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Abstract  

This study investigated cashew leaf's potential to reduce mild steel (MS) corrosion in an HCl environment. With the use of a 

gas chromatography-mas spectrophotometer, the molecular components of the extract were determined. The adsorption 

mechanism and characteristics of the corrosion inhibition process were determined using the gravimetric approach. 

Furthermore, artificial neural networks (ANN) and response surface methodology (RSM) were used to forecast the cashew 

leaf extract's inhibitory efficacy. According to the results, the main biomolecular components of the cashew leaf extract were 

9-tetradecenal, oleic acid, 2-hydroxy cyclopenta decanone, 4H-pyran-4-one, 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-

4-one, 2-methyl-3-ketotetrahydrofuran, oxirane, 8-methyl-9-tetradecenoic acid, 2,3-butylene oxide, 2,3-dimethyloxirane and 

3(2H)-furanone. The biomolecules spontaneously adhered to the MS surface, a physical adsorption event. The results of the 

optimization/prediction analyses demonstrated that when it came to forecasting the extract's efficacy, ANN outperformed 

RSM. The study’s findings can serve as the basis for using cashew leaf as an additive to prevent mild steel from corroding in 

a corrosive environment. 
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1.0 Introduction 

The need for scientists and engineers with technical expertise in corrosion control procedures has increased due 

to exigencies in industrial activity. These scenarios involve modifications to transportation and production 

methods that impact the dynamics of metal corrosion. Thus, new corrosion control data is needed for the 

deployment of novel materials for the production and delivery of useful products. Therefore, the goal of current 

research is to develop solutions for corrosion situations that are constantly changing. Researchers view the 

process of explaining the concept of corrosion as a respectable scientific endeavor. The term "corrosion" 

describes surface degradation or the deterioration of materials or metals in an unfriendly environment. When 

metal comes into touch with air, moisture, acidic solutions, or other corrosive environments, it oxidizes and 

degrades. There are two types of corrosion processes: chemical corrosion, which happens when a metal 

combines with oxygen or dry air, and electrochemical corrosion, which happens when an electrolyte is present. 

The tendency of metal to revert to its thermodynamically stable state is generally the main cause of metallic 

corrosion. That is, one of the features of metal corrosion is a decrease in a system's Gibb's energy (Bell et al, 

2019). It has also been reported that corrosion results from an electrochemical reaction when metal is exposed to 

a corrosive environment (Xia et al, 2022). Reaction occurs when mild steel, which is high in iron, comes into 

touch with an acidic environment. For example, when HCl and iron combine, FeCl2 and H2 are produced: 

Fe + 2HCl → FeCl2 + H2       (1) 
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Anodic and cathodic processes are two electrochemical phenomena that result from corrosion on a metal's 

surface. The equilibrium potential varies for each of these processes (Ushakov et al, 2021). Anodes and cathodes 

are two corrosion cells frequently used to illustrate charge transfer within metals and between metals and 

electrolytes (Kadhim et al, 2021). Cathodic or anodic reactions result from variations in the electron density at 

the attachment site. Electrons produced by the anode are consumed by the cathode during this process.  

For corrosion control techniques to be used effectively, a thorough understanding of metals is necessary 

(Umoren et al, 2016; Millán-Ocampo et al, 2018; Anadebe et al, 2019; Mashuga et al, 2017). The corrosion 

control research must therefore take into account the basic idea of mild steel as a metal. One noteworthy 

material used in the transportation, building, and engineering sectors is mild steel (Omotiom, and Onukwuli, 

2016). In a variety of media, especially acidic solutions, it is prone to corrosion. Due to its favorable properties, 

which include good tensile strength, ease of production, and the capacity to conduct heat and electricity, it is 

typically advised for industrial applications. Mild steel, one of the most often used materials in engineering and 

building projects worldwide, requires corrosion protection. So, to prolong the lifespan of MS constructions, 

different ways are implemented approaches to avoid corrosion and the rate at which it may spread. The negative 

effects of corrosion necessitate mitigation methods.  

Some engineering constructions experience significant failures due to corrosion, such as the quick decay of 

metallic materials, which can be costly to repair. Because systems must be shut down during maintenance, time 

is wasted. Additionally, rust is harmful and can cause staff members to be injured. Thus, engineers and scientists 

worldwide have been encouraged to view corrosion as a severe issue that needs to be addressed right away 

(Yadav et al, 2016; Rodriguez-Clemente et al, 2018; Amodu et al, 2022). In this regard the use of inhibitors is 

found to be a prominent technique that is frequently used to mitigate corrosion (Salleh et al, 2021). There are 

various available inhibitors, but plant extract is preferred over other inhibitor candidates (drug, ionic liquid and 

polymeric substance) due to its availability, renewability, and biodegradability. Several research reports on the 

use of plant-based inhibitors exist (Umoren et al, 2016; Anadebe et al, 2019; Omotioma et al, 2018; Prabhu et al, 

2020), but in each case, determination of optimum parameters was restricted to RSM. It is necessary to test and 

compare different optimization/prediction tools in corrosion control processes. Thus, this study is aimed at 

examining the potential of cashew leaf extract for mild steel corrosion mitigation in HCl; with emphasis on 

comparing RSM and ANN in the performance evaluation. 

2.0 Materials and Methodology  

2.1 Devices/Equipment 

Mild steel, distilled water, HCl, and cashew leaf are among the materials and reagents employed in this 

investigation. The following tools/devices were used in this investigation: gas chromatography-mass 

spectrometer and water bath with thermostat. Every chemical utilized in this experiment is of analytical quality. 

2.2 Processing of the MS and inhibitor concentration 

Samples of uniform sizes (5cm x 4cm x 0.1cm) were cut from the MS sheet.  The MS is composed of Ni (0.02), 

Cr (0.01%), C (0.23%), Mn (0.11%), Si (0.02%), P (0.02%), S (0.02%), Cu (0.01%), and Fe (99.56%). The MS 

samples were processed through the following steps; degreasing, polishing, cleaning, washing, and drying. For 

48 hours, 30.0g of the pulverized cashew leaf was dissolved in 1000 ml of ethanol solvent. Thereafter, the 

mixture was filtered, and the ethanol in the filtrate was evaporated to produce a concentrated extract. For the 

study, various dosages of the extract were created. Ten grams of the extract were added to one liter of a stock 

solution of 1 M HCl. The stock solution was diluted to provide various inhibitory test media (conc.; 0.2 g/L – 

1.0 g/L for the corrosion control investigation. 

2.3 Characterization of the extract  

The cashew leaf extract was subjected to chemical analysis by employing gas chromatography-mass 

spectrometer – model: GCMS-QP2010 PLUS, SHIMADZU. To classify the various chemical species of the 
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extract, features of spectrometry and chromatography were jointly considered (Onukwuli and Omotioma, 2019; 

Odiase-Omoighe and Agoreyo, 2022). When heated in the GC system, the extract was disintegrated into various 

constituents. An inert aided the movement of the chemical constituents through the system’s column. From the 

GC system, the chemical constituents flew to the spectrophotometer, where the constituents of cashew leaf 

extract were explicitly identified. 

2.4 Gravimetric Method 

Previous authors' gravimetric approach was adopted (Omotioma and Onukwuli, 2017; Anadebe et al, 2018; 

Frolova et al, 2019). Samples of the MS were immersed in the uninhibited and inhibited 1M HCl. In monitoring 

the weight loss at various times of immersion (t), temperature (T) and inhibitor concentration (C), the 1 and 0 

(respective losses in weight in the absence and presence of extract) were measured and used for the evaluation 

of inhibitor efficiency (Ԑ) and the term of surface coverage (θ).  In addition, Langmuir, Frumkin, Temkin, and 

Flory-Huggins adsorption isotherms of Equations (4), (5), (6), and (7) were employed in the adsorption analyses 

(Omotioma and Onukwuli, 2017; Onukwuli and Omotioma, 2019). Furthermore, Equation (8) aided the 

evaluation of the corresponding Gibb's free energy of adsorption (∆Gads). 
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∆𝐺𝑎𝑑𝑠 = −2.303𝑅𝑇𝑙𝑜𝑔(55.5𝐾)       (8) 

where x is the size parameter, R is the gas constant, K is the adsorption equilibrium constant, α is the lateral 

interaction term, and ‘a’ is the attractive parameter.  

2.4.1 RSM of the optimization process 

The experiment was designed on the RSM using the Design-Expert-Software. Following the established 

technique, the reaction was analyzed using the RSM (Anadebe et al, 2018; Onukwuli and Omotioma, 2016; 

Amodu et al, 2022). The interactive effects of the parameters on the inhibitor's effectiveness were analyzed 

using visuals and the Analysis of Variances. The best parameters were found when a mathematical model of the 

coded factors was developed.  

2.4.2 Artificial neural network (ANN)  

A three-layered feed-forward neural network was employed on the ANN, with a linear transfer function at the 

output layer and a tangent sigmoid transfer function at the hidden layer. The efficiency of the inhibitors was 

anticipated by the proposed model. The back-propagation algorithm was used to train the ANN. MATLAB 
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R2007b software was used for all computations. Figure 1 displays the ANN architectural analysis. By altering 

the concealed layer's neutron number, this architecture was controlled. The ANN was simulated using the same 

experimental dataset that was used for RSM modeling. Three subsets, each with a proportion of about, were 

created from the entire experimental dataset (20 runs) during the training phase. By dividing the dataset into 

distinct subsets, it was possible to evaluate the neural network's predictive power to the "hidden" data that was 

not used for training (Nnanwube and Onukwuli, 2020; Amodu et al, 2022). 

 

Figure 1: Architectural organ of the ANN analysis 

2.4.3 Statistical examination 

Previous authors' statistical tools (Nnanwube and Onukwuli, 2020) were employed in the comparative analysis 

of RSM and ANN efficiencies. Equations (9), (10), and (11) evaluated the coefficient of determination 

(R2), root mean square error (RMSE), and standard error of prediction (SEP) respectively. 
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𝑌𝑒𝑥𝑝.𝑎𝑣𝑒
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where n is the sample point number, Ypred is the predicted Ԑ, 𝑌exp is the experimentally determined value Ԑ, Yexp. 

ave is the experimental average, and Yexp is the experimental value. 

3.0 Results and Discussion 

3.1 Characteristics of cashew extract 

In Figure 2, the GC MS chromatogram of the cashew leaf extract shows various levels of peaks. Each of the 

peaks represents a chemical constituent. The extract contains 9-tetradecenal, oleic acid, 2-hydroxy cyclopenta 

decanone, 4H-pyran-4-one, 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one, 2-methyl-3-

ketotetrahydrofuran, oxirane, 8-methyl-9-tetradecenoic acid, 2,3-butylene oxide, 2,3-dimethyloxirane and 

3(2H)-furanone. It revealed the presence of chemical compounds of long chain carbon-carbon bond and 

heteroatoms. Presence of the bio-heterocyclic molecules suggests that cashew leaf extract has corrosion-

inhibitive properties (Onukwuli and Omotioma, 2019; Odiase-Omoighe and Agoreyo, 2022). 
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Figure 2: Chromatogram of the cashew leaf extract 

3.2 Physical attachment of the inhibitor 

Adsorption parameters of the physical attachment process are presented in Table 1. The Frumkin isotherm (FI) 

is the best-fitting isotherm according to the correlation of determination (R2) criterion because, in comparison to 

the Langmuir isotherm (LI), Temkin isotherm (TI), and Flory-Huggins isotherm (FHI), its R2 values (0.9903 and 

0.9845 at 303K and 333K, respectively) are the closest to one (1). An attraction between the molecules of the 

extract and MS was demonstrated by positive values of the lateral interaction term α (1.9392 and 2.2685 at 

303K and 333K, respectively). In each instance, the attractive term (a) is negative; -2.379 and -3.318, 303K and 

333K, respectively. It means that the layers of the inhibitor are not interacting. The Gibb's free energy is less 

than the -40 kJ/mol crucial threshold. Therefore, the inhibitor's adsorption on the MS followed the physical 

adsorption mechanism. The results concur with the earlier report (Omotiom, and Onukwuli, 2016). 

Table 1: Adsorption parameters for the corrosion inhibition  

 

3.3 Interactive effects of the variables on the cashew extract’s Ԑ 

Interactive effects of the variables on the efficiency (Ԑ) of cashew leaf extract (inhibitor) are displayed in Table 

2. Maximum Ԑ of 93.94% emerged at an inhibitor concentration of 0.6 g/L, temperature of 318K and time of 16 

hrs. The recorded high inhibition efficiency espoused that the extract of cashew is a suitable additive for 

pickling MS structure. The inhibitive action of the cashew extract could be attributed to the physical attachment 

Type T (K) R2 K ∆Gads 

(kJ/mol) 

α a x 

LI 303 0.9891 0.7916 -9.5 - - - 

333 0.983 0.6236 -9.8 - - - 

FI 303 0.9903 0.0821 -3.8 1.9392 - - 

333 0.9845 0.0751 -4.0 2.2685 - - 

TI 303 0.968 40.114 -19.4 - -2.379 - 

333 0.958 57.651 -22.3 - -3.318 - 

FHI 303 0.931 3.9355 -13.6 - - 1.106 

333 0.924 4.9203 -15.5 - - 2.215 
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of its components on the surface of the MS. Layer of the adsorbed inhibitor’s molecules isolated the MS from 

the aggressive acid solution (Omotioma et al, 2018). 

Table 2: Interactive effects of the factors on the Ԑ 

Sd. S/N Inhibitor conc.(g/L) T (K) t (hr) Ԑ  (%) 

5 1 0.2 303 24 68.56 

3 2 0.2 333 8 45.01 

14 3 0.6 318 24 88.63 

13 4 0.6 318 8 80.59 

2 5 1.0 303 8 57.28 

10 6 1.0 318 16 80.56 

16 7 0.6 318 16 93.94 

9 8 0.2 318 16 70.95 

12 9 0.6 333 16 78.31 

4 10 1.0 333 8 54.55 

18 11 0.6 318 16 93.94 

15 12 0.6 318 16 93.94 

1 13 0.2 303 8 60.65 

20 14 0.6 318 16 93.94 

19 15 0.6 318 16 93.94 

7 16 0.2 333 24 48.81 

8 17 1.0 333 24 63.69 

11 18 0.6 303 16 84.97 

6 19 1.0 303 24 80.75 

17 20 0.6 318 16 93.94 

 

3.3.1 Fit summary of the Ԑ mathematical model  

Table 3 displays a summary of the models' fitness. The optimum mathematical equation describing the 

inhibition efficiency (Ԑ) was found by taking into account four models: linear, 2FI, quadratic, and cubic. The 

linear and 2FI R2 values are not closer to one (1). For the cubic model, the adjusted R2 (0.9911) and the 

anticipated R2 (-2.4426) do not reasonably match, the cubic model is not recommended as the best-fitting model. 

Since the expected R2 of 0.8930 is near 1 and somewhat consistent with the modified R2 of 0.9809, the quadratic 

model is recommended as the best-fitting model. It demonstrates how well the quadratic model can forecast the 

empirical data. 

Table 3: Model’s fit summary of the Ԑ 

Model Sequential probability Modified R² Expected R² 
 

LM 0.4082 0.0038 -0.4974 
 

2FIM 0.9405 -0.1904 -4.9740 
 

QM < 0.0001 0.9809 0.8930 Suggested 

CM 0.0686 0.9911 -2.4426 Aliased 

LM (linear model), 2FIM (2-factor interaction model), QM (quadratic model), and CM (cubic model). 

3.3.2 ANOVA for Ԑ quadratic model 

Table 4 displays the quadratic model's ANOVA. Fisher test (F-test), degree of freedom (DoF), and probability 

value were found to be 9, 109.49, and less than 0.0001, respectively. The model appears to be significant based 

on the F-value of 109.49. The model terms were considered significant if the P-value was less than 0.0500 

(Omotiom, and Onukwuli, 2016; Prabhu et al, 2020). The model's sufficient precision of 28.564 suggested that 

it can be applied to guide the RSM outcome. It agreed with the report of Khaleel et al (2018), where ANOVA 

was used to establish the significance of quadratic model. 
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Table 4: ANOVA for the quadratic model of the inhibition efficiency 

Basis SoS DoF Mean-square Fisher-v. Probability 
 

Model 5164.21 9 573.80 109.49 < 0.0001 Sig. 

A 183.61 1 183.61 35.04 0.0001 
 

B 382.42 1 382.42 72.97 < 0.0001 
 

C 274.16 1 274.16 52.31 < 0.0001 
 

/A*B/ 30.42 1 30.42 5.80 0.0367 
 

/A*C/ 54.60 1 54.60 10.42 0.0091 
 

/B*C/ 42.50 1 42.50 8.11 0.0173 
 

(A)² 711.10 1 711.10 135.68 < 0.0001 
 

(B)² 285.86 1 285.86 54.54 < 0.0001 
 

(C)² 143.57 1 143.57 27.39 0.0004 
 

  
 

R² 0.9900 

  
 

Modified R² 0.9809 

  
 

Expected R² 0.8930 

  
 

Adequate Precision 28.5643 

SoS (Sum of Squares), A (inh. conc., B (temp.), C (time). 

3.3.3 The Mathematical model  

Equations 1 and 2 present mathematical models of the extract's efficacy (Ԑ) for the coded and real variables, 

respectively. Since two (2) is the maximum power of the variables, all of the equations are quadratic. The 

model's positive indicators suggested a synergistic impact, whilst its negative indicators suggested an 

antagonistic effect. The coded equation forecasts how the dependent variable will react at the designated levels 

(Odejobi and Akinbulumo, 2019; Anadebe et al, 2019; Omotioma et al, 2018). By comparing the factor 

coefficients, the resulting coded equation can be used to determine the relative importance of the factors. 

Ԑ = + 93.10 + 4.28A - 6.18B + 5.24C + 1.95AB + 2.61AC - 2.30BC - 16.08A² - 10.20B² - 7.23C²   

       (12) 

Ԑ = - 4467.91295 + 14.90341Inhibitor conc. + 28.51922Temp. + 9.88563Time + 0.325000Inhibitor conc. * 

Temp. + 0.816406Inhibitor conc. * Time -  0.019208Temp. * Time - 100.50284Inhibitor conc.² - 

0.045313Temp.² - 0.112898Time²   (13) 

3.3.4 Graphics of the RSM result 

Figure 3 shows the RSM's graphic imagery. A linear graph comparing predicted and actual inhibition efficiency 

(Ԑ) was displayed. The dots clustered along the line of best fit, signifying that the experimental data was 

sufficiently explained by the generated model. The Ԑ rose as concentration increased on the 3-D image until it 

reached the apex. The interaction impact of time on Ԑ showed a similar pattern. But as the temperature rose, the 

value of Ԑ fell. Furthermore, a peak displaying optimal/predicted Ԑ was revealed. These findings are consistent 

with those of earlier studies (Anadebe et al, 2018; Amodu et al, 2022). 
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Figure 3: The Ԑ of cashew leaf extract 

(i) Predicted against actual Ԑ, (ii) Ԑ against conc. and temp., (iii) Ԑ versus conc. and time, (iv) Ԑ against temp. 

and time. 

3.4 Artificial Neural Network (ANN) Analysis 

Figures 4 and 5 display the respective performance and regressional analyses of the ANN used for the prediction 

of the cashew leaf's IE. The trained network's performance plot showed seven epochs, indicating that the ANN 

is capable of accurately forecasting the cashew leaf's ideal IE. The prediction abillity of the ANN is in line with 

the repoty of Millán-Ocampo et al (2018). Training outputs against targets, validation outputs against targets, 

and test outputs against targets were the three graphs that were shown. The output and the target data have a 

strong association, as demonstrated by the linear graphs they displayed. 

 

Figure 4: Performance network 
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Figure 5: Regression network 

3.5 Comparison of the RSM and ANN  

The inhibitory efficiency (Ԑ) comparison between RSM and ANN results is shown in Table 5. It displayed both 

the expected/optimal values of the inhibition efficiencies and the actual experimental outcomes of the 20-run 

experimental design. To evaluate the ANN and RSM's relative estimate and prediction capabilities, a 

comparison analysis was conducted using a number of statistical metrics. Table 6 displays the statistical 

analyses. The ANN gave high R2 of 0.971309, compared to that of RSM, 0.96389, suggesting the superiority of 

ANN over RSM for predictability of Ԑ.  Also, ANN gave a better prediction than RSM because the values of 

RMSE and SEP were lower than those of RSM. It corroborates the findings revealed by the R2 values, which are 

in line with the previous reports (Nnanwube and Onukwuli, 2020; Amodu et al, 2022). The goodness of fit of 

the model was established by the statistical outcome. 

Table 5: Comparison of E of RSM and ANN predicted Results 

Sd. S/N Inh. conc.  

g/L 

T 

K 

T 

hr 

Actual 

Ԑ % 

RSM predicted 

Ԑ % 

ANN predicted 

Ԑ % 

5 1 0.2 303 24 68.56 68.37 67.2 

3 2 0.2 333 8 45.01 46.86 43.89 

14 3 0.6 318 24 88.63 91.11 87.07 

13 4 0.6 318 8 80.59 80.64 79.11 

2 5 1.0 303 8 57.28 57.96 56.04 

10 6 1.0 318 16 80.56 81.30 79.08 

16 7 0.6 318 16 93.94 93.10 92.33 

9 8 0.2 318 16 70.95 72.73 69.57 

12 9 0.6 333 16 78.31 76.72 76.86 

4 10 1.0 333 8 54.55 54.10 53.33 

18 11 0.6 318 16 93.94 93.10 92.33 

15 12 0.6 318 16 93.94 93.10 92.33 

1 13 0.2 303 8 60.65 58.52 59.37 

20 14 0.6 318 16 93.94 93.10 92.33 

19 15 0.6 318 16 93.94 93.10 92.33 

7 16 0.2 333 24 48.81 47.50 47.65 

8 17 1.0 333 24 63.69 65.19 62.38 

11 18 0.6 303 16 84.97 89.09 83.45 

6 19 1.0 303 24 80.75 78.27 79.27 

17 20 0.6 318 16 93.94 93.10 92.33 
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Table 6: Statistics of the predictions 

Property RSM ANN 

RMSE 1.618362 1.442544 

R2 0.96389 0.971309 

SEP 2.119731 1.889445 

Conclusion 

The study focused on the potential of cashew leaf extract for mild steel corrosion mitigation in hydrochloric acid 

environment. In the experimental investigation, adsorption mechanism and characteristics of the corrosion 

inhibition process were successfully determined using the gravimetric procedure. It involved the comparison of 

RSM and ANN in the performance evaluation of the cashew leaf as corrosion inhibitor. Biomolecules of 9-

tetradecenal, oleic acid, 2-hydroxy cyclopenta decanone, 4H-pyran-4-one, 3,5-dihydroxy-6-methyl-2,3-dihydro-

4H-pyran-4-one, oxirane, 8-methyl-9-tetradecenoic acid, 2,3-butylene oxide, 2,3-dimethyloxirane, 2-methyl-3-

ketotetrahydrofuran and 3(2H)-furanone were among the results of the analysis. The cashew leaf extract's 

molecular species spontaneously adhered to the MS by physical adsorption. At 318K, 16 hours, and a C of 0.6 

g/L, the highest Ԑ of 93.94% was achieved. The high Ԑ value indicated that cashew extract is a good addition to 

MS pickling. In terms of forecasting the cashew extract's efficacy on the prediction tools, ANN outperformed 

RSM. Recorded optimum parameters of this study are significant, and they provided suitable criteria for 

deploying plant extract in corrosion mitigation process. 
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