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Abstract  

In this study, coagulation-flocculation efficiencies of Natural organic polymers (NOPs) were evaluated for the decolourisation of 

anionic synthetic dye in wastewater. The proximate composition, structure, and surface morphology of the Brachystegia 

eurycoma coagulant (BEC) and Vigna subterranean coagulant (VSC) were analysed using standard official methods, Fourier-

Transform Infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. The order of removal efficiency 

was VSC > BEC with an optimum of 97.7% and 82.0% respectively, at pH 2, 200 mgBECL-1 and 200 mgVSCL-1 coagulant 

dosage, 100 mgL−1 dye concentration, 480 min, and 303 K. The values of K and α obtained for BEC and VSC were 1.65 E-02 

Lmg-1min-1, 1.2 and 1.76 E-04 L/mg-1min-1, 2.2 respectively. The coagulation time (Tag) of 22.42 min and 27.92 min for BEC and 

VSC respectively as deduced from the plot showed a rapid coagulation process. The kinetics of coagulation-flocculation 

demonstrate that the process conforms with a pseudo-second order model with correlation coefficient R2 > 0.990, suggesting that 

chemisorption is the rate-controlling phase. It also reveals that particle adsorption on polymer surfaces occurs mostly as a 

monomolecular layer. The experimental data was well predicted by the cross-validation test, with mean relative deviation 

modulus (M%) of 0.223% and 1.829% for BEC and VSC, respectively.  In conclusion, the coagulants studied added meaningful 

progress in wastewater treatment via coagulation-flocculation while showing significant adsorption features. Additionally, the 

application of kinetics and modelling in separation processes involving particle transfer should be considered a prerequisite in 

water treatment processes. 

 

Keywords:  Coagulation-flocculation; Biebrich Scarlet (AR 66); natural organic polymers; coagulation-adsorption kinetics; 

particle transfer. 

1. Introduction 

In a colloidal state, dye wastewater comprises of large amounts of colour particles, heavy metals, surfactants, 

organic and inorganic matters, which have adverse effects on human health, possibly causing skin diseases and 

respiratory problems (Ishak et al. 2020; Obiora-Okafo et al. 2019). Coagulation-flocculation is classified as one of 

the most efficient methods widely used for colour removal from wastewater because of its efficiency, cost-effective, 

and ease of operation. Coagulation is the process of destabilization of aqueous particles initially present in a 

suspension by the addition of a coagulant (natural or synthetic), so that the charged particles are neutralized to 

enable them to be attracted to each other to form settleable flocs. Aqueous particles generally have a net negative 

charge, thereby repelling one another. In addition, aqueous particles (1 nm – 1 μm) generally do not settle at all or 
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without assistance in a reasonable time. Therefore, the surface charge of particles can be reduced or destabilized by 

adding a coagulant carrying an opposite charge (Liang et al. 2016). Commonly used coagulants are inorganic salts 

such as Al(SO4)3 or FeCl3, as well as synthetic organic polymers. Although these chemicals are effective in 

removing dyes and other contaminants from wastewater, several disadvantages have recently been discovered, such 

as their impact on human life, with diseases such as Alzheimer’s disease being associated with certain inorganic 

salts, and neurotoxins being associated with acrylic amid (Kim et al. 2022). 

Numerous research have been carried out on the elimination of these pollutants before discharge, employing natural 

organic polymers (NOPs) in the coagulation-flocculation process (Igwegbe and Onukwuli 2019; Kim et al. 2022; 

Onukwuli and Obiora-Okafo 2019).  The world’s awareness on environmental sustainability has shifted many 

researchers to adopt natural polymer coagulants (including plant-based or animal-based) as an alternative for 

wastewater treatment due to their benefits over chemical coagulanting agents, particularly their low toxicity, low 

residual sludge production, cost-effectiveness and biodegradability (Igwegbe and Onukwuli 2019; Obiora-Okafo 

and Onukwuli 2018b).  

Proper selection of natural coagulant promotes large flocs formation which brings a rapid settling through various 

mechanisms such as adsorption of particles, charge neutralisation, sweep flocculation, and inter-particle bridging 

(Igwegbe et al. 2021b; Ndagijimana et al. 2024). Adsorption mechanism is common when NOPs are used as a 

coagulant due to their polymeric features including extending loops and tails (Ibrahim et al. 2021). Hence, NOPs 

enhance flocs size by attracting smaller particles to generate much larger flocs. When there is some affinity between 

polymer segments and particle surfaces, particles interact through adsorption which occurs through electrostatic 

forces, hydrogen bonding, as well as ionic bonding. Most NOPs might be anionic, cationic or non-ionic in nature 

(Ibrahim et al. 2021). 

This work is focused on employing Brachystegia eurycoma seed and Vigna unguiculata seed as NOPs precursors 

for the treatment. Brachystegia eurycoma seed belongs to the Caesalpiniaceae family with average contents of 15% 

crude fat, 2.9% crude fiber, 20% protein, 56% carbohydrate, and 4.5% ash (Aviara et al. 2014). The seeds are good 

source of bioactive compounds comprising of flavonoids, alkaloids, phenolic compounds, saponins, tannins, protein, 

carbohydrate, lipid, and fibre. Crude extract from Brachystegia eurycoma seed flour is non-toxic, biodegradable 

organic polymer of high molecular weight of 5-19KDa (Aviara et al. 2014). 

Vigna subterranean (also known by its common names Bambara groundnut, Bambara bean or hog - peanut, is a 

member of the family fabaceae. Because of their relatively high protein content, Vigna subterranean seeds are a 

potentially valuable protein source for all classes of livestock. Vigna subterranean protein is one of the important 

sources of vegetable protein due to its high nutritional value. The seed makes a complete food, as it contains 

sufficient quantities of proteins, carbohydrates and lipids (Atoyebi et al. 2017). From previous study by Halimi et al 

(Halimi 2020), the molecular weight of the protein extract from Vigna subterranean seed flour is of the range 17-

22KDa and the protein content was said to be cationic peptides. However, it has been recommended to use the shells 

and other by-products to feed animals and to use the seeds as food so that people can benefit from their protein. The 

essential amino acid profiles of the seeds are comparable to that of soybean. 

The study of kinetics of coagulation-floculation is highly significant in the area of colloid science because it is used 

to investigate the colloidal and hydrodynamic interactions involved in particle-particle contacts. Coagulation-

floculation kinetics have been investigated using variety of methods including such as (1) Direct counting of the 

coagulating colloids using an ultramicroscope, or a particle counter, probably yields the most clear-cut results. 

However, because this method is time-consuming, it is not ideal for routine coagulation kinetics analysis (Li et al. 

2024). (2) Bulk technique approach is a frequently utilized procedure for coagulation-flocculation kinetics because it 

monitors changes in the particle suspension with time (Obiora-Okafo et al. 2020). This time dependent approach 

offers rapid operation, easy to use, cost effective and suitable for multi-particle determination. 

The dynamics of coagulation rate addresses how rapidly or slowly a suspension of particles will coagulate. 

Coagulation rate has immense practical implications and it plays an important role in the mathematical modelling, 

design and control of water and wastewater treatment plants.  Smolukwoski was the foremost scientist to study the 

rate of coagulation of spherical particles due to Brownian motion, taking diffusion coefficient of particles as 

constant (Hyrycz et al. 2022). 
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Mathematical model is a set of variables and equations, mostly time-dependent, that establish relationships between 

the variables that represent a system. It may be used to simulate dynamic behavior, investigate control mechanisms, 

and create a coagulation-flocculation process. Modelling of the process improves and optimises the design of 

equipment and develops a better insight on the process operation (Obiora-Okafo et al. 2020). The prediction of 

particle reduction rate in response to a set of coagulation circumstances is an area of interest in the theoretical study 

of the coagulation-flocculation process.  Brownian mode of collisions on a spherical target would be analysed in 

more detail since it captures the crucial kinetics of various mass transfer processes such as coagulation-flocculation, 

adsorption methods, and advanced oxidation practices.  

In this study, the possibility of employing active protein components extracted from bio-coagulants for colour 

removal from dye containing aqueous solution is investigated. Effectively, cationic biocoagulants and anionic dye 

were selected for high-performance jar testing, based on their ionic composition. Characterisation and fibre-metric 

studies of the precursors were performed. The newer approach of extracting active coagulant agent was adopted in 

the coagulation-flocculation process. Spectrophotometry analysis was used to observe the dynamic behaviour of 

particle concentrations at optimal conditions. The study also explores adsorption capacities of the coagulants, the 

kinetics of particle transfer, and used modelling to predict the real-time particle transfer rate during the coagulation-

flocculation process. 

2.0 Materials and methods 

 

2.1 Coagulant Preparation and Extraction of Active Component 

Dried seeds of Brachystegia eurycoma and Vigna subterranean as shown in Fig. 1 were purchased from Enugu, 

Nigeria. Developed seeds with no signs of ageing were used. The dry seeds were ground (63 – 600 µm) using a food 

processor (Model BL 1012, Khind) to accomplish solubilisation of active constituents. Samples (2 g) were prepared 

using distilled water of 0.5 M NaCl solution, stirred for 20 min using Magnetic stirrer (Model 78HW - 1, U-Clear 

England) and filtered through Whatman paper No. 125 mm diameter, to enable visible nano, micro, and macro-

particles to be present in the filtrate for enhanced coagulation-flocculation. The filtrate is labelled the crude extract, 

used as the coagulants at the required dosages. A s required, fresh solutions were prepared frequently and kept 

refrigerated (Onukwuli and Obiora-Okafo 2019; Sonal et al. 2021). 

 

Fig. 1. Dried seeds of a) Brachystegia eurycoma, and b) Vigna subterranean 

2.2 Characterisation of the Coagulants  

Proximate parameters including yield, bulk density g/mL, moisture contents (%), ash contents (%), protein contents 

(%), fat contents (%), carbohydrate contents (%), and fibre contents (%) of the seed powders were analyzed by the 

standard official methods of analysis of the Association of Official Analytical Chemists (Vivas et al. 2025). The 

chemical structure and functional groups were investigated using an FTIR spectrophotometer provided by IR 

Affinity-1, Shimadzu Kyoto, Japan. The spectra range were between 4000 – 400 cm-1. Surface structures, 

morphologies and pore distribution analysis were performed using a scanning electron microscope, provided by 

Phenom Prox., world Eindhoven, Netherlands) and the images were presented after 3D reconstruction using ImageJ 

v1.53 (Ighalo et al. 2021) at ×600 magnification. 

 

2.3 Preparation of Synthetic Wastewater 
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AR 66 was manufactured by May & baker, England having a molecular structure and physical characteristic as 

shown in Fig. 2a and Table 1 respectively. To obtain the absorption spectrum of the dye, 1000 mg/L of AR 66 was 

dissolved in distilled water. The solution was scanned against the blank (distilled water) in the range of 200-850 nm 

using UV-vis spectrophotometer (Shimadzu, Model, UV - 1800). Also, similar amount of AR 66 was prepared as 

stock solution in accurately weighed amounts and kept in separate doses. The working concentrations of 10-100 

mg/L were prepared from the stock solution using the dilution method (Onukwuli et al. 2019). The wavelength 

obtain at maximum absorbance (λmax) is shown in Fig. 2b.  

             (a)                                                                                  (b) 

              
Fig. 2. (a) Structure of AR 66, (b) Spectrum report for AR 66    

    

Table 1: Physical properties of Biebrich Scarlet    

        Property     Data 

Chemical Name Sodium 6- (2-hydroxyna phthylazo) – 3, 4’ – 

azodibenzenesulfonate 

Chemical formula C22H14N4Na2O7S2 

Molecular Weight 556.48 

CAS number 4196 – 99 – 0 

ECC number 224 – 084 - 5  

Melting point 181 - 1880C. 

UV /visible Absorbance Max (water): 505+ 6nm. 

C.I number and name 26905 / Acid Red 66 

Class  Azo 

Common name Biebrich Scarlet. 

2.4  Coagulation Assay 

The coagulation activity of the seed extracts were determined by Jar test which evaluates the coagulation activities 

of the active proteins extracts from the precurors (Obiora-Okafo and Onukwuli 2018a). The jar test procedure was 

carried out experimentally using Phipps and Bird, VA, USA apparatus, which involves 4 min of rapid mixing speed 

at 100 rpm and slow mixing speed of 40 rpm for 25 min. The suspensions were allowed to settle for 480 min, 

clarified samples from the beakers were collected for absorbance analysis using a UV-VIS spectrophotometer at λmax 

of 531 nm. A preliminary test was conducted to establish the optimum factors including pH, coagulant dosage 

(mg/L), dye concentration (mg/L), settling time (min), and temperature (K). The pH was adjusted to the desired 

value using 0.1 M HCl and 0.1 M NaOH.Then, The measurement of colour concentration (mg/L) was made by 

comparing absorbance to concentration on a calibration curve. (Obiora-Okafo et al. 2018), while the colour removal 

efficiencies were calculated according to Eq. (1) (Obiora-Okafo and Onukwuli 2018a).  

                Colour removal (%) = (
𝐶0− 𝐶

𝐶0
) 𝑥 100  (1) 
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where, Co and C represent the initial and final colour concentrations (mg/L) before and after the process, 

respectively.  

2.5 Theoretical Principles Guiding Coagulation-Flocculation Kinetics  

Movement of spherical particles in mass transfer operations cannot be effectively studied without involving kinetics. 

Kinetics could be used to study the hydrodynamic spherical particle-particle interactions. Therefore, coagulation-

flocculation involves two particles of comparable size colliding with one another; leading to the formation of 

doublets, triplets, etc. (Ghernaout et al. 2015a).  

On that note, coagulation kinetics of spherical-particle contact was studied in this section following the Brownian 

diffusion mechanism (Peri-kinetics). Hence, Smoluchowski’s model which has formed the basic of virtually all later 

researches in coagulation-flocculation modelling was adopted (Bal 2020). Flocculation of particles for full aggregate 

formations may not be defined as a second-order process as recorded earlier by some researchers. However, Von 

Smoluchowski theory and Brownian coagulation kinetics equation of single-disperse particles are employed to 

deduce the coagulation rate constant and order of the reaction. The equation describing the aggregation kinetics is 

given in Eq. (2) . 

                    
−𝑑𝐶

𝑑𝑡
=  −𝑘𝑐𝛼       (2)   

where 𝐶 presents the concentration of the primary particles; α is the coagulation-flocculation reaction order; 𝐾 is 

rate constant. Linearizing Eq. (2) gives Eq. (3) (Ugonabo et al. 2020).  

                       ln (
−𝑑𝑐

𝑑𝑡
) = ln 𝑘 +  𝛼 ln 𝐶    (3)   

Hereafter, a plot of 𝑙𝑛 (
−𝑑𝐶

𝑑𝑡
) versus (ln 𝐶) gives a straight line, deducing 𝐾 and 𝛼, from the intercept and slope, 

respectively. In addition, the rate constant could be calculated from Brownian hydrodynamics as shown in Eq. (4) 

(Ghernaout et al. 2015a). 

                          𝑘 =
8𝐾𝐵𝑇

3𝜇
       (4)  

Where KB is the Boltzmann’s constant (J/ K), T is the absolute temperature (K) and µ is the viscosity of the medium. 

The equation describing the timed-based evolution of the flocs clusters is shown as Eq. (5) . 

                           
𝑑𝐶𝑘

𝑑𝑡
= 

1

2
∑ 𝑘𝑘−1

𝑖=1 ij𝐶𝑖𝐶𝑗 − 𝐶𝑘 ∑ 𝑘∞
𝑖=1 ik𝐶𝑖     (5)   

where 
𝑑𝐶𝑘

𝑑𝑡
 is the rate at which particle concentration changes; the coagulation constant kij is determined by collisions 

between i and j particles, yielding (k-i) mer. This kernel represents the mutual diffusion coefficient (Dij) and 

collision radius of the sphere (Rij) of the meeting of i-mer and j-mer, as well as their reliance on i and j.  Through 

this process, the coagulation constant, 𝑘𝑖𝑗 =  𝑘1  assuming a constant kernel, Eq. (6) (Ugonabo et al. 2020).  

                                𝑘1 = 8𝜋𝑅𝐷        (6)   

where, K1 represents the Von Smoluchowski’s rate constant showing rapid coagulation, 𝑅  is the radius of the 

particles and 𝐷 is the diffusion coefficient of the particles according to Brownian motion. Therefore, relating Von 

Smoluchowski rate constant to Stokes-Einstein (SE) diffusion coefficient for translational diffusion , gives an 

expression such as Eq. (7): 

                           𝑘1 =  
4

3

𝐾𝐵𝑇

µ
           (7)   

Combination of Eqs. (4) and (7) yields Eq. (8): 

                           𝑘 = 2𝑘1            (8)      
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Particle-particle collisions bring about flocculation, thus resulting to the reduction in the total number of particles. 

Hence, the rate of flocs growth is generally determined by the rate of these collisions. Centered on the work of Von 

Smoluchowski as reported by Oke et al (Oke et al. 2021), it is evidenced that the frequency 𝑓𝑖𝑗 of twofold collision 

between particles of type 𝑖 and 𝑗 is specified in Eq. (9) .  

                              𝑓𝑖𝑗 = 𝛽(𝑣𝑖 , 𝑣𝑗)𝐶𝑖𝐶𝑗           (9)  

where 𝐶𝑖 and 𝐶𝑗 are the concentrations of two particle types. 𝛽 (𝑣𝑖 , 𝑣𝑗) shows the collision frequency factor. The rate 

at which particles of size 𝑘 is formed per unit volume by their collisions of size 𝑖 and 𝑗 is given by Eq. (10) . 

                              
1

2
∑ 𝑓𝑖𝑗𝑖+𝑗=𝑘              (10)     

The ½ factor in Eq. (10) implies that each collision is computed double in the summation. Eq. (10) is as a result of 

the generation of the 𝑘𝑡ℎ  species. In addition, particle 𝑘  collides with other particles leading to larger volume 

particle, 𝑣𝑘. Eq. (11) gives the disappearing term as (Oyegbile et al. 2016). 

                              ∑ 𝑓1𝑘
∞
𝑖=1                (11)      

The overall balance equation for 𝑘𝑡ℎ species is given by Eq. (12) (Oyegbile et al. 2016). 

 
𝑑𝐶𝑘

𝑑𝑡
= 

1

2
∑ 𝑓𝑖=𝑘−1

𝑖=1;𝑖+𝑗=𝑘 ij -∑ 𝑓1𝑘
∞
𝑖=1     for 𝑘 =  1,2,3, . . . . . . . ∞              (12)     

Using Eq. (9), Eq. (12) becomes Eq. (13) (Obiora-Okafo et al. 2019). 

                             
𝑑𝐶𝑘

𝑑𝑡
= 

1

2
∑ βijCiCj

𝑖=𝑘−1
𝑖=1; 𝑖+𝑗=𝑘 - Ck  ∑ βikCi

∞
𝑖=1                 (13)     

where 𝛽𝑖𝑗 =  𝛽 (𝑣𝑖, 𝑣𝑗).  

Including the collision efficiency factor, Eq. (9) is substituted by Eq. (14)  

                             𝑓𝑖𝑗 = 𝐸𝑖𝑗𝛽𝐶𝑖𝐶𝑗                  (14)     

where 𝐸𝑖𝑗  is the efficiency element for collision between 𝑖 and 𝑗 particles, 𝑓𝑖𝑗 is the rate at which particles 𝑖 and 𝑗 

collides. Therefore, the collision frequency for Brownian motion, is specified as Eqs. (15)-(16) . 

                             𝛽(𝑣𝑖 = 𝑣𝑗)
8𝐾𝐵𝑇

3𝜇
= 𝑘                   (15) 

                             𝛽(𝑣𝑖 = 𝑣𝑗)
𝐸8𝐾𝐵𝑇

3𝜇
= 𝑘                    (16) 

Relating to Eqs. (4), (15) and (16), brings about another relationship between collision frequency and Von 

Smoluchowski rate constant as shown through Eqs. (17)-(19) .  

                             𝛽 = 2𝑘1        (17) 

also,                     𝛽 = 2𝐸𝑘1        (18) 

and                      𝐸 =
𝛽

2𝐾1
         (19) 

The population balance of Eq. (13) as compared with Eq. (16), gives Eq. (20) 

                            
𝑑𝐶𝑘

𝑑𝑡
= 

k

2
∑ CiCj

𝑖=𝑘−1
𝑖=1;𝑖+𝑗=𝑘 − 𝑘𝐶𝑘 ∑ Ci

∞
𝑖=1                                (20)   

Therefore, the total concentration of particles in a closed system, giving at time, 𝑡 is Eq. (21) 
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                              𝐶𝑡𝑜𝑡(𝑡) = ∑ Ci
∞
𝑖=1                                    (21) 

The summation of Eq. (20), overall particles 𝐾 =  1, 2, 3, . . . . . . . , ∞, yields Eq. (22) as 

                              
𝑑𝐶𝑡𝑜𝑡

𝑑𝑡
= 

K

2
∑ ∑ 𝐶𝑖𝐶𝑗 −𝑖=𝑘−1

𝑖=1;𝑖+𝑗=𝑘
∞
𝑘=1  k𝐶𝑡𝑜𝑡

2        (22) 

The first term on the right side of Eq. (22) is given by (
𝑘

2
)𝐶𝑡𝑜𝑡

2 , which leads to Eq. (23) 

                              
𝑑𝐶𝑡𝑜𝑡

𝑑𝑡
=  

−k

2
𝐶𝑡𝑜𝑡

2           (23)   

Brownian coagulation is similar to the second-order reaction kinetics as shown in Eq. (23). Giving the conditions of 

𝐶𝑡𝑜𝑡 =  𝐶𝑜 at 𝑡 =  0 and integrating Eq. (23) gives Eq. (24) . 

                            𝐶𝑡𝑜𝑡(𝑡) =
𝐶0

1+𝐾𝐶0
𝑡

2

           (24) 

The decline in the the total number of particles with time is shown in Eq. (𝟐𝟒), resulting to:                                                   

                             𝐶𝑘(𝑡) =
𝐶0(

𝑡

𝑇𝑎𝑔
)𝐾−1

(1+
𝑡

𝑇𝑎𝑔
)𝐾+1

           (25) 

Then,  

                             𝑇𝑎𝑔 =
2

𝐾𝐶0
  =

3𝜇

4𝐶0𝐾𝐵𝑇
                         (26)   

where 𝑇𝑎𝑔 is the characteristic time, also known as the coagulation time.  The characteristic time shows the time it 

takes each particle concentration to halve (Obiora-Okafo and Onukwuli 2018b). Later stages of flocculation involves 

the formation of singlet, doublets, triplets, quadruplet, etc., thus, number of k - mers, could be solved using  Eq. (25) 

to give Eq. (27) - (30)  for each scenario (Obiora-Okafo et al. 2019).                       

                          𝐶1 =
𝐶0

(1+
𝑡

𝑇𝑎𝑔
)2

                           (27)   

                            𝐶2 =
𝐶0(

𝑡

𝑇𝑎𝑔
)

(1+
𝑡

𝑇𝑎𝑔
)3

              (28)  

                            𝐶3 =
𝐶0(

𝑡

𝑇𝑎𝑔
)2

(1+
𝑡

𝑇𝑎𝑔
)4

              (29)  

                            𝐶4 =
𝐶0(

𝑡

𝑇𝑎𝑔
)3

(1+
𝑡

𝑇𝑎𝑔
)5

               (30) 

 

2.6 Equation Guiding the Mathematical Modelling of Particle Transfer  

Colloidal particles are brought into interactions following definite manners by Brownian diffusion (peri-kinetic 

agglomeration); fluid motion (orthokinetic agglomeration) and differential sedimentation as illustrated in Fig. 3 

(Ghernaout et al. 2015a). Brownian motion of particles suspended in water moves in random motion resulting to 

several collisions, giving rise to thermal energy. As a result of this, collisions among particles produce perikinetic 

aggregation, hence, it is more flexible to estimate the rate of the created collisions. Therefore, it is evident that 

Brownian agglomeration has less capacity to form larger aggregates. Practically, flocculation processes are 
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frequently accomplished under some conditions where the suspension is under the action of some definite amount of 

shear, such as by flow or stirring . Then, this application may generate greater influence on the rate of particle 

collisions, resulting to orthokinetic agglomeration (Bal 2020). As a result, the primary theoretical concept to this 

theory was a product of Smoluchowski’s studies, together with their studies on perikinetic agglomeration. In 

orthokinetic collisions, Smoluchowski worked on spherical particles in uniform and laminar shear (Oke et al. 2019).  

                

Fig. 3. Spherical particle collision transport showing:  (a) Brownian diffusion; (b) fluid motion; and   

           (c) differential settling. 

This study shows that the model equation examined describe the behaviour of the particle transfer in the direction of 

the adsorbing particles which is triggered by coagulation-flocculation. Going through the model, the following 

assumptions were well-thought-out; the basis of the model was governed and drawn from Fick’s law, angular 

symmetry occurs for the particles, assuming a simple homogeneous system, assuming a single-dimensional particle 

transfer occurs, taking the process to be an isothermal, neglecting an external resistance to particle transport.  

The diffusion coefficient, 𝐷  is a relevant transport property in studying colloidal particle which represents the 

function of Brownian motion on particle transfer. Therefore, associating it with Fick’s law is shown in Eq. (31) : 

                                          𝐼 = −𝐷
𝜕𝐶𝑖

𝜕𝑟
  (31)   

where 𝐼 is the diffusive flux of the particle, 𝐶𝑖 is particle concentration and  
𝜕𝐶𝑖

𝜕𝑟
 is concentration gradient. Brownian 

motion-controlled diffusion is associated with the movement of particle from a region of higher concentration to a 

lower concentrated region (Li et al. 2024). A spherical particle transfer taking note of a microscopic system is shown 

in Fig. 4. By taking a material balance equation over a spherical shell, the basic differential equation for particle 

mass transfer is obtained . 

 

                                          𝑖4𝜋𝑟2 

  

𝑖 +
𝜕𝑖

𝜕𝑟

4𝜋𝑟2 

                                          Fig. 4. Particle transfer considering a microscopic system 

 

Time rate of change of particles = mass inflow of particles        

                                                      - mass efflux particles       (32) 

Representing Eq. (32) mathematically, gives Eq. (33)  

                               
𝜕(𝐶𝑖)4𝜋𝑟2

𝜕𝑡
= 𝑖4𝜋𝑟2 − (𝑖 +

𝜕𝑖

𝜕𝑟
) 4𝜋𝑟2        (33) 

Simplifying Eq. (33) gives Eq. (34) 
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𝑟2𝜕𝐶𝑖

𝜕𝑡
= −𝑟2 𝜕𝑖

𝜕𝑟
           (34) 

Joining  Eq. (34) with Eq. (31) gives Eq. (35) 

                               
𝜕𝐶𝑖

𝜕𝑡
= 𝐷

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝐶𝑖

𝜕𝑟
)           (35) 

where 𝐶𝑖 is the number of particle concentration; 𝑖, and 𝑟 is the radius of the sphere. The equation describing the rate 

of particle transfer during the coagulation-flocculation process is a partial differential equation (Eq. (35)). It is also 

similar to the mass transfer to a sphere by . Replacing 𝐶𝑗𝑟2  for 𝐶, Eq. (35) turn out to be Eq. (36) 

                                
𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑟
𝐷

𝜕𝐶

𝜕𝑟
                          (36) 

For the initial condition in Eq. (37) . 

                𝐶𝑖  (𝑡 = 0, 𝑟) 𝐶𝑖𝑜             (37) 

Also, the boundary conditions are Eq. (38) - (39) 

                  𝐶𝑖  (𝑟 = 0, 𝑡) 𝐶𝑖𝑜                          (38) 

                    𝐶𝑖  (𝑟 = 𝑎, 𝑡) 𝐶𝑒𝑜                    (39) 

where 𝐶𝑒𝑜 is the equilibrium particle concentration in the system, and  𝐶𝑖𝑜  is the primary particle concentration. 

Proceeding to dimensionless and normalised dependent variables and also boundary conditions, making use of the 

dimensionless parameters of  Eqs. (40) – (42) (Oke et al. 2019).  

Dimensionless position variable, ƞ =
𝑟

𝑅𝑜
                            (40) 

Dimensionless time variable, 𝜏 =
𝐷1𝑡

𝑅𝑜
2                             (41) 

Dimensionless concentration, 𝐶 =
𝐶𝑡−𝐶𝑒

𝐶0−𝐶𝑒
               (42) 

The initial and boundary condition changes, results to Eq. (43) – (45) . 

𝐶(𝜏 = 0, ƞ) = 1               (43)                                                 

𝐶(𝜏, 0) = 0               (44) 

                                        𝐶(𝜏, 1) = 0                                (45) 

Then, substituting the dimensionless variables into Eq. (36) results to Eq. (46): 

                                         
𝜕𝐶

𝜕𝜏
=

𝜕2𝐶

𝜕ƞ2                 (46) 

Eq. (46) predicts the speed at which particle is transfered at different operating conditions .  

The method of separating variables was applied in solving the partial differential, Eq. (46). It involves looking for a 

solution by which the time variable (τ) is parted from space variable (ƞ) . 

Then, reducing partial differential Eq. (46) to ordinary differential equation and applying the essential boundary 

conditions and also substituting all dimensionless parameters gives Eq. (47) 

                
𝐶𝑡−𝐶𝑒

𝐶0−𝐶𝑒
= 2 ∑

1−cos 𝑛𝜋

𝑛𝜋
  (sinnπ

r

R0

∞
𝑛=0 ) ( 𝑒

−(𝑛𝜋)2 𝐾1𝑡

16𝜋𝑟𝑅0
2
)    (47)  
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Thus, expressing Eq. (47) as 𝐶𝑡, to define the concentration of particles in the system at some process time 𝑡, we 

have Eq. (48) . 

                  𝐶𝑡 =  𝐶𝑒  + 2 (𝐶0 − 𝐶𝑒) ∑
1−cos 𝑛𝜋

𝑛𝜋
  (sinnπ

r

R0

∞
𝑛=0 ) ( 𝑒

−(𝑛𝜋)2 𝐾1𝑡

16𝜋𝑟𝑅0
2
)  (48)  

As a result, Eq. (48) represents the model equation that can predict the amount of colour particles transfer in the 

wastewater at any given process time. 

where, 𝐶𝑡is the particle concentration at process at time, 𝑡; 𝐶0 is the initial particle concentration at process at time, 

(𝑡) =  0; and 𝐶𝑒 is the equilibrium particles concentration at equilibrium time. 

The model Eq. (48) was confirmed using MATLAB 9.3 software at different contaminant concentrations during the 

process occurring at different operating time. MATLAB 9.3, proved to be a great code-based mathematical and 

engineering package used for solving numerous mathemathical problems (Oke et al. 2021). The accuracy of the 

model was checked using the mean relative percentage deviation modulus (%𝑀), of Eq. (49). Thus, it explains the 

mean deviation of the predicted data from experimented data (Oke et al. 2014).  

                      %𝑀 = [∑
|𝑀𝑒𝑥𝑝−𝑀𝑝𝑟𝑒|

𝑀𝑒𝑥𝑝

𝑛
𝑛=1 ] 𝑥 

100

𝑁
        (49) 

where 𝑀𝑒𝑥𝑝 = experimental data and 𝑀𝑝𝑟𝑒 = predicted data 

From the 𝑀% analysis, values less than 5 confirmed an extremely good fit; then, 𝑀% values between 5 and 10 

denote reasonably good fit; also, values above 10 showed poor fit . Additionally, some statistical tools such as: 

coefficient of determination (𝑅2), Chi-square (𝜒2), F-test, and T-test were futher applied to the model testing using 

Microsoft Excel 2010.  

2.7  Adsorption Mechanism Kinetics Study 

Due to the cationic nature of the polymeric coagulants, adsorption mechanism played a enormous role in the 

coagulation-flocculation process. As a result, adsorption amount, adsorption equilibrium and adsorption kinetics 

studies were determined in order to ascertain the adsorptive nature of the coagulants used (Apua 2025; Hu et al. 

2021; Onukwuli and Obiora-Okafo 2019). Adsorption capacity or adsorption amount (qt) is used to study the extent 

of adsorption mechanism. However, the particle removal by coagulation-flocculation occurs via various 

mechanisms; first, by charge neutralisation, which involves the destabilisation of hydrodynamic particles which may 

be governed by physic-chemical interactions between the positively charged polymer molecules (cations) and 

negatively charged contaminants (anions). As a result, coagulants-contaminant complexes are formed, followed by 

flocs growth by adsorption mechanisms. An earlier study by Hu et al (Hu et al. 2021), found the adsorption capacity, 

𝑞𝑡  a suitable evaluation parameter for analyzing the extent of flocs growth. Adsorption capacity at any given time 

was solved according to Eq. (50) (Chowdhury et al. 2021). 

         𝑞𝑡 (
𝑚𝑔

𝑔
) =

(𝐶𝑜− 𝐶𝑡) 𝑉

𝑀
         (50) 

where Co is the concentration of particles at t = 0 (mg/L), Ct is the concentration of particles at any specified time t 

(mg/L), V is the solution volume (L), and M is the mass of the coagulant (mg/L).  

In order to study the rate at which the particles are transferred before adsorbing to the polymer surfaces, adsorption 

kinetics were studied. The study provides knowledge of the controlling mechanism of the process which governs 

mass transfer and the process time. Following the adsorption studies, the kinetic data were analysed using Pseudo 

first-order model, Pseudo second-order model and Elovich models. 

Pseudo first-order model equation as initially proposed by Lagergren is in the form of Eq. (51) (Apua 2025).  

                        log (𝑞𝑒 − 𝑞𝑡) = 𝑙𝑜𝑔𝑞𝑒 −
𝐾𝑓1

2.303𝑡
        (51) 
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where qt is the adsorbate amount adsorbed at any time t (mg/g), qe is the equilibrium adsorption capacity (mg/g), 𝑘𝑓1 

is the rate constant for Pseudo first-order kinetics (min-1), and t is the process time (min). 

Pseudo second-order equation as represented in Eq. (52) (Apua 2025), usually predicts the particle behaviour 

throughout the process with chemisorption being the rate controlling step. 

                        
𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
+

1

𝑞𝑒
 𝑡                            (52) 

where 𝑘2 is rate constant for the Pseudo second-order (gmg-1min-1). The adsorption rate at the onset is represented 

by h (mg-1 min-1) at t = 0, shown as Eq. (53). 

                       ℎ = 𝑘2𝑞𝑒
2        (53) 

Then, Elovich kinetic (Apua 2025) model is among the useful models describing chemisorption processes. It is 

defined as Eq. (54). 

                      𝑞𝑡 =
1

𝛽
ln(𝛼𝛽) +

1

𝛽
ln 𝑡                       (54) 

where α is the initial sorption rate (mgg-1min-1) and β is the extent of surface coverage and also the energy of 

activation for chemisorption (gmg-1). The value of (
1

𝛽
) shows the available number of adsorption sites whereas 

1

𝛽
𝑙𝑛(𝛼𝛽) indicates the adsorption amount when ln t = 0. The appropriateness of the kinetics models to define the 

adsorption process was certified by the normalised standard deviation, Δq (%), given by Eq. (55) (Obiora-Okafo et 

al. 2014). 

                      ∆𝑞(%) = 100√
∑[(𝑞𝑒𝑥𝑝− 𝑞𝑐𝑎𝑙)/𝑞𝑒𝑥𝑝]

2

𝑑𝑓
    (55) 

where, df represents the degree of freedom of the equation. qexp (mg/g) and qcal (mg/g) represent the experimental 

and calculated adsorption capacities, respectively.  

 

3.0 Results and Discussion 

3.1 Characterization Results 

3.1.1 Proximate study 

Proximate analysis of the precursors as summarized in Table 2 shows high moisture values indicating the 

coagulants’ ability to absorb water, as well as, dissolves colour particles suspended in water (Obiora-Okafo and 

Onukwuli 2018a). High crude protein contents as recorded indicate the presence of  active coagulation components. 

The values obtained shows an agreement with the literature that the protein contents of the precursors are cationic 

poly-peptides (Igwegbe et al. 2021a). Fibre contents present, established that the precursors were organic polymers 

having some visible tails and loops when dispersed in aqueous medium . The proximate results validate the use of 

the seed extracts as potential coagulants  in this study. Similar biocoagulant characteristics has been reported 

Choudhary et al  (Choudhary and Neogi 2017). 

Table 2. Proximate characteristics of the proposed coagulants 

S/No. Parameters Values 

  Brachystegia eurycoma (BE) Vigna subterranean (VS) 

1. Yield 28.31 14.6 

2 Bulk density (g/mL) 0.235 0.241 

3. Moisture Contents (%) 7.25 10.0 

4. Ash contents (%) 3.48 2.97 

5. Protein contents (%) 19.77 18.15 

6. Fibre contents (%) 2.20 1.64 
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7. Carbohydrate (%) 56.76 60.94 

8. Fat contents (%) 10.53 6.30 

 

3.1.2 FTIR analysis of the coagulants  

The spectra representation of BEC and VSC are shown in Figs. 5a-b, respectively. In Figs. 5a there is a slight 

absorption peak of 3965.52 - 3780.36 cm-1 attributing to the stretching vibration of –OH, and the vibration of water 

absorbed (Igwegbe et al. 2021a). Also, the –OH groups with a peak at 3070.58 cm-1 were also evidenced in Fig. 5b. 

The free hydroxyl groups present confirms the occurrence of the free hydroxyl of carboxylic acids, alcohols and 

phenols in the coagulants. This band also corresponds to the O-H vibrations of cellulose, pectin and lignin. 

Consequently, there is an agreement between the results of Table 2 and the spectral results indicating  the presence 

of moisture (water), oil and carbohydrate (glycerides). Futhermore, the studies revealed that the absorption peak for 

the amines was evidenced in 3348.32 cm-1 for aliphatic primary amine (N-H) and secondary amine of 3070.58 cm-1 

for BEC and VSC respectively. Also, the presence of N-H stretching signals detects the presence of amino 

compounds, confirming the presence of protein contents in the coagulant as demonstrated in Table 2. In addition, a 

major band in the broad region of 2021.34 cm-1 and 2052.20 cm-1 indicates the existence of a C=O group (carbonyl 

compound). There was also a strong adsorption peak at 694.36 cm−1 and 632.64 cm−1 for BEC and VSC 

respectively, showing the characteristic frequency for C-H out of plane deformation groups which is typically 

relative to the location and spatial geometry of the double bond (Zhao et al. 2020). Finally, the presence of moisture, 

proteins, and esters is confirmed by the FTIR spectral of BEC and VSC, as well as the proximate analysis provided 

in Table 2, justifying their usage as good sources of coagulants in this research. 

 

Fig. 5. FTIR Spectra of (a) BEC and (b)VSC  

3.1.3 Morphological analysis of the coagulant 

SEM was used to examine the surface morphologies of the coagulants in this investigation, as shown in Fig. 6 at 

600x magnifications. The 3D reconstructed SEM images revealed well-developed pores of various sizes and shapes. 

As a result, pore sizes (micro-pores, macro-pores, and meso-pores) and their distributions are unique to natural 

organic polymers (NOPs). Therefore, major pore size of 0.41 μm2 was revealed in the histograms, as well as fibre 

lengths between 1.66-21.45 μm and 2.11-17.94 μm for BEC and VSC respectively as shown in Fig. 7. Varying fibre 

lengths are unique features of NOPs that enhances their multifunctional utilisation as coagulants and adsorbents 

(Obiora-Okafo et al. 2018). In addition, fibre length indicates that the mechanisms of the NOPs with such 

characteristics are via adsorption and sweep flocculation mechanism. Rough surfaces reveal that the coagulants are 

coarse fibrous solids primarily made of cellulose and lignin, indicating that they are polymeric. The binding of 

particles to polymer chains via inter-particle bridging or electrostatic interactions improves sweep flocculation. 

Adsorption as a crucial mechanism in the coagulation-flocculation process is also confirmed by holes and rough 

surfaces seen on the coagulant morphologies (Igwegbe et al. 2021a; Obiora-Okafo et al. 2018). Furthermore, 

morphologies also possess compact-net structures which are more conducive to particle flocculation owing to bridge 

a 

b 
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aggregation. Finally, when compared to the branching structure, the compact-net structure is better for flocculation 

and particle-bridge creation among flocs (Cao et al. 2017).  

 

     

Fig. 6. SEM micrographs for (a) BEC and (b) VSC (600× magnifications) 

       

   Fig. 7. Fibre lengths from SEM micrographs for (a) BEC and (b) VSC (600× magnifications) 

3.2 Colour Removal and Colour Removal Efficiency as a Function of Settling Time 

The flocculation process involves particle interactions and a time-dependent interface of coagulant hydroxide 

precipitate following the hydrolysis reaction (Liang et al. 2016; Obiora-Okafo et al. 2018). The time dependent 

effect of colour concentration and its removal efficiency are shown in Fig. 8. The percentage reduction in 

concentration as observed in 200 mgBEC/L and 200 mgVSC/L result to 97.7% at 480 min and 82.0% at 420 min 

respectively. In addition, the sharp reduction within 30 min specifies a speedy coagulation process that discloses the 

probable coagulation time (Tag). Moreover, this rapid reduction in concentration may perhaps be attributed to either 

charge neutralisation or its combination with sweep flocculation mechanism (Cainglet et al. 2020). As a result, after 

30 mins, the amount of particles accessible for flocculation diminishes, showing a gradual drop in colour 

concentration as the process progresses. This is most likely due to intricate coagulation-flocculation mechanisms 

that may include the development of a net-like structure that does not take a long period. Therefore, the greater 

flocculation time could be related to the presence of a sorption mechanism that necessitates a longer process time. 

After 300 min, there was no noticeable change in concentration, indicating that equilibrium has been reached. As a 

result of the saturation of the active adsorption sites, the aggregate becomes destabilized, preventing further 

adsorption and, as a result, the settling period is prolonged.  For these reasons, coagulation-flocculation using NOPs 

in wastewaters is more efficient at low pH conditions (Cainglet et al. 2020).  

a b 

a b 
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Fig. 8.  Plots of colour removal and effect of settling time on the colour removal (%)  from AR 66 dye. pH =  

            2, dye concentration  = 10 mg/L,  temperature = 303K. 

3.3 Coagulation-Flocculation Kinetics Representing Brownian Motion 

Analysis was performed on a 95% confidence level to determine the order of coagulation-flocculation response, and 

the parameters obtained from the regression analysis for BEC and VSC are provided in Table 3. The intercept and 

slope of the equation defining the kinetics of aggregation were used to calculate the coagulation rate constant, K, 

and the order of reaction (Eq. 3). The coagulation The proportionality constant that connects the reaction rate to the 

concentration of the reacting species is known as the coagulation rate constant. This implies that each minutes, 

0.0165 mg/L and 0.000176 mg/L of colour particles were consistently attached to the polymer surfaces creating 

larger aggregates for BEC and VSC, respectively.  From the calculation, the reaction order values obtain was in 

agreement with the conventional theory of coagulation-flocculation being a second-order process . Hence, the order 

of reaction gotten confirms the optimum order for the process, showing approximately second-order reaction. Also, 

the correlation coefficient (R2) demonstrates good agreement that implies that the studied kinetic data is significant. 

Tag is inversely proportional to the starting concentration of colour particles, suggesting that the higher the 

contaminant concentration, the shorter the coagulation time required for elimination (Obiora-Okafo et al. 2019). 

Furthermore, the collision efficiency (E) values explain the attainability assumption that particle collision between 

contaminants and coagulants is 100% efficient throughout the dispersion, implying that particles will stick together 

after bimolecular collision and that particle distribution or complex formation distribution will occur during the 

process as obtained by Ugonabo et al (Ugonabo et al. 2020).  

Table 3. Coagulation Kinetics Parameters from Brownian Theory 

Parameters 200mg BEC/L 200mg VSC/L 

K (L/ mgmin) 1.65E-02 1.76E-04 

Α 1.2 2.2 

R2 0.985 0.991 

Rate Equation (-r) 1.65 x 10-2 C2 1.76 x 10-4C2 

Tag (min) 22.42 27.92 

K1 (L/ min) 8.25E-03 8.78E-05 

β (L/ mgmin) 0.0165 0.0001755 

E (mg-1) 1.00 1.00 

3.4 The Influence of Time on Particle Behaviour  

Particles reduction behaviour as a function of time depicts the pattern at which colour concentrations are reduced. 

Figure 9 depicts the fluctuations in C1, C2, C3 and C4 for initially monodispersed particles obtained from Eqs. (27) -

.(30), respectively. With increasing time, both the total colour concentration, Ct, and the concentration of the singlet 
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species, C1, drop monotonically. The concentratios C2 (t), C3 (t) and C4 (t) goes through a maximum since they are not 

present at the initial time and concentration (Ghernaout et al. 2015b). Because of an increasing number of particle 

concentration on aggregate formation over time, the number of singlets appears to be decreasing faster than the total 

number of particles . As a result of the bimolecular reaction, the total number of particles drops.  Furthermore, we 

discovered that the lower the K value, the longer the coagulation time, giving rise to slow rate and longer 

coagulation-flocculation process .  

 

      

Fig. 9. The decrease in the normalised number of overall particles with time for colour removal using (a) BEC@ 

480 min, and K = 1.65 x 10-2 mg/Lmin, (b) VSC @ 480 min and K = 1.76 x 10-4mg/Lmin. 

3.5 Adsorption Models 

There is some attraction between polymer segments and particle surfaces during the flocculation process, which 

leads to adsorption . As a result, kinetic models such as Pseudo first-order, Pseudo second-order, and Elovich kinetic 

models were used to examine the rate at which particles are adsorbed onto polymer surfaces, as shown in Fig. 10. 

Thus, the kinetic parameters obtained were summarised in Table 4. Consequently, the R2 for the models was quite 

low when compared to the Pseudo second-order model. Furthermore, the experimental data agrees well with the 

Pseudo second-order kinetic model data, with BEC and VSC having the lowest normalised standard deviation, Δq 

(%) values of 0.87 % and 2.24 %, respectively. Additionally, the coagulation-adsorption process is confirmed as a 

second-order process owing to an excellent fit of the Pseudo second-order kinetic model with R2 of above 0.990. 

More importantly, the Elovich model's moderate agreement expanded our knowledge of the adsorption-

chemisorption process, implying selective adsorption without site rivalry, as shown in organic polymers (Feng et al. 

2021; Lanan et al. 2021), leading to the importance of the Langmuir model in the sorption process (Obiora-Okafo et 

al. 2018). Thus, chemisorption, which involves valence forces through electron sharing between polymers and 

pollutants, was found to affect the overall rate of the adsorption process (Ghernaout et al. 2015a).  
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Fig. 10. The plot of adsorption kinetics showing: a. Pseudo first-order, b. Pseudo second-order and   c. Elovich 

kinetics   d. Intraparticle diffusion model. 

Table 4. Adsorption model parameters for colour removal 

Pseudo first-order kinetics 

 qe, exp (mg/g) qe, cal (mg/g) KF1 (min-1) R2 Δq (%) 

200 mgBEC/L 24.4 1.361 0.007 0.828 33.38 

200 mgVSC/L 20.5 5.119 0.003 0.863 26.53 

Pseudo second-order kinetics 

 qe, cal (mg/g) K2 (g/mg min) R2 h (mg/g min) Δq (%) 

200 mgBEC/L 25 0.173 0.999 10.16 0.87 

200 mgVSC/L 21.74 0.0265 0.993 12.52 2.24 

Elovich kinetics 

 A B R2   

200 mgBEC/L 1.62E+07 2.004 0.926   

200 mgVSC/L 1.26E+02 0.52 0.800   

 

3.6 The Prediction of Particles Transfer Rate 

The mass transfer rate was verified using particle concentration measurements that showed the experimental and 

projected particle transfer rates during the coagulation-flocculation process, as shown in Fig. 11. As a result, the 

projected results demonstrate that the rate of concentration reduction and, as a result, the rate of mass transfer was 

rapid at the start of the process, resulting in a tight agreement between the actual and expected results.  Due to this, 

the anticipated equilibrium point is closer to the experimental equilibrium (Oke et al. 2021). Table 5 displays the 

results of a statistical comparison of experimental and predicted data using the mean relative deviation modulus 

(M%), coefficient of determination (R2), Chi-square (χ2) test, F-test, and T-test. The lower the percentage, the better 
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the model prediction. The value of M% less than 10 indicates a good prediction of experimental data. Also, the 

correlation coefficient of the predicted results gave positive correlation values of 0.996 and 0.976 for BEC and VSC 

respectively. Furthermore, the χ2 values greater than 0.05 are more significant than those less than 0.05. During the 

coagulation-flocculation process, the projected contaminant particle reduction pattern is likewise similar to the 

earlier study done by Jimoda, Oke (Oke et al. 2021).  

  
Fig. 11. Particle rate transfer through coagulation-flocculation process for; a. BEC and b. VSC. 

 Table 5. Confirmation result from the modelling  

Coagulants M% R2 χ2 F-test T-test 

BEC 0.223 0.996 0.034 0.980 0.739 

VSC 1.829 0.976 6.717 0.865 0.0085 

 

 

4.0. Conclusion  

The performances of the bio-coagulants for colour removal from simulated wastewater were studied. The NOPs 

employed, were found to be effective at removing colour from the simulated aqueous solution. The proximate, FTIR 

and SEM fibre metric analysis done on the coagulants showed that BEC and VSC have the coagulant and adsorption 

properties. The results also revealed the coagulant's ability to destabilize contaminant particles due to their cationic 

nature, adsorb particles on its surfaces, enhance floc formation due to their polymer characteristics, and then 

enhance large settleable flocs due to particle bridging and sweep flocculation mechanisms. Operational parameters 

studied (pH, coagulant dosage, dye concentration, settling time, and temperature) significantly influenced the colour 

removal process. The coagulation-flocculation study showed a time-dependent process and was incomplete without 

an adequate knowledge of the kinetics.The obtained values of K and α agreed with the traditional assumption that 

rapid coagulation is a second-order process. The adsorption process was more of a second-order process, 

demonstrating that the rate is proportional to the square of the particle concentration. These findings further 

suggested that the overall coagulation and adsorption were second-order processes governed by the chemisorption 

mechanism. Modelling showed a close agreement between the experimental and predicted particle reduction rate. It 

demonstrated a satisfactory prediction with M% values of less than 10%. The model investigated might be used to 

control colour particle transfer at any given condition, forecasting the rate of particle transfer in a process without 

requiring an experimental procedure. In addition, it could be used to extrapolate space and time that are not stated by 

the experimental results. Moreover, the coagulation-flocculation and adsorption capabilities of BEC and VSC were 

accredited with their efficiencies in the process. In conclusion, this NOPs could be applied in anionic dye containing 

wastewater treatment in Nigeria textile industries  and its related, thereby reducing the usage of inorganic chemical 

coagulants. Also, the mass transfer model was used to predict the decreasing rate of contaminant particles 

concentration during the coagulation-flocculation process following good predictions of experimental data obtained 
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in statistical analysis. The model will improve and optimizes the design of equipment for the process and developing 

a clearer perception into the working of this coagulation-flocculation process.  

 

5.0 Recommendation 

Natural plant-based cationic coagulants can be successfully mass produced in Nigeria for colour removal using the 

extraction method adopted in this study due to its high efficiency delivery and less sludge production. The study on 

the particle mass transfer equation could be considered as a basis model employed to improve and optimize the 

design of process equipment for coagulation-flocculation process.  
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Nomenclature  

APHA:                 American Public Health Association  

 AR 66:                Acid red 66  

AWWA:              American Water Works Association  

α:                         Coagulation order 

b:                          Langmuir constant. 

BEC:                    Brachystegia eurycoma coagulant 

Ce:                        Equilibrium contaminant concentration (mg/l) 

Co:                        Initial contaminant concentration (mg/l) 

Ctot:                       Concentration of total particles (mg/l). 

C1:                        Concentration for singlet particles (mg/l). 

C2:                        Concentration for doublet particles (mg/l). 

C3:                        Concentration for triplet particles (mg/l). 

C4:                        Concentration for quadruplet particles (mg/l). 

df:                          Degrees of freedom 

Dij:                        Brownian diffusion coefficient 

Eij:                                   Efficiency factor for collision between i and j-particles. 

fij:                           Rate of collisions between particles of size i and j.  

FTIR:                     Fourier transformed infrared   

ho:                          Initial adsorption rate ho 

I:                                      Flux of diffusing species 

KDa:                      Kilo Dalton 

KF:                         Freundlich constant 

KF1:                        Pseudo-first order rate constant 

KL:                         Langmuir constants 

K1:                         Von Smoluchowski rate constant for rapid coagulation 

K2:                         Pseudo-second order rate constant 

K3:                         Intra-particle diffusion rate constant 

m:                          Coagulant mass (mg) 

MCL:                     Maximum contaminant level 

MW:                       Molecular weights 

n:                            Freundlich constant 

NOP:                      Natural organic polymers 

qe:                            Equilibrium adsorption capacity 

qmax:                         Maximum contaminant concentration adsorbed  per unit mass of coagulant,     

                                 (mg/g). 

qt:                             Amount adsorbed at time, t. 

Δq:                           Normalized standard deviation 

R:                             Universal gas constant. 

R2:                            Correlation coefficient 

RL:                            Dimensionless Hall separation factor 
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Rij:                            Particles radii  

 (-r):                           Rate equation 

SEM:                        Scanning electron microscopy   

t:                               Time (min) 

T:                              Temperature (K) 

Tag:                            Coagulation-flocculation time 

UV:                            Ultra violet  

 VSC:                         Vigna subterranean coagulant 

WEF:                         Water Environment Federation   

WHO:                        World health organization 

λmax:                         Maximum absorbance 
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