelled) data (Chebii et al. 2022). Factors such as alkali impregnation ratio, activation time and 

temperature, were selected as input (independent) variables to the neural network model. In addition, the response 

variable-BET surface area was chosen to be the dependent factor. The multi-layer perceptron network is well-

regarded for its ability to model noisy and non-linear data (Chebii et al. 2022). 

 

The ANN network proposed in this study features dual hidden layers, an input and one output layer (Figure 2). A 

two hidden layer ANN model was selected for this research, due to its enhanced predictive performance compared 

to a single hidden layer (Jerry, 2002). The ANN was designed with a sigmoid mathematical function for the neurons 

in both hidden layer(s), whilst the input and output layers were modeled utilizing a linear mathematical function. 

 
             Figure 2: Artificial Neural Network topology for modeling the ZnCl2/APS system. 

 

To forestall over-fitting, the number of hidden layer neurons were determined based on the hush heuristic method, 

suggesting that the optimal number of neurons is 3 times the number of independent (input) variables 

(Alkhasawneh., 2021). Consequently, nine neurons were specified to be imbedded in the hidden layer(s) of the ANN 

model. According to Onu et al. 2021, network modeling of a non-linear system with larger dataset is better than 

using a smaller number of data points. Consequently, the experimental dataset for alkali avocado pear seed 

activation was increased four-fold, providing a total of 54 datum utilised for the ANN network modeling, of which 

70% (38 records) were used for training, 15% (8 records) were used for validation, and the remainder records for 

testing. The ANN network (3:5:4:1) incorporating the three abovementioned input variables, nine hidden neurons, 

and one output variable was found to be appropriate for calculating the achievable BET surface area(s) of ZnCl2-

activated avocado pear seed (Figure 3).  
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       Figure 3: Configuration of ANN BET network with nine hidden-layer neurons. 

 

The ANN model training was performed utilizing a neural network code that automatizes the neural network 

training process. 

 

  

3.0 Result and Discussion 

 

3.1 Modeling of the ZAPS activation process using RSM-BBD  

 

A total of 54 individual experiments were carried out to produce APS derived activated carbons according to Box 

Behnken experimental design matrix presented in Table 2 and the response (BET surface areas) evaluated. Non-

linear regression modeling was applied to formulate a correlation between the APS-derived carbon manufacturing 

process variables and response(s) using the ordinary least squares method. The most suitable model for accurately 

representing the experimental data and explaining the response variation of the ZnCl₂/APS system was identified 

using the Sequential Model Sum of Squares (SMSS) test. Based on the SMSS analysis results for the achievable 

BET surface area of ZnCl₂-modified APS, as shown in Table 3, Minitab Software version 19.1 recommended the 

quadratic model. Though, the cubic model was aliased due to the fact that the BBD experimental design does not 

hold enough runs to underpin a cubic model (Onu et al. 2021).  

 

      Table 3: Type 1 Sequential Model Sum of Squares Analysis for ZnCl2-Activated           

                      Avocado Pear Seed. 

Source 
Sum of 

Squares 
df Mean Square F-value P-value  

Mean 2.748E+07 1 2.748E+07    

Linear 65.42 1 65.42    

2FI  95038.52 3 31679.51 0.9737 0.4128  

Quadratic  1.544E+05 3 51466.63 1.64 0.1922 Suggested 

Cubic  3.599E+05 3 1.200E+05 4.78 0.0058 Aliased 

Residual 3.360E+05 3 1.120E+05 6.02 0.0017  

Total 7.439E+05 40 18596.82    

 

The Analysis of Variance (ANOVA) for Box Behnken experimental design was then applied for assessment of the 

adequacy and significance of the approximating polynomial model. The goodness of fit of the second-order 

polynomial model was evaluated using the Adjusted R2, coefficient of determination R2, Standard deviation (SD), 

Coefficient of Variation (C.V) and Adequate precision. Utilizing the 95% significance level, factors having p-value 

less than 0.05 and Fisher F-value greater than critical Fcritical are considered to be statistically significant. The final 

response model was derived by eliminating non-significant terms (p-value > 0.05). The ANOVA results for ZnCl2-

activated APS are presented in Table 4.  
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Table 4: ANOVA results for ZnCl2-activated avocado pear seed carbon. 

The predicted response (BET surface area) for ZnCl2-activated APS synthesis is represented by the following model 

equation [Eqn. 4]: 

 

BETArea  = -1422 + 7.30×A - 15.2×B - 573×C - 0.00205×A×B -1.622×A×C + 3.56×B×C - 

0.00343×A² + 0.0753×B² + 830×C2 

 

           [4] 

 

The ANOVA analysis for the production process of APS-derived activated carbon (AC), presented in Table 4, 

reveals a p-value for the polynomial model below 0.05 (p-value = 0.000). This indicates that the polynomial model 

is statistically significant at a 95% confidence level. Moreover, the substantial F-value of 17.22 implies the 

relevance of the quadratic model, with a 0.000% chance that the observed F-value is the result of random 

fluctuations, reinforcing the findings from the p-value test (He et al. 2023). The ANOVA results indicated that the 

linear factors of activation temperature (A) and impregnation ratio (C), along with the quadratic term for 

impregnation ratio squared (C²), had a significant effect on the response variation, as evidenced by p-values below 

0.05. In addition, the interactions between activation temperature and impregnation ratio (A*C), as well as between 

activation time and impregnation ratio (B*C), were found to significantly affect the BET surface area, with p-values 

under 0.05. In contrast, the linear effect of activation time (B), the quadratic terms of activation temperature squared 

(A²) and activation time squared (B²), and the interaction between activation temperature and activation time (A*B) 

did not significantly influence the response, as their p-values were greater than 0.1 (Nguyen et al. 2022). As well, 

the low F-values confirmed that the variations in the Activation time, Activation temperature product, Activation 

time product, and Activation temperature & Activation time interaction did not significantly affect the BET surface 

area (Onu et al. 2021). Hence, it can be concluded that impregnation ratio and activation temperature were the linear 

terms in the polynomial model equation that significantly influenced the ZnCl2-activated APS fabrication process. In 

general, increase in the amount of activating agent mixed with the activated carbon (AC) precursor in the range of 

0.25 to 4.0 suppresses formation of chemicals (tar) and additional by-products (acetic acid and methanol) during 

preparation, resulting in higher AC yield. Further, optimization of final activation temperature is also important to 

reduce the expense and duration of ZAPS production (Marsh and Rodríguez-Reinoso, 2006). Following, the removal 

of all the non-significant terms, the ensuing polynomial model is obtained:  
 

 

BETArea = -1422 + 7.30×A - 573×C - 1.622×A×C + 3.56×B×C + 830×C2 

 

          [5] 

 

The synergetic and antagonistic effects on attainable BET surfaces of the ZnCl2-activated APS are shown by the 

positive and negative terms in the response model equation.   

The data presented in Table 4 showed that the response model has moderate standard deviation (92.13) and high 

coefficient of determination values (R2 =77.89%), signify some variability in the response variable (BET surface 

area) around the mean value(s) predicted by the model. In addition to the fact that approximately 77.89% of 

Source Sum of Squares Df Mean Square F-Value P-Value 

Model 1315843 9 146205 17.22 0.000 

A-Act. Temp 358599 1 88368 10.41 0.002 

B-Act. Time 88368 1 3354 0.40 0.533 

C-Impreg. Ratio 3354 1 290703 34.25 0.000 

AB 266877 1 1362 0.16 0.691 

AC 673661 1 236682 27.88 0.000 

BC 499998 1 45540 5.37 0.025 

A² 62016 1 22819 2.69 0.108 

B² 111646 1 17645 2.08 0.156 

C² 283583 1 111646 13.15 0.001 

Residual 373473 44 8488   

Std. Dev= 92.13 R-Sqr = 77.89% R-Sqr(Adj)= 

77.37% 

Adeq Precision 

= 5.2997 

 C.V.%= 22.22 
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response (BET surface area) variation(s) can be explicated by the model, typically R2 above 75% is considered 

acceptable in modeling complex physical systems (Anderson and Whitcomb, 2016). Further, the model’s p-value of 

0.000 (P-value < 0.05) suggests that it is statistically significant at the 95% confidence level, with a 0.5% likelihood 

that variations in at least one of the independent variable(s) is attributable to noise (Anderson and Whitcomb, 2016). 

The response model also had high adequate precision (5.2997) and moderate coefficient of variation values (22.22) 

respectively, indicating a strong signal-to-noise ratio and confirming the model's robustness in navigating the design 

space (PRESS > 4) as well as moderate variance of the predicted response(s) about the mean, satisfactory for the 

experimental conditions (Okpe et al. 2018; Onu et al. 2021). In addition, the fairly close accordance of the adjusted 

R2 value of 77.37% and R2 value of 77.89% (R2 − Radj
2  < 20%) suggests that redundant predictors are not included 

and the response model is not over-fitting (Anderson and Whitcomb, 2016). In all, the model provides a good fit and 

adequately explains the variability in the response variable (BET surface area), indicating good predictive capability. 

The results of the measured and RSM predicted response(s) are depicted in Table 5. 

 

                              Table 5: Comparison of RSM Predicted and Measured BET Surface  

                                             Area for ZnCl2-Activated APS. 

Point BET Surface 

Area 

(Predicted) 

BET 

Surface 

Area 

(Actual) 

STD 

Error Fit 

Square 

Residual 

1 502.16 555.4 0.641 308469.2 

2 625.71 530.3 -1.149 9103.068 

3 541.09 636.5 1.149 9103.068 

4 627.74 574.5 -0.641 1116.228 

5 444.34 294.5 -1.80 22452.03 

6 792.69 791.5 -0.0143 1.4161 

7 878.21 879.4 0.0143 7518.624 

8 740.06 889.9 1.80 22452.03 

9 806.50 903.1 1.163 9331.56 

10 720.28 774.7 0.655 1011.24 

11 890.43 836.0 -0.655 2962.625 

12 1017.60 921.0 -1.163 9331.56 

13 695.60 695.6 0.00 0 

14 695.60 695.6 0.00 0 

15 695.60 695.6 0.00 0 

 RMSE= 157.54 

 

Figure 4 presents a comparison between the BET surface area obtained experimentally and the BET surface area 

predicted using the RSM model. 
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Figure 4: Cross-plot of computed BET surface area against measured data. 

          

The cross-plot depicted in Figure 4 shows a strong agreement between computed and measured BET surface areas, 

with a correlation coefficient (R) value of 0.882 indicating reliable model performance (Ranade and Ranade, 2023). 

The R-value of 0.882 suggests that approximately 88.2% of the variance in the measured BET surface area can be 

explained by the computed values. This strong correlation supports the use of the model for predicting how changes 

in activation parameters affect BET surface area. This high correlation signifies that the model captures the 

underlying trends in the data effectively, though some discrepancies still exist. The deviations observed in certain 

data points may arise due to inability to capture the complex interactions amongst variables (inherent model 

limitations). Furthermore, the alignment of data points along the bisector (450) line indicates that the model 

consistently produces predictions close to the experimental values (Okiy and Nwabanne, 2024). Hence, the 

regression model has strong ability for predicting BET surface area(s) under similar experimental conditions, aiding 

in process optimization. The normal probability plot presented in Figure 5 was also utilized to evaluate the 

distribution of data points. The symmetry of the probability distribution on both the right and left sides of the plot 

indicates that the error residuals are normally distributed. This suggests that there are no apparent issues with the 

model or the process data (Iheanancho et al., 2019).  

 

 

Figure 5: Normal plot of error residuals for the ZnCl2/APS system. 
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This construal was statistically affirmed by the Shapiro-Wilk test, which produced a p-value greater 0.05 (p-value = 

0.9985) and high wilk-statistic of 0.99471, confirming that the residuals follow a normal (gaussian) distribution 

(Figure 6). 

 

 
                               Figure 6: Histogram plot of error residuals (Y) for the ZnCl2/APS system.  

 

The importance of the estimated linear effects, interactions, and their products on the response of interest (BET 

surface area), in order of significance, are presented in the Pareto diagram (Figure 7). The perpendicular line shows 

the extent of the least statistically significant effect for a 95% confidence level, and the analogous t-test value is 

equal to 2.015. Any factor or its interaction that exceeds the demarcation (vertical) line is considered significant 

(Anderson and Whitcomb, 2016). 

 

 
                                         Figure 7: The Pareto plot for ZnCl2-activated APS. 

 

Figure 7 depicts that the linear effect of factor C (impregnation ratio), along with its quadratic term (C²), are  
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the most significant predictor variable(s) determining the achievable BET surface area of ZnCl₂-activated APS.  

The three-dimensional response surface plots, shown in Figures 8(a–c), were generated to visualize the relationships 

between the independent variables-activation temperature, activation time, and impregnation ratio and the response 

variable (BET surface area), considering their linear and interaction effects. These plots facilitate the optimization of 

the ZnCl₂-activated APS production process. The regression models developed for the multivariable ZnCl₂/APS 

system incorporate three independent predictors. Accordingly, each response surface diagram was plotted as a 

function of two factors within their respective ranges (-1 to 1), while the third factor was held constant at the central 

(zero) level.  

 

  
 

      Figure 8: 3-D response surface plots illustrating the BET surface area for (a) an impregnation ratio of 1.0 

                       (b) an activation time of 90 mins, and (c) an activation temperature of 750 0C. 

 

Figure 8a clearly shows that the BET surface area of ZnCl₂-activated APS increases with rising activation 

temperature. Similarly, an increase in activation time also leads to a higher BET surface area, indicating a 

synergistic effect of both parameters on the BET surface area of ZnCl₂-activated APS. In Figure 8b, the BET surface 

area follows an increasing trend with activation temperature until it reaches a maximum. Likewise, the BET surface 

area rises with an increasing impregnation ratio before reaching an optimal point. As seen in Figure 8c, the BET 

surface area declines as activation time increases, reaching a minimum. However, it continues to increase with a 

higher impregnation ratio until it attains a peak point. In all instances, the impregnation ratio plays a more 

significant role relative to activation temperature and extent of activation (activation time) in the ZAPS activated 

carbon synthesis process. This connotes that impregnation ratio had a predominant effect on the achievable BET 

surface area of ZnCl2-activated APS. 

b c 

a 
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From the statistical optimization results, the best BET surface area achieved for ZnCl2-activated APS was 457.163 

m2.g-1 with an activation time of 67.6 minutes, activation temperature of 813.940C, and an impregnation ratio of 

0.840. Subsequent experimental treatments using the optimum conditions yielded an observed BET surface area of 

460.62 m2.g-1 (Table 6). These result(s) confirmed the validity of the polynomial response model developed using 

RSM.  
 

      Table 6: Measured and predicted value of achievable BET surface area for ZnCl2-activated  

                      avocado pear seeds using optimal activation conditions. 

                                Optimal Conditions     BET Surface Area (m2/g) 

No of 

Replicates  

Activation Time, 

mins 

Activation 

Temperature, 0C 

Impregnation 

ratio 

Experimental Predicted 

 

1 

 

67.640 

 

813.94 

 

0.840 

 

460.62 

 

457.163 

 

 

3.2. ANN modeling of the APS alkali activation process  

 

The ANN model was implemented using MATLAB version 9.4 (R2018a). The network design of the neural model 

comprises of a single input layer with three independent variables, two hidden layers with nine hidden neurons, in 

conjunction with one output layer as aforeshown (See Figure 3). Statistical indices such as correlation coefficient 

(R) and Root-Mean-Square-error (RMSE) were utilized to establish the computational accuracy and performance 

limits of the created ANN BET model for ZnCl2-activated APS synthesis (Chebii et al. 2022; Ranade and Ranade., 

2023).  

 

The ANN model performance plot of error function (MSE) with respect to the number of training cycles (Epochs) 

for the ZAPS activation process is presented in Figure 9. The best validation performance of 5.05 × 10-20 was 

achieved at 22 Epochs. The low value of the MSE determined, evinces that the model performance plot did not show 

any indications of over-parametization (over-fitting). In addition, the training (blue) and validation (green) curves 

are alike and in close proximity to the best fitting curve for this instance. Consequently, over-fitting problems are 

not likely to occur with the trained ANN model. Moreover, the validation curve exhibited a significantly greater 

increment in the latter stages of iterations through the training dataset relative to smaller increment of the test curve 

in the earlier epochs, indicative of little possibility of over-fitting incidents (Onu et al. 2021). 

 

 
Figure 9: ANN Model Performance chart for ZAPS activation process. 

 

Figure 10 presents the regression plots for training, testing, and validation of the neural network model. The optimal 

ZAPS activation model exhibited correlation coefficients (R) of 0.9979 for training, 0.98945 for testing, and 1.0 for 

validation, resulting in an average R-value of 0.99738. This high correlation suggests a strong relationship between 
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the input variables and the neural network predictions for BET surface area (0.995 < Ravg = 0.99738) (Ranade and 

Ranade, 2023). In addition, this construal is supported by the relatively low root mean square error (RMSE) of 

31.93.  

 

 
 Figure 10: ANN Regression plots for training, testing, validation, and overall data. 

 

To valuate the precision of the ANN neural model in reproducing the labelled data used in network training. The 

measured BET surface area(s) were compared with the ANN-predicted values at varied preparation conditions as 

shown in Table 7. As apparent from the low value of RMSE (See Table 7), the observed and ANN model predicted 

results matched reasonably well (31.93). The minimum RMSE value demonstrates that the hidden layers of the 

ANN effectively recognized the training patterns, leading to improved predictive accuracy (Chebii et al., 2022). This 

outcome suggests that the ANN BET model reliably replicates the experimental data for the APS alkali activation 

process.  
 

                                   Table 7: Comparison of ANN outputs with observed results for                  

                                                  the manufacture of ZnCl2- activated APS. 

 

Point 

 

BET Surface 

Area 

        m2/g 

(ANN) 

 

BET Surface Area 

m2/g 

(Experiment) 

 

     Residual 

Square 

       

    

1 555.4 555.4 1.0611E-20 

2 530.3 530.3 3.23E-22 

3 736.29 636.5 9957.30 

4 574.5 574.5 7.821E-22 

5 294.5 294.5 2.551E-22 

6 791.5 791.5 1.047E-24 

7 879.4 879.4 6.154E-20 

8 889.9 889.9 1.324E-20 

9 903.1 903.1 4.864E-22 

10 687.45 774.7 7613.179 

11 836 836 1.204E-19 

12 921 921 1.847E-21 

13 695.6 695.6 9.562E-22 

14 695.6 695.6 9.562E-22 

15 695.6 695.6 9.562E-22 

    RMSE = 31.93  
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Further, the ANN BET model was assessed by comparing the network output(s) with the experimental results for the 

calculated BET surface area(s), as shown in Figure 11. 
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                             Figure 11: Cross-plot of ANN model predicted and measured results for the  

                                                ZAPS activation process. 

 

Figure 11 shows a strong correlation between the ANN predicted values and experimental results evidenced by a 

high coefficient of determination (R2) value of 0.968. According to Singh et al. (2014), an R2 value greater than 0.67 

signifies excellent predictive accuracy for a non-linear regression model. Consequently, the neural network model 

effectively captured the activation parameter patterns, enabling precise prediction of periodic changes in the BET 

surface area(s) of ZAPS. 

 

3.3. Comparative Analysis of ANN BET and RSM models 

 

The prognostic accuracy of the response surface (RS) and artificial neural network (ANN) BET models were 

evaluated using performance metrics such as Root-Mean-Square-error (RMSE), correlation coefficient (R), and the 

squared loss function, as summarized in Table 8. Amongst these, the squared loss function provides a more 

insightful assessment of model performances due to its non-negative nature and high sensitivity to outliers at 

individual data-points (Gokcesu & Gokcesu, 2023). 
 

                            Table 8: Comparison of ANN BET and RSM models for activation of ZAPS. 

Run No RSM                      ANN 

Square residual Square residual 

1 308469.2 1.0611E-20 

2 9103.068 3.23E-22 

3 9103.068 9957.30 

4 1116.228 7.821E-22 

5 22452.03 2.551E-22 

6 1.4161 1.047E-24 

7 7518.624 6.154E-20 

8 22452.03 1.324E-20 

9 
9331.56 4.864E-22 

10 1011.24 7613.179 

11 2962.625 1.204E-19 
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12 9331.56 1.847E-21 

13 103684 9.562E-22 

14 0 9.562E-22 

15 0 9.562E-22 

16 19656.04 1.061E-20 

17 9103.068 3.227E-22 

18 9103.068 9957.30 

19 1116.228 7.822E-22 

20 22452.03 2.552E-22 

21 1.4161 1.047E-24 

22 7518.624 6.154E-20 

23 22452.03 1.324E-20 

24 9331.56 4.864E-22 

25 1011.24 5.326E-22 

26 2962.625 1.204E-19 

27 9331.56 1.847E-21 

28 213628.8 1.061E-20 

29 9103.068 3.227E-22 

30 9103.068 9957.30 

31 1116.228 7.821E-22 

32 22452.03 2.551E-22 

33 1.4161 1.047E-24 

34 7518.624 6.154E-20 

35 22452.03 1.324E-20 

36 9331.56 4.864E-22 

37 1011.24 7613.18 

38 2962.625 1.204E-19 

39 9331.56 1.847E-21 

40 213628.8 1.061E-20 

41 9103.068 3.23E-22 

42 9103.068 9957.30 

43 1116.228 7.822E-22 

44 22452.03 2.551E-22 

45 1.4161 1.047E-24 

46 7518.624 6.154E-20 

47 22452.03 1.324E-20 

48 9331.56 4.864E-22 

49 1011.24 5.33E-22 

50 2962.625 1.204E-19 

51 9331.56 1.85E-21 

52 103684 9.562E-22 

53 0 9.562E-22 

54 0 9.562E-22 

 RMSE= 157.54     RMSE = 31.93  

 

The ANN BET model exhibits significantly lower squared-error residual values, ranging from 1.407 × 10⁻²⁴ to 

9957.30, compared to the RSM model, which has residuals ranging from 1.416 to 308469.2 (Table 8). The vast 

difference in the magnitude of residuals demonstrates that the ANN model provides more precise estimates of the 

BET surface area, thereby minimizing deviations from experimental data. The RSM model's larger residuals suggest 

that it provides less accurate predictions across all data points, making it less reliable than ANN. 

 

The ANN model yields a correlation coefficient of 0.9838, significantly higher than the 0.882 obtained for the RSM 

model. The correlation coefficient (R) measures the strength of the relationship between predicted and experimental 

values. The closer R is to 1.0, the stronger the correlation. The ANN model's R-value of 0.9838 indicates an almost 
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perfect linear relationship between experimental and predicted BET surface areas, while the RSM model's 0.882 

suggests a weaker fit with higher deviations. This suggests that the ANN model has superior predictive capability 

and is a better fit to the experimental data. Moreover, Table 8 and Figure 12 showed the respective Root-Mean-

Squared-error (RMSE) values for the RSM and ANN BET models. The RMSE, which measures the average 

deviation of predicted values from actual values, was significantly lower for the ANN model (31.93) than for the 

RSM model (157.54). The smaller RMSE value confirms the ANN model’s higher accuracy and precision in 

generalization across various experimental conditions. In contrast, the RSM model's larger RMSE value suggests a 

higher degree of error in its predictions, making it less reliable for accurately modeling the ZnCl2/APS system. 

These observations are corroborated by findings made by Nur et al. (2019) and Mu’azu (2022), which reported that 

ANN analysis performed better than RSM in computational accuracy. 

 

 
                Figure 12: Model BET prediction performances for ZAPS activation process. 

The superior performance of the ANN model can be attributed to multiple (embedded) hidden layer(s) and 

activation functions, allowing it to learn intricate patterns from data, resulting in more accurate predictions. The 

RSM model, which is polynomial-based, assumes a limited functional relationship between variables, making it less 

effective in capturing the highly non-linear interactions between activation parameters (temperature, time, and 

impregnation ratio) and the resulting BET surface area. As well, ANN is less sensitive to noise or outliers in the data 

due to its optimization algorithm(s) that adjusts the network weights to minimize prediction errors and thus, can 

generalize well from the labelled (training) data. In contrast, RSM models rely on pre-defined polynomial equations, 

that can be affected by noise and consequently, lead to suboptimal predictions (Calvacanti et al. 2021; Mu’azu., 

2022). These findings demonstrate that the ANN model is the more effective tool for modeling the ZnCl2-activated 

APS fabrication process, ultimately facilitating improved process understanding and optimization. 

 

3.4. Sensitivity analysis 

 

Sensitivity study(s) was conducted to assess the effects of the independent variables (i.e. activation time, 

impregnation ratio and activation temperature) on the ANN BET model output(s) and thus, elucidate the underlying 

rationale for predicted network result(s). The less or more the independent variable affects the ZAPS activation 

process, the lower or higher the corresponding sensitivity (S) value (Nkurlu et al., 2020). In Fig 13, activation 

temperature had more significant effect on the ANN predicted response (BET Surface area) than activation time and 

impregnation ratio with a higher sensitivity (S) value of 88.9%. This is supported by the fact that temperature rise 

results in pore enlargement and increment in BET surface area of activated carbon (Marsh and Rodriguez-Reinoso, 

2006).  
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                          Figure 13: Impact of independent factors on ANN model predicted BET surface 

                                             area for ZnCl2/ZAPS system. 

 

The lower S values of 79.84% and 50.92% ascertained for contact time and impregnation ratio respectively, signifies 

that both variables have reduced effect(s) on the ANN BET model prediction(s).   

   

4.0. Conclusion  

In this study, the relatively novel Artificial Neural Network (ANN) and Response Surface Methodology (RSM) 

assisted Box Behnken Design (BBD) tools were applied to optimize the ZnCl2-activated avocado pear seed (APS) 

production process. The ANN and RSM models, developed using the Levenberg-Marquardt optimization algorithm 

and regression analysis, respectively, demonstrated high accuracy in predicting BET surface area(s). Optimization 

results indicated that the maximum BET surface area for ZnCl₂-activated APS was 457.16 m²/g, achieved under 

optimal conditions: an activation temperature of 813.94°C, an impregnation ratio of 0.84, and a processing time of 

67.64 minutes. The optimized ANN model incorporated three independent variables and featured two hidden 

layer(s), with five neurons in the first layer and four in the second. To evaluate the predictive performance of the 

models, Root Mean Square Error (RMSE) and the correlation coefficient (R) were used as key assessment metrics. 

With the highest correlation coefficient (0.9838) and minimum RMSE (31.93), the ANN predictive model was 

confirmed to be better compared to RSM model. Further, the sensitivity analysis results revealed that the activation 

temperature had the most significant impact on the ANN model prognostic performance. Concluding, the ZnCl2 

alkali activation of raw avocado pear seeds showed good potential for producing of quality activated carbons with 

high BET surface area(s).  

 

5.0.  Recommendations 

 

The following recommendations were suggested based on this study: 

The integration of Artificial Neural Networks (ANN) with optimization techniques like Genetic Algorithms (GA) or 

Particle Swarm Optimization (PSO) could likely enhance prediction accuracy, leading to more robust hybrid models 

for optimizing the ZnCl₂ activation process. By incorporating additional variables such as precursor type, heating 

rate, and cooling method, the model's accuracy and robustness could also be improved. A comparative analysis of 

ZnCl₂-activated APS performance against other commonly used activating agents, such as KOH and H₃PO₄, would 

also help in identifying the most effective activator for producing activated carbon from avocado pear seeds. Finally, 

exploring eco-friendly and renewable activating agents could contribute to the development of a more sustainable 

activation process. 
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