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Abstract  

Multicollinearity is a critical challenge in linear regression analysis, causing instability and unreliability in Ordinary Least 

Squares (OLS) estimates when independent variables are highly correlated. While existing biased estimators, such as Ridge 

Regression, Liu Estimator, and Kibria-Lukman Estimator, partially address this issue, they often fall short of achieving optimal 

Mean Squared Error (MSE) performance across varying conditions. This study introduces the Hybrid Liu-Ridge (HLR) 

estimator, a novel integration of the Modified Ridge Type (MRT) and Modified Liu (MLIU) estimators, designed to robustly 

handle multicollinearity. A comprehensive theoretical analysis demonstrates the superiority of the HLR estimator, particularly in 

minimizing MSE compared to its predecessors. Performance evaluation via Monte Carlo simulations, conducted under varying 

multicollinearity levels, error variances, and sample sizes, confirms the consistency of the HLR estimator in outperforming 

existing methods. Real-world applications using agricultural and economic data further validate its robustness and practical 

utility. By offering improved reliability and adaptability, the HLR estimator represents a significant advancement in addressing 

multicollinearity, providing researchers and practitioners with a superior tool for regression analysis. 

 

Keywords: Multicollinearity, linear regression, Ordinary Least Squares, simulation, Monte Carlo experiment. 

1.0 Introduction 

The matrix form of linear regression model is as in equation (1) 

 𝑦 = 𝑋𝛽 + 𝑒_𝑖                                                                                                                                                        (1) 

 

Such that y is an (𝑛 × 1) vector dependent variable, X is a complete design matrix of (𝑛 × 𝑝) exogenous variables, β is an 

unknown parameter with (𝑛 × 1) vector, and 𝑒𝑖  is an (𝑛 × 1) random error with variance𝑉(𝑒𝑖) =  𝜎2𝐼𝑛, whereby 𝜎2and 

𝐼𝑛 are unknown parameters and identity matrix of order n accordingly. 

The Ordinary Least Squares Estimator (OLSE), represented by equation (2), defined as follows:  

1ˆ
OLS X Y − =                                                                                                                                               (2) 

Where X X = .  

In the absence of multicollinearity among the explanatory variables, the Ordinary Least Squares (OLS) estimator is the Best 

Linear unbiased Estimator (BLUE), which is well recognized for being ideal in the context of traditional linear regression. 

But according to Swindel (1976), the OLS estimator performs badly, generating inaccurate projections and inconsistent 

estimates. The modified Jackknife Ridge Regression Estimator (Singh and Pandey, 2005), Liu estimator by Liu (1993), 

Ridge-Liu estimator (Gao and Liu, 2020), Inverse Gaussian Liu-Type Estimator (Akran et al. 2020), Bayesian ridge 

regression (Li et al., 2020), Bayesian elastic net regression (Liu et al., 2020), Neural network-based regression models 

(Huang et al., 2020). An unbiased Estimator with prior information (Lukman et al. 2020), and others are some of the biased 

estimators that have been developed to address this type of problem. Researchers have recently introduced two-parameter 
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estimators, including the modified two-parameter, the modified ridge type (MRT) estimator (Lukman et al. 2019), the 

modified new two-type parameter estimator (Ahmad and Aslam, 2020), the new modified Liu Ridge-Type estimator 

(Oladapo et al. 2022), the new two-parameter ridge estimator (Owolabi et al. 2022), and the new two-parameter Kibria-

Lukman (NTPKL) estimator (Idowu et al. 2023) are all used to counteract multicollinearity. The ordinary ridge regression 

estimator (ORRE), one of the most popular biased estimators, adds a positive biasing parameter, k, to the matrix's diagonal 

members in an effort to reduce multicollinearity. Nevertheless, choosing k is still quite difficult because it is essential to 

reducing the bias in the regression. The Liu estimator, proposed by Liu (1993), offers an advantage in selecting the biasing 

parameter d, but the ORRE's reliance on a nonlinear function of k makes it difficult to choose an optimal value. This study 

aims to develop a new estimator that can circumvent the problem of high correlation among the independent variables. The 

proposed estimator's performance is evaluated in comparison to several existing estimators, including the OLS estimator, 

Modified Liu estimator (MLIU), Ridge Regression (RR) estimator, among others. This study contributes to the ongoing 

discourse by proposing a novel biased estimator, termed Hybrid Liu-Ridge (HLR) estimator. The HLR estimator synthesizes 

the strengths of the Modified Ridge Type (MRT) and Modified Liu (MLIU) estimators, aiming to enhance MSE 

performance while maintaining robustness across varying levels of multicollinearity, error variances, and sample sizes. The 

theoretical properties of the HLR estimator are rigorously derived and validated through Monte Carlo simulations and real-

world applications. By demonstrating consistent superiority in minimizing MSE compared to existing methods, the HLR 

estimator represents a significant advancement in regression analysis under multicollinearity, offering a more reliable and 

practical alternative for statistical modeling. 

 

2.0 Materials and methods 

2.1 Some already existing Shrinkage methods 

2.1.1 Ridge Estimator.  

To address the issue of multicollinearity in regression analysis, Heoerl and Kennard (1970) created the Ridge regression 

estimator. To lessen the collinearity effect, the Ridge parameter was included in the matrix. It is common for the OLS 

estimator to have a high variance, which is described as: 

𝛽̂𝑅𝐸(𝑘) = ( + 𝑘𝐼𝑝)
−1

𝑋′𝑌𝛽̂𝑂𝐿𝑆                                                                                                                                      (3)      

 

Where I is the (p x p) identity matrix and 𝑘 =
𝑝𝜎2

∑ 𝛽̂𝑖
𝑝
𝑖=1

 is the ridge parameter k. 𝛽̂ is an unbiased estimator of 𝛽̂𝑘, σ2 is the 

Mean Square Error (MSE), and p is the number of explanatory variables.  

 

2.1.2 Liu Estimator 

Liu (1993) developed the Liu Estimator by fusing the ridge estimator with the Stein estimator to address the issue of 

multicollinearity in the data sets.  

𝛽̂𝐿(𝑑) = ( + 𝐼𝑝)
−1

 ( + 𝑑𝐼𝑝)𝛽̂𝑂𝐿𝑆                                                                                                                                    (4)      

 

Where 𝑘 = 1 − 𝜎2
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 such that 1 is the ith Eigen value of          

2.1.3 KL Estimator  

Kibria and Lukman (2020) suggested an additional one-parameter estimator in addition to the ones that are currently in use 

to address the issue of multicollinearity in linear regression models. The estimator was defined as follows:   

𝛽̂𝐾𝐿(𝑘) = ( + 𝑘𝐼𝑝)
−1

 ( − 𝑘𝐼𝑝)𝛽̂𝑂𝐿𝑆                                                                                                                                 (5)      

Where 𝑘 =
( )

2

2 2

1

ˆ

/ˆ ˆ2



+
  and 𝛽̂𝑂𝐿𝑆 is the estimator of Ordinary Least Square (OLS).  

 

2.1.4 Two-parameter Liu-Ridge Estimator  

Two-parameter Ridge-Liu estimator was introduced by Ozkale and kaciranlar in (2007) defined as:    

𝛽̂𝑇𝑃(𝑘, 𝑑) = ( + 𝑘𝐼𝑝)
−1

 (𝑋′𝑌 + 𝑘𝑑𝛽̂𝑂𝐿𝑆)                                                                                                                               (6)      
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where I is an identity matrix, k is the Ridge parameter, d is the biasing parameter for Liu which both take value from 0 to 1 

and 𝛽̂𝑂𝐿𝑆is the least square estimator. Meanwhile, the introduction of TPE is to cater for the problem of multicollinearity in 

regression model. 

 

2.1.5 MRT Estimator  

The MRT estimator, which is described as follows, was suggested by Lukman et al. (2019) as an alternate estimator to 

address the multicollinearity issue in linear regression models.       

𝛽̂𝑀𝑅𝑇(𝑘, 𝑑) = ( + 𝑘(𝐼 + 𝑑))
−1

𝑋′𝑌                                                                                                                                  (7)     

Where  𝑘𝐻𝑀𝑃
𝑀𝑅𝑇 =

( )

2

2

1

1
p

i

i

p

d




=

+
and 𝑑𝑀𝑅𝑇 =

1

1p

i

p

d=


,k>0 and 0 <d < 1. They confirmed that, primarily when k=0 and d=0, 

the estimator can produce results that are equivalent to those of the OLS and the ridge estimator.  

 

2.1.6 New Biased-Based Estimator 

A new biased-based estimator was formulated by Sakallioglu and Kaciranlar (2008) and is described as follows: 

   𝛽̂𝑁𝐵𝐵(𝑘, 𝑑) =
1 ˆ( ) ( ( ) ) ORRI k d I −+  + +                                                                                         (8)    

Where  𝛽̂𝑂𝑅𝑅
1( )k I X y− =  + , k and d are the biasing parameters. 

2.1.7 DK Estimator  

To mitigate the effects of multicollinearity in linear regression models, Dawoud and Kibria (2020) introduced a novel biased 

estimator, which they defined as follows:     

𝛽̂𝐷𝐾(𝑘, 𝑑) =    
1 ˆ( (1 ) ) ( (1 ) ) OLSk d I k d I −+ +  − +

           
      (9)

 

2.2 The proposed estimator's theoretical methodology 

In order to create Hybrid Liu-Ridge estimator, MRT estimator was integrated into MLIU estimator. The MLIU estimator is 

defined as follows: 

𝛽̂𝑀𝐿(𝑑) =
1 ˆ( ) ( )p p OLSI dI −+ −                                                                                                                                  (10) 

 MRT estimator as an alternative estimator to address the multicollinearity problem in linear regression models as given in 

equation (7), where k> 0 and 0 <d < 1. Consequently, to explore additional biased estimators capable of effectively 

managing high multicollinearity in linear regression models, a new estimator, termed the Hybrid Liu-Ridge Estimator, is 

proposed and is defined as follows: 

𝛽̂(𝑘,𝑑)
𝐻𝐿𝑅 1 1 ˆ( ) ( ) ( (1 ) )p p p OLSI dI k d I − −= + − + +                                                                                                (11) 

The general linear regression model described in equation (1) can be expressed in the canonical form as following:  

 𝑦 = 𝑇𝛼 + 𝑒𝑖                                                                                                                                                                            (12)    
Where𝑇 = 𝑋𝐻, 𝛼 = 𝐻′𝛽 and the eigenvectors of   are represented by the columns of the orthogonal matrix H. Then, 

𝑇′𝑇 ( )1  , ,  ,pH X XH diag = =  =  the ordered eigenvalues of   are denoted by 1 ≥ 2 ≥,… , 𝑝 ≥ 0. The 

definition of the OLS estimator of β is as follows:  

̂
𝑂𝐿𝑆

1X Y− =                                                                                                                                     (13)     

Following this, MLIU estimator is given as: 

 ̂
(𝑑)

𝑀𝐿

0 1
ˆ

OLSG G=                                                                                                                      (14) 

where d represents MLIU Estimator's biasing parameter. 

The Kibra-Lukman Estimator is given as:       

̂
(𝑘)

𝐾𝐿 1

0 1
ˆ

OLSD D−=                                                                                                                   (15) 

Where k is the biasing parameter of Ridge Estimator 

 

MRT Parameter is given as: 
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 ̂
(𝑘,𝑑)

𝑀𝑅𝑇 1

2
ˆ

OLSG −=                                                                                                                                           (16)

   

Where, 𝐺𝑜 = ( )
1

pI
−

+ , 𝐺1 ( )pdI= − , 𝐺1 ( )(1 )k d I= + + , 𝐷𝑂 ( )pkI= + , 𝐷1 ( )pkI= − ,            

   𝐷2 ( )pkdI= + , k> 0 and 0 <d < 1.            

 ̂
(𝑘,𝑑)

𝐻𝐿𝑅

( ) ( )( )
1 1

ˆ(1 )p p p OLSI dI k d I 
− −

= + − + +                                                               (17) 

              

 ̂
(𝑘,𝑑)

𝐻𝐿𝑅 1

0 1 2
ˆ

OLSG GG −=                                                                                                                              (18) 

 

2.2.1 Properties of the newly proposed estimator 

The characteristics of the HLR Estimator are as follows:       (19)

  𝐸 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
]

1

0 1 2
G G G 

−

=                                                                                                                                 

  𝐵𝑖𝑎𝑠 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
] ( )1

0 1 2
G G G I 

−
=  −                                                                                                               (20)

  𝑉𝑎𝑟 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
]

2 1 1

0 1 2 0 1 2
G G G G G G

− −
=                                                                                                                                (21)      

              𝑀𝑆𝐸𝑀 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
]  ( ) ( )2 1 1 1 1

0 1 2 0 1 2 0 1 2 0 1 2
G G G G G G G G G I G G G I 

− − − − =  +  −  −                                      (22) 

2.2.2 Determination of MSE for the HLR Estimator 

The MSE of OLS estimator   can be expressed as:        

  𝑀𝑆𝐸[̂ ] ( ) ( )E    = − −                                                                                                                     (23) 

 = 𝑡𝑟 (cov( )) ( ) ( )bias bias  +  

Therefore, following the submission of Lukman et al. (2020), the MSE of the Hybrid Liu-Ridge (HLR) Estimator can be 

expressed as: 

  𝑀𝑆𝐸 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
] = 𝑡𝑟𝑎𝑐𝑒 [ 𝑀𝑆𝐸𝑀 (̂

(𝑘,𝑑)

𝐻𝐿𝑅
)]                                                                                                    (24) 

 𝑀𝑆𝐸 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
]

( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

22 2

2

2 22 2
1 1

1 1

1 1 1 1

p p
ii i

i i
i i i i

d k kd k dd

k d k d




= =

− − − − +−
= +

+ + + + + +
           (25) 

2.2.3 Selection of Shrinkage Parameter 

To determine the shrinkage parameters k and d for the Hybrid Liu-Ridge (HLR) estimator, the partial derivatives of the 

Mean Squared Error (MSE) are taken with respect to k and d, respectively. Additionally, equation (25) can be written as 

equation (26):   

𝑀𝑆𝐸 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
]

( )

( ) ( )( )

( )

( ) ( )( )

( )

( ) ( )( )

2 2 2 2

2

2 22 2
1 1 1 1

2

22

1 11 1 1 1

p p p p

i i i

i i i ii ii i i i

i i i

i

d d d

k dk d k d

 
 

= = = =

− − −
= +

+ + ++ + + + + +
− +         (26) 

 

From equation (26),  

𝜕𝑀𝑆𝐸[̂
(𝑘,𝑑)

𝐻𝐿𝑅

]

𝜕𝑘

( )

( ) ( )( )

( ) ( )

( ) ( )( )

( )( )

( ) ( )( )

2 22 2 2 2

3 3 22 2

2 2 1 2 1
0

1 1 1 1 1 1

i i i i i i

i i i i i i

d d d d d

k d k d k d

  − − − + − +
= − + =

+ + + + + + + + +
 

   

Therefore, the shrinkage parameter k of the Hybrid Liu-Ridge (HLR) is expressed as:    

 𝑘 ( ) ( )
( )( )

2 2

2

1

1 1

i i i

i i

d d

d

 



− − +
=

+ +

                                                                                                                (27) 

Likewise, the shrinkage parameter d of the Hybrid Liu-Ridge (HLR) is also expressed as: 
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  𝑑 ( ) ( )( )
( )

2 2 2

2 21

1

i i

i i i i i i

ik

k  

  
 

+

+ + +

− + +
=                                                                                    (28) 

 

2.2.4 Comparison of Hybrid Liu-Ridge method with Existing methods  

Theoretically, the new method was compared with some of the already existing ones. Hence, to establish the superiority of 

the proposed method, below are the lemmas: 

Lemma 1: Let n n matrices T > 0, Y > 0 (or Y ≥ 0), then T > Y if and only if ( )1  1i YT −  , where 
( )1

i TY −

 is the 

largest eigenvalue of matrix YT-1.  

Lemma 2: Let T be n n  positive definite matrix, that is, T > 0, and α be some vector, then T−αα′ ≥ 0 if and only if α′Y -

1−α ≤ 1. 

Lemma 3: Let 
  D ,   1,2i i y i = =

 be two linear estimators of α. Suppose that
( ) ( )1 2M    0Cov Cov = − 

, where

( )iCov 
,i = 1,2 denotes the covariance matrix of i  and 

( )    (  ,    1,2)i ibi Bias A X I i = = − =
. 

Consequently,
( ) ( ) ( ) 2

1 2 1 2 1 1 2 2     M   0MSEM MSEM b b b b      − = − = + − 
 if and only if 

2

2 1 1 2

1

M    1b b b b
−

  
 + 

, where 
( ) ( )    i i i iMSEM Cov bb  = +

 

2.2.4.1 Comparison between OLS and HLR Estimators 

The OLS estimator MSEM is as follows: 

    𝑀𝑆𝐸𝑀  2 1ˆ
OLS  −=                                                                                                                     (29) 

The disparity between (22) and (29)  

𝑀𝑆𝐸𝑀 ˆ
OLS − 𝑀𝑆𝐸𝑀 [̂

(𝑘,𝑑)

𝐻𝐿𝑅
] =

2 1 2 1 1 1 1

0 1 2 0 1 2 0 1 2 0 1 2( 1) ( 1)G G G G G G G G G G G G  − − − − −  −  +  −  −  

Let 0<d<1 and k>0. Consequently, the following theorem is true. 

Theorem: This theorem states that ̂
(𝑘,𝑑)

𝐻𝐿𝑅
 is better than

ˆ
OLS

 if and only if   

𝛼′ ( ) ( )
1

1 2 1 1 1 1

0 1 2 0 1 2 0 1 2 0 1 21 ( ) 1 1G G G G G G G G G G G G 
−

− − − − −


  −  −   −                   (30) 

Proof: Examining the dispersion matrix variation between the 
 ˆ

OLSCov 
 and 

(k, )
ˆ HLR

dCov     

𝐶𝑜𝑣  2 1 1 1

(k, ) 0 1 2 0 1 2
ˆ ( )HLR

OLS dCov G G G G G G   − − −   − =  −                                                     (31)

 = 𝜎2
( )

( ) ( )( )

2

22

1

1

1 1

p

i i

i i i
i

d
diag

k d
=

 − 
− 

+ + +  

                                  (32) 

1 1 1

0 1 2 0 1 2G G G G G G− − − − 
 Will become pdf if and only if ( 1i + )

2

( )( ) ( )
2 231 0i i ik d d+ + − −  . By third 

lemma, the proof has been accomplished 

 

2.2.4.2 A comparison between the MLIU and HLR Estimators. 

The covariance matrix, bias vector, and MSEM of the Modified Liu Estimator are as follows:   

  𝐵𝑖𝑎𝑠
( ) 0 1

ˆ ( 1)MLIU

d G G   = −                                                                                                                    (33) 

  𝑉𝑎𝑟
2 1

( ) 0 1 0 1
ˆ MLIU

d G G G G  −  =                                                                                                                         (34) 

 𝑀𝑆𝐸𝑀 
2 1

( ) 0 1 0 1 0 1 0 1
ˆ ( 1) ( 1)MLIU

d G G G G G G G G  −    =  + − −                                                     (35) 
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Theorem: This theorem states that (k, )
ˆ HLR

d
 is better than ( )

ˆ ML

d
 if and only if 𝑀𝑆𝐸𝑀 ˆ

OLS − 𝑀𝑆𝐸𝑀 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
] > 0 if and 

only if  

𝛼′ ( ) ( ) ( )
1

1 2 1 1 1 1

0 1 2 0 1 0 1 0 1 2 0 1 2 0 1 0 1 0 1 2
1 ( 1) ( 1) 1 1G G G G G G G G G G G G G G G G G G G G  

−
− − − − −


  −  −  + − −  −                           

Proof: Examining the dispersion matrix variation between the 𝐶𝑜𝑣
( )

ˆ MLIU

d     and 𝐶𝑜𝑣
(k, )

ˆ HLR

d                                  

   𝐷𝑓 = ( )2 1 1 1
0 1 0 1 0 1 2 0 1 2G G G G G G G G G G − − − −   

𝐷𝑓
2 1 1 1 2 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )( (1 ) ) ( ) ( )( (1 ) )p p p p p p p p p pI dI I dI I dI k d I I dI k d I − − − − − − −= + −  + − − + − + +  + − + +   

 𝐷𝑓

( )

( )

( )

( ) ( )( )

2 2

2 22

1

2

1 1 1

p

i i i

i i i i
i

d d
diag

k d


=

 − − 
− 

+ + + +  

=                                                               (36) 

Will become pdf if and only if ( i d− )
2

( )( ) ( )
2 221 0i i ik d d+ + − −  for 0<d<1 and k>0, it was observed 

that( i d− )
2

( )( ) ( )
2 221 0i i ik d d+ + − −  . By third lemma, the proof has been accomplished. 

 2.2.4.3 Comparison between KL and HLR  

The covariance matrix, bias vector, and MSEM of K- L Estimator are as follows:   

 𝐵𝑖𝑎𝑠
1

(k) 0 1
ˆ ( 1)KL D D −  = −                                                                                                                             

  𝑉𝑎𝑟
2 1 1 1

(k) 0 1 0 1
ˆ KL D D D D  − − −  =                                                                                                                   (38) 

  𝑀𝑆𝐸𝑀
2 1 1 1 1 1

0 1 0 1 0 1 0 1(k)
ˆ ( 1) ( 1)KL D D D D D D D D  − − − − − 

 
 =  + − −                                   (39) 

Theorem: This theorem states that the proposed estimator (k,d)
ˆ HLR

 is superior to (k)
ˆ KL

 if and only if 𝑀𝑆𝐸𝑀
(k)

ˆ KL   −

𝑀𝑆𝐸𝑀 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
] > 0 if and only if  

  𝛼′ ( )
( )

( )
1

2 1 1 1 1 1

0 1 0 1 0 1 2 0 1 2

1 1

0 1 0 1

1 1

0 1 2 0 1 2

( 1) ( 1)

1 1 1
D D D D G G G G G G

D D D D

G G G G G G





−
− − − − −

− −

− −
 −  +

 − −


 −  − 

 
 
  

                                                    (40) 

Proof:  Examining the dispersion matrix variation between the 𝐶𝑜𝑣
(k)

ˆ KL     and 𝐶𝑜𝑣
(k, )

ˆ HLR

d                                        

 𝐷𝑓 ( )2 1 1 1 1 1

0 1 0 1 0 1 2 0 1 2
D D D D G G G G G G

− − − − −
 − =        

𝐷𝑓 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
1 1 1 1 1 1

1 22
(1 ) (1 )

p p p p p p p p p p
kI kI kI kI I dI k d I I dI k d I

− − − − − −
−

+  −   +  − −  +  −  + +   +  −  + +
=    

𝐷𝑓

( )

( )

( )

( ) ( )( )

2 2

2 222

1

2

1 1

p

i i i

i i i i
i

k d
diag

k k d


=

 − − 
− 

+ + + +  

=                                            (41) 

Will become pdf if and only if ( 1i + )
2

( ) ( )( ) ( ) ( )
22 2 231 0i i i i ik k d k d− + + − + −  . For 0<d<1 and 

k>o, it was observed that( 1i + )
2

( ) ( )( ) ( ) ( )
22 2 231 0i i i i ik k d k d− + + − + −  . By third lemma, the 

proof has been accomplished. 

2.2.4.4 Comparison between MRT and HLR Estimators 

The covariance matrix, bias vector, and MSEM of the Modified ridge type estimator (k,d)
ˆ MRT

 are given below: 
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 𝐵𝑖𝑎𝑠 ( )1

(k,d) 2
ˆ 1MRT G −  =  −                                                                                                                            (42) 

  𝑉𝑎𝑟
2 1 1

(k,d) 2 0
ˆ MRT G G  − −  =                                                                                                                                (43) 

  𝑀𝑆𝐸𝑀 ( ) ( )1 1 1 1

2 0 2 2

2
(k,d) 1 1ˆ MRT G G G G  − − − −     −  −

 
= +                                                     (44) 

Let k>0 and o<d<1. Therefore, the following theorem holds. 

Theorem: This theorem states that the proposed estimator (k,d)
ˆ HLR

 is superior to (k,d)
ˆ MRT

if and only if  

(k,d) (k,d)
ˆ ˆ 0MRT HLRMSEM MSEM    −      

𝛼′ ( )
( )

( ) ( )
( )

1
2 1 1 1 1 1

2 2 0 1 2 0 1 2
1

0 1 2

1

0 1 2
1 1

2 2

1 11

1 1

G G G G G G

G G G

G G

G G G

G G







−
− − − − −

− −

− −

 −  +


 − 



 
   −

 
 −  − 

 

Proof: Examining the dispersion matrix variation between the 𝑀𝑆𝐸𝑀
(k,d)

ˆ MRT   − 𝑀𝑆𝐸𝑀 [̂
(𝑘,𝑑)

𝐻𝐿𝑅
] > 0              

  𝐷𝑓 = ( )2 1 1 1 1 1

2 2 0 1 2 0 1 2G G G G G G G G
− − − − −=  −   

𝐷𝑓 ( ) ( ) ( ) ( )( ) ( ) ( )( )
1 1 1 1 1 1

22
(1 ) (1 ) (1 ) (1 )

p p p p p p p p
k d I k d I I dI k d I I dI k d I

− − − − − −

 + +   + + −  +  −  + +   +  −  + +=   

 𝐷𝑓

( )( )

( )

( ) ( )( )

2

2 22

1

2

1 1 1

p

i ii

i i i
i

d
diag

k d k d


=

 − 
− 

+ + + + +  

=                                                (45)    

Will become pdf if and only if ( ) ( )
2 2

1 0i i i i d+ − −  , for 0<d<1 and k>0, it was observed that

( ) ( )
2 2

1 0i i i i d+ − −  . By third lemma, the proof has been accomplished. 

2.2.5 Monte Carlo Experiment 

R statistical programming was used to run the Monte Carlo simulation for this investigation. OLS, KL, DK, Ridge, Liu, 

NTP, MRT, and Hybrid Liu-Ridge (HLR) were among the estimators whose performance was assessed. Lukman et al. 

(2020) and other researchers in the field used the equation shown in (46), which was used to produce the exogenous 

variables. 

 𝑥𝑖𝑗

1

2 2
1(1 ) ij ipz z  += − + , 𝑖 =  1, 2, … , 𝑛, 𝑗 1, 2, … , 𝑝.                                                                                (46) 

where  denotes the correlation between any two exogenous variables and zij is an independent standard normal pseudo-

random number. To show the degrees of correlations between the explanatory variables, four (4) levels of various 

correlations ( ) 0.85, 0.9, 0.95, and 0.99 were taken into consideration. Concurrently, there are p = 3 exogenous variables, 

which are represented in a standardized manner. Similarly, the following equations were used to create the response 

variable:        

 𝑦
0 1 1 ... , 1, ...,p ip ix x e i p  = + + + + =                                                                                                   (47) 

where 𝑒𝑖
2~ (0, )iidN   the values of 𝛽 were selected to meet the limitations 𝛽′𝛽 = 1  proposed by Lukman et al. (2020), 

with zero intercept assumed for the model in (47). With error variances of (1, 5, and 10), the simulation research was 

repeated 1000 times for sample sizes (n) = 10, 20, 30, 40, 50, 100, 250, and 500, respectively. Additionally, each replicate's 

predicted MSE for each estimator was determined using equation (48). 

  𝑀𝑆𝐸
1000

* * 2

1

1
( ) ( )

1000 i

  
=

= −                                                                                                              (48) 

In the same vein, the shrinkage parameters k and d used in this study are the parameters suggested and used by Kibria and 

Lukman (2020) among other researchers which were estimated to be 0.0012 and 0.5 respectively. 
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2.2.6 Criterion for Investigation of Proposed Biasing Parameter Estimators 

The criterion used as the yardstick for the selection of the best parameter estimators: 

2.2.6.1 Use of Mean Square Error (MSE): In this study, the estimator that its rank of MSE is approximately less than or 

equal to 5 was considered the best estimator using MSE as criterion as suggested by Adejumo et al. (2024). 

 

3.0 Result and Discussion 

3.1 Simulation Results 

Table 1: Simulation results of Estimated MSE 

      OLS RIDGE LIU KL MRT NTP DK HLR 

  𝜗=0.85 2.76317 2.75324 1.44545 2.74333 2.7582 2.74829 2.73347 0.22957 

 sig=1 𝜗=0.9 4.00713 3.98557 1.84445 3.96408 3.99634 3.97487 3.94276 0.24123 

  𝜗=0.95 7.74754 7.66402 2.88212 7.58101 7.70572 7.62283 7.49926 0.54164 

  𝜗=0.99 37.6987 35.7267 10.484 33.8135 36.7054 34.8043 32.0383 7.00143 

  𝜗=0.85 69.0791 68.8309 36.1138 68.5831 68.9549 68.7073 68.3367 5.57091 

n=10 sig=5 𝜗=0.9 100.178 99.6383 45.9484 99.1001 99.908 99.3703 98.5661 5.29738 

  𝜗=0.95 193.689 191.601 72.0326 189.525 192.643 190.571 187.482 13.3888 

  𝜗=0.99 942.468 893.167 262.08 845.339 917.634 870.106 800.956 174.892 

  𝜗=0.85 276.317 275.324 144.45 274.333 275.82 274.829 273.347 22.2565 

 sig=10 𝜗=0.9 400.713 398.553 183.742 396.4 399.632 397.48 394.263 21.0908 

  𝜗=0.95 774.754 766.402 288.126 758.101 770.572 762.283 749.926 53.5308 

    𝜗=0.99 3769.87 3572.67 1048.32 3381.35 3670.54 3480.43 3203.83 699.548 

  𝜗=0.85 0.97957 0.97826 0.6835 0.97696 0.97892 0.97761 0.97565 0.28637 

 sig=1 𝜗=0.9 1.42064 1.41773 0.88229 1.41482 1.41919 1.41628 1.41193 0.25103 

  𝜗=0.95 2.7471 2.73558 1.36727 2.72409 2.74134 2.72985 2.71267 0.18583 

  𝜗=0.99 13.3694 13.087 4.26398 12.8081 13.2278 12.9496 12.5375 1.55847 

  𝜗=0.85 24.4893 24.4566 17.0683 24.4239 24.4729 24.4402 24.3912 7.0261 

n=20 sig=5 𝜗=0.9 35.5161 35.4433 22.0512 35.3706 35.4797 35.407 35.2981 6.22405 

  𝜗=0.95 68.6775 68.3895 34.1629 68.1022 68.5334 68.2463 67.8166 4.52661 

  𝜗=0.99 334.234 327.175 106.58 320.202 330.694 323.74 313.436 38.862 

  𝜗=0.85 97.9572 97.8262 68.2686 97.6954 97.8917 97.7609 97.5649 28.0814 

 sig=10 𝜗=0.9 142.064 141.773 88.2041 141.482 141.919 141.628 141.193 24.8894 

  𝜗=0.95 274.71 273.558 136.646 272.409 274.134 272.985 271.267 18.0853 

    𝜗=0.99 1336.94 1308.7 426.314 1280.81 1322.78 1294.96 1253.75 155.434 

  𝜗=0.85 0.43739 0.43721 0.37727 0.43703 0.4373 0.43712 0.43685 0.27285 

 sig=1 𝜗=0.9 0.62657 0.62618 0.50535 0.62578 0.62638 0.62598 0.62539 0.30623 

  𝜗=0.95 1.19591 1.19434 0.81784 1.19277 1.19513 1.19356 1.1912 0.28961 

  𝜗=0.99 5.75644 5.71745 2.31929 5.67859 5.73693 5.6981 5.64006 0.12516 

  𝜗=0.85 10.9347 10.9303 9.4295 10.9258 10.9325 10.928 10.9213 6.79199 

n=30 sig=5 𝜗=0.9 15.6643 15.6544 12.6299 15.6445 15.6594 15.6495 15.6346 7.62985 

  𝜗=0.95 29.8978 29.8585 20.4445 29.8193 29.8782 29.8389 29.7801 7.21523 

  𝜗=0.99 143.911 142.936 57.9813 141.965 143.423 142.453 141.002 3.10304 

  𝜗=0.85 43.7389 43.721 37.7182 43.7032 43.73 43.7121 43.6853 27.1656 

 sig=10 𝜗=0.9 62.6574 62.6177 50.5184 62.5781 62.6376 62.5979 62.5385 30.5145 

  𝜗=0.95 119.591 119.434 81.7783 119.277 119.513 119.356 119.12 28.8592 

    𝜗=0.99 575.644 571.745 231.926 567.859 573.693 569.81 564.007 12.4093 

  𝜗=0.85 0.34442 0.3443 0.30251 0.34418 0.34436 0.34424 0.34406 0.22845 

 sig=1 𝜗=0.9 0.49675 0.49648 0.41099 0.49621 0.49662 0.49635 0.49594 0.26697 

  𝜗=0.95 0.95472 0.95364 0.68125 0.95256 0.95418 0.9531 0.95149 0.2836 

  𝜗=0.99 4.62163 4.59485 1.97495 4.56815 4.60823 4.58155 4.54165 0.07745 

  𝜗=0.85 8.61059 8.60754 7.56041 8.60448 8.60907 8.60601 8.60143 5.69474 

n=40 sig=5 𝜗=0.9 12.4188 12.412 10.274 12.4052 12.4154 12.4086 12.3984 6.66558 

  𝜗=0.95 23.868 23.841 17.0293 23.814 23.8545 23.8275 23.7871 7.07518 

  𝜗=0.99 115.541 114.871 49.372 114.204 115.206 114.539 113.541 1.92115 

  𝜗=0.85 34.4424 34.4302 30.2411 34.4179 34.4363 34.424 34.4057 22.776 
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 sig=10 𝜗=0.9 49.6753 49.6481 41.0961 49.6209 49.6617 49.6345 49.5938 26.6615 

  𝜗=0.95 95.4718 95.364 68.1168 95.2561 95.4179 95.3101 95.1485 28.2981 

    𝜗=0.99 462.163 459.485 197.488 456.815 460.823 458.155 454.165 7.68156 

  𝜗=0.85 0.38169 0.38153 0.32831 0.38137 0.38161 0.38145 0.38121 0.23538 

 sig=1 𝜗=0.9 0.55689 0.55654 0.44832 0.55618 0.55672 0.55636 0.55582 0.27042 

  𝜗=0.95 1.08323 1.08181 0.74389 1.08038 1.08252 1.08109 1.07896 0.27042 

  𝜗=0.99 5.2963 5.2609 2.17275 5.22563 5.27858 5.24334 5.19067 0.11408 

  𝜗=0.85 9.54229 9.53829 8.2064 9.53428 9.54029 9.53629 9.53028 5.87772 

n=50 sig=5 𝜗=0.9 13.9224 13.9134 11.2085 13.9045 13.9179 13.9089 13.8955 6.75991 

  𝜗=0.95 27.0808 27.0451 18.5959 27.0095 27.0629 27.0273 26.974 6.75428 

  𝜗=0.99 132.408 131.522 54.3175 130.641 131.965 131.084 129.767 2.84623 

  𝜗=0.85 38.1692 38.1532 32.825 38.1371 38.1612 38.1451 38.1211 23.5089 

 sig=10 𝜗=0.9 55.6894 55.6536 44.8345 55.6178 55.6715 55.6357 55.582 27.0407 

  𝜗=0.95 108.323 108.181 74.3832 108.038 108.252 108.109 107.896 27.0153 

    𝜗=0.99 237.834 236.567 103.561 235.303 237.2 235.937 234.048 3.95439 

  𝜗=0.85 0.16861 0.16858 0.15623 0.16855 0.1686 0.16856 0.16851 0.13306 

 sig=1 𝜗=0.9 0.24621 0.24613 0.21985 0.24606 0.24617 0.24609 0.24598 0.17205 

  𝜗=0.95 0.47926 0.47896 0.38771 0.47866 0.47911 0.47881 0.47837 0.23569 

  𝜗=0.99 2.34452 2.33714 1.22142 2.32979 2.34083 2.33347 2.32246 0.08989 

  𝜗=0.85 4.21529 4.21446 3.90559 4.21363 4.21487 4.21405 4.2128 3.32585 

n=100 sig=5 𝜗=0.9 6.15514 6.15329 5.49608 6.15144 6.15422 6.15236 6.14958 4.30068 

  𝜗=0.95 11.9814 11.974 9.69276 11.9666 11.9777 11.9703 11.9592 5.89158 

  𝜗=0.99 58.6129 58.4286 30.5353 58.2447 58.5207 58.3368 58.0615 2.24657 

  𝜗=0.85 16.8612 16.8578 15.6224 16.8545 16.8595 16.8562 16.8512 13.3033 

 sig=10 𝜗=0.9 24.6206 24.6132 21.9844 24.6057 24.6169 24.6095 24.5983 17.2027 

  𝜗=0.95 47.9255 47.8959 38.771 47.8663 47.9107 47.8811 47.8368 23.5662 

    𝜗=0.99 234.452 233.714 122.141 232.979 234.083 233.347 232.246 8.98616 

  𝜗=0.85 0.05686 0.05686 0.05555 0.05685 0.05686 0.05685 0.05685 0.053 

 sig=1 𝜗=0.9 0.0824 0.08239 0.07952 0.08238 0.08239 0.08239 0.08237 0.07394 

  𝜗=0.95 0.15911 0.15908 0.14822 0.15905 0.1591 0.15907 0.15903 0.12766 

  𝜗=0.99 0.77318 0.77247 0.5739 0.77175 0.77282 0.77211 0.77104 0.26562 

  𝜗=0.85 1.42146 1.42138 1.38873 1.42129 1.42142 1.42134 1.42121 1.32453 

n=250 sig=5 𝜗=0.9 2.0599 2.05972 1.98809 2.05954 2.05981 2.05963 2.05936 1.84857 

  𝜗=0.95 3.97781 3.97709 3.70542 3.97637 3.97745 3.97673 3.97565 3.19091 

  𝜗=0.99 19.3295 19.3116 14.347 19.2938 19.3206 19.3027 19.2759 6.63968 

  𝜗=0.85 5.68583 5.6855 5.55488 5.68518 5.68566 5.68534 5.68485 5.29798 

 sig=10 𝜗=0.9 8.23959 8.23887 7.95238 8.23814 8.23923 8.23851 8.23742 7.39431 

  𝜗=0.95 15.9112 15.9084 14.8216 15.9055 15.9098 15.9069 15.9026 12.7634 

    𝜗=0.99 77.3182 77.2466 57.3878 77.1751 77.2824 77.2109 77.1036 26.5583 

  𝜗=0.85 0.02846 0.02846 0.02813 0.02846 0.02846 0.02846 0.02845 0.02747 

 sig=1 𝜗=0.9 0.04136 0.04136 0.04063 0.04136 0.04136 0.04136 0.04136 0.03919 

  𝜗=0.95 0.08012 0.08012 0.07728 0.08011 0.08012 0.08011 0.0801 0.07175 

  𝜗=0.99 0.3904 0.39022 0.3305 0.39004 0.39031 0.39013 0.38986 0.22577 

  𝜗=0.85 0.71142 0.7114 0.70318 0.71138 0.71141 0.71139 0.71136 0.68685 

n=500 sig=5 𝜗=0.9 1.03401 1.03397 1.01575 1.03392 1.03399 1.03394 1.03388 0.97973 

  𝜗=0.95 2.00308 2.0029 1.932 2.00272 2.00299 2.00281 2.00254 1.79382 

  𝜗=0.99 9.7599 9.75544 8.26244 9.75098 9.75767 9.75321 9.74652 5.64432 

  𝜗=0.85 2.8457 2.84562 2.81273 2.84554 2.84566 2.84558 2.84546 2.74741 

 sig=10 𝜗=0.9 4.13604 4.13586 4.06298 4.13568 4.13595 4.13577 4.13551 3.91893 

  𝜗=0.95 8.01232 8.01161 7.72801 8.01089 8.01196 8.01125 8.01018 7.17529 

    𝜗=0.99 39.0396 39.0218 33.0498 39.0039 39.0307 39.0128 38.9861 22.5773 
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Figure 1: A graph showing the estimators' estimated MSEs at each multicollinearity level and sample size (n) =10 

 

 
Figure 2 A graph showing the estimators' estimated MSEs at each multicollinearity level and sample size (n) =20 

 

 
Figure 3: A graph showing the estimators' estimated MSEs at each multicollinearity level and sample size (n) =30 
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Figure 4: A graph showing the estimators' estimated MSEs at each multicollinearity level and sample size (n) =40 

 

Figure 5: A graph showing the estimators' estimated MSEs at each multicollinearity level and sample size (n) =50 

 

Figure 6: A graph showing the estimators' estimated MSEs at each multicollinearity level and sample size (n) =100 
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Figure 7: A graph showing the estimators' estimated MSEs at each multicollinearity level and sample size (n) =250 

 

 
Figure 8: A graph showing the estimators' estimated MSEs at each multicollinearity level and sample size (n) =500 

3.2 Discussion  

Regarding the simulation outcomes that are shown in Table 1 and illustrated graphically in Figures 1–8, the following is a 

list of comments:  

(i)  As anticipated, OLS performed awfully as multicollinearity increased.  

(ii)  As increases in error variances (sig) and multicollinearity levels ( ) occur, the MSEs of the  estimators under 

consideration also rise. 

(iii) Error variance has great effect on the mean Square Errors (MSEs). It was observed that as the error 

 variances (1, 5 and 10) increases, the MSEs of the  estimator increases. 

(iv) The MSEs of the estimators drop with increasing sample size (n).  

Therefore, Hybrid Liu-Ridge estimator has the minimum mean square errors (MSE) at all levels of specifications considered 

in the study. 

3.3 Application to real-life data 

This study uses real-world data from economics and agriculture, as adapted by Hussein and Abdalla (2012). 

3.3.1. Application to Agricultural Data 

The linear model for agricultural data used is shown below. 

 𝑦 1 20 1 2 3 3x x x   = + ++                                                                                                                                        (49) 

where 𝑦 represents the imported capital commodities, 𝑥1  the value of the imported intermediate, the value of the imported 

raw materials (𝑥2), and the product value in the manufacturing sector (𝑥3). According to Hussein and Abdulla (2012), the 

variance inflation factor (VIF) values, which were calculated to be (128.29, 103.43, and 70.87), indicate that the data suffers 

from multicollinearity. 
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Table 2: MSEs and regression coefficients of estimators with agricultural data 

Coefficients OLS
 RE

 LIU
 KL

 NTP
 MRT

 DK
 HLR

 

0  208.8853 208.8631 218.1294 208.8409 218.0788 208.852 208.8187 199.6137 

1  0.612954 0.61314 0.536651 0.613326 0.535841 0.613233 0.613512 0.690722 

2  1.25626 1.256189 1.286481 1.256118 1.285627 1.256153 1.256047 1.226643 

3  -1.22126 -1.22131 -1.20833 -1.22137 -1.19999 -1.22134 -1.22142 -1.24272 

MSE 1850.482 1850.089 8.54E+19 83504.68 1702.909 1849.893 1849.304 1426.719 

 

3.3.2. Application to Economics data 

For economics data, the regression equation is defined as:       

 𝑦 1 1 2 2 3 30 6 6...x x x x    = + ++ + +                                                                                                          (50) 

Six independent variables are included in the data set: x1 (price deflator), x2 (gross national product), x3 (unemployment), x4 

(armed forces), x5 (population), and x6 (year). The dependent variable, y, is employment. The data had multicollinearity 

issues, according to the variance inflation factor (VIF), which showed that the independent variables have Variance Inflation 

Factor (VIF) values of 132.59, 968.05, 11.70, 3.48, and 389.62 respectively.  

Table 3: MSEs and regression coefficients of estimators with Economics data 

Coefficients OLS
 RE

 LIU
 KL

 NTP
 MRT

 DK
 HLR

 

0  -3482.26 0.017077 -1.5E+10 3482.293 -141.529 0.130591 3482.52 967330.5 

1  0.015062 -0.05293 290294.7 -0.12091 -0.05016 -0.05293 -0.12092 -18.9388 

2  -0.03582 0.071054 -455956 0.177927 0.06671 0.071057 0.177934 29.759 

3  -0.0202 -0.00424 -68111 0.011728 -0.00489 -0.00424 0.011729 4.430727 

4  -0.01033 -0.00573 -19649.7 -0.00112 -0.00591 -0.00573 -0.00112 1.273906 

5  -0.0511 -0.414 1548823 -0.77689 -0.39925 -0.41401 -0.77692 -101.221 

6  1.829151 0.048397 7595832 -1.73236 0.120781 0.048339 -1.73247 -494.622 

MSE 792848.8 3.40256 4.13E+14 965.4497 3.383129 3.398549 792644.5 3.361474 

 

In this study the value of parameter k and d used is 0.0012 and 0.5 respectively which was adopted by several authors like 

Kibra and Lukman (2020) among others. The real life data results presented in Table 3 and 4 show the estimated MSE 

values and parameters of the newly proposed estimator and already existing ones. Hence, from the Tables, the MSE of the 

Hybrid Liu-|Ridge estimator is the lowest when compared to the MSEs of the other estimators, as indicated by the 

highlighted values in Table 3 and 4. 

 

4.0 Conclusion 

In order to address the problem of multicollinearity in linear regression models, this work presents a novel biased estimating 

method. The proposed estimator was compared with some already existing estimators through theoretical analysis. 

Additionally, a simulation-based study was conducted to evaluate the proposed estimator's performance in comparison to the 

current estimators. The findings from the simulation study, theoretical comparison, and real-world data application show 

that Hybrid Liu-Ridge estimator produces better results in terms of minimum (MSE). It is expected that this study will give 

academics from a variety of field’s insightful information. 

 

5.0 Recommendations 

 Researchers and practitioners in statistical modeling should adopt the Hybrid Liu-Ridge (HLR) estimator as a 

reliable alternative for addressing multicollinearity in linear regression models. The Hybrid Liu-Ridge (HLR) estimator is 

recommended for use in upcoming studies in light of the results. 

 

5.1 Practical benefits of the newly proposed estimator 
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i. Enhanced Stability and Reliability: The HLR estimator substantially reduces the instability induced by 

multicollinearity in regression models, resulting in more dependable parameter estimations than classic approaches 

such as OLS, Ridge Regression, and Liu Estimator. 

ii. Optimized Performance: Because the HLR estimator consistently minimizes Mean Squared Error (MSE) across 

different levels of multicollinearity, error variances, and sample sizes, it provides greater prediction accuracy and is 

robust in a variety of scenarios. 

iii. Versatility across Applications: The HLR estimator's practical relevance is demonstrated by its validation using 

real-world data in economics and agriculture, demonstrating its usefulness in a variety of fields that depend on 

regression analysis. 

iv. Adaptability to Diverse Conditions: Monte Carlo simulations were used to thoroughly test the estimator's 

performance, demonstrating its dependability and flexibility even in difficult situations with small sample sizes or 

high multicollinearity. 

v. Advancement in Methodology: By combining the best features of both the Modified Ridge Type (MRT) and 

Modified Liu (MLIU) estimators, the HLR estimator offers a fresh approach to a persistent problem in statistical 

modeling. 

vi. Usability for Practitioners: The HLR estimator provides researchers and practitioners with a more efficient and 

useful tool for evaluating complicated datasets with multicollinearity by overcoming significant shortcomings of 

current biased estimators.  

These advantages highlight the estimator's capacity to improve statistical modeling and produce trustworthy outcomes in 

both academic and practical settings. 

 

5.2 Potential Limitations of the Proposed HLR Estimator 

i. Dependence on Biasing Parameters: The performance of the proposed HLR estimator is greatly impacted by the 

careful choice of shrinkage parameters k and d. Although the study employs parameters that have been proposed by 

previous research (k=0.0012, d=0.5), the selection procedure might not be always the best and could change 

depending on the features of the dataset. The development of adaptive techniques for parameter selection may be 

the main focus of future research. 

ii. Limited Scope of Validation: The HLR estimator's performance in broader applications, such biomedical or 

engineering datasets, has not yet been investigated, despite its validation using simulated and real-world datasets 

(economic and agricultural). Its resilience across many sectors would be ensured by broadening the validation's 

scope. 

iii. Sensitivity to Data Characteristics: Extreme data outliers may cause the proposed estimator to become sensitive. 

Although there are reliable ways to deal with outliers, adding such modifications to the HLR architecture can 

improve its dependability. 

iv. Comparative Analysis with Emerging Techniques: When the HLR estimator is compared with existing biased 

estimators, new machine learning-based methods that can provide alternative viewpoints on managing 

multicollinearity are not taken into account. Its respective benefits and drawbacks could be emphasized by a 

comparison study. 

5.4 Directions for Future Research 

i. Automated Parameter Selection: Create algorithms that pick k and d automatically and dynamically using data-

driven techniques like Bayesian optimization and cross-validation to lessen dependency on preset values. 

ii. Extending Application Domains: To assess the estimator's flexibility and scalability over a range of datasets and 

multicollinearity levels, test its application in a variety of fields, such as engineering, biology, and finance. 

iii. Robustness to Outliers: Make adjustments to strengthen the HLR estimator's resistance to outliers, and use 

strategies like data preparation or robust regression to boost its effectiveness in practical settings. 

iv. Incorporating Machine Learning Innovations: Examine hybrid models that provide a more comprehensive 

approach to managing multicollinearity in contemporary datasets by combining the HLR estimator with machine 

learning frameworks (such as LASSO and Elastic Net). 

In addition to addressing the limitations, these approaches will increase the HLR estimator's applicability and relevance for a 

larger range of applications. 
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Abbreviations 

OLS  Ordinary Least Squares 

MSE  Mean Square Error 

RIDGE  Ridge Estimator 

LIU  Liu Estimator 

KL  Kibra-Lukman Estimator 

NTP  New Two-Parameter Estimator 

MRT  Modified Ridge Type Estimator 

DK  Dawoud-Kibra Estimator 

HLR  Hybrid Liu-Ridge Estimator 
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